000128065 001__ 128065
000128065 005__ 20241125101145.0
000128065 0247_ $$2doi$$a10.1016/j.enconman.2023.117611
000128065 0248_ $$2sideral$$a135261
000128065 037__ $$aART-2023-135261
000128065 041__ $$aeng
000128065 100__ $$0(orcid)0000-0002-7743-0426$$aPerpiñán, Jorge$$uUniversidad de Zaragoza
000128065 245__ $$aFull oxygen blast furnace steelmaking: From direct hydrogen injection to methanized BFG injection
000128065 260__ $$c2023
000128065 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128065 5203_ $$aThis paper presents a novel concept of Power to Gas in an oxygen blast furnace, through blast furnace gas methanation and direct H2 injection. The PEM electrolyser produces H2, which reacts with the CO and CO2 from the blast furnace gas forming synthetic natural gas. The latter gas is injected into the blast furnace, closing a carbon loop and avoiding CO2 emissions. A parametric analysis is performed to vary the H2:CO2 ratio in the methanation reaction. Different ratios are simulated and compared, among of which the most representative are: (i) 2.5, where unreacted CO2 is directly recycled with the synthetic natural gas; (ii) 4, where stoichiometric conditions are found and the synthetic gas is composed mostly by CH4; and (iii) 8, where an excess of H2 is found in the synthetic gas; and (iv) an infinite ratio, where only H2 is injected in the blast furnace. In the latter, the methanation plant is not required, and no synthetic natural gas is produced. The results show that low H2:CO2 ratios perform poorly, involving high PEM sizes and high costs but only a 5% of CO2 avoidance (compared to conventional blast furnaces). A H2:CO2 ratio of 4 and full H2 injection results in higher reduction of CO2 emissions (33.8 % and 28.6%) with carbon abatement costs of 260 and 245 €/tCO2, respectively.
000128065 536__ $$9info:eu-repo/grantAgreement/EC/H2020/887077/EU/Decarbonisation of carbon-intensive industries (Iron and Steel Industries) through Power to gas and Oxy-fuel combustion/DISIPO$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 887077-DISIPO$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-126164OB-I00/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130000B–I00
000128065 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000128065 590__ $$a9.9$$b2023
000128065 592__ $$a2.553$$b2023
000128065 591__ $$aENERGY & FUELS$$b20 / 171 = 0.117$$c2023$$dQ1$$eT1
000128065 593__ $$aEnergy Engineering and Power Technology$$c2023$$dQ1
000128065 591__ $$aTHERMODYNAMICS$$b2 / 78 = 0.026$$c2023$$dQ1$$eT1
000128065 593__ $$aRenewable Energy, Sustainability and the Environment$$c2023$$dQ1
000128065 591__ $$aMECHANICS$$b3 / 170 = 0.018$$c2023$$dQ1$$eT1
000128065 593__ $$aNuclear Energy and Engineering$$c2023$$dQ1
000128065 593__ $$aFuel Technology$$c2023$$dQ1
000128065 594__ $$a19.0$$b2023
000128065 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000128065 700__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza
000128065 700__ $$0(orcid)0000-0001-9967-5806$$aPeña, Begoña$$uUniversidad de Zaragoza
000128065 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000128065 773__ $$g295 (2023), 117611 [9 pp.]$$pEnergy convers. manag.$$tENERGY CONVERSION AND MANAGEMENT$$x0196-8904
000128065 8564_ $$s2875217$$uhttps://zaguan.unizar.es/record/128065/files/texto_completo.pdf$$yVersión publicada
000128065 8564_ $$s2687746$$uhttps://zaguan.unizar.es/record/128065/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000128065 909CO $$ooai:zaguan.unizar.es:128065$$particulos$$pdriver
000128065 951__ $$a2024-11-22-12:04:07
000128065 980__ $$aARTICLE