000128068 001__ 128068
000128068 005__ 20250619084224.0
000128068 0247_ $$2doi$$a10.1103/PhysRevE.108.024305
000128068 0248_ $$2sideral$$a135231
000128068 037__ $$aART-2023-135231
000128068 041__ $$aeng
000128068 100__ $$aLamata-Otín, Santiago$$uUniversidad de Zaragoza
000128068 245__ $$aCollapse transition in epidemic spreading subject to detection with limited resources
000128068 260__ $$c2023
000128068 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128068 5203_ $$aCompartmental models are the most widely used framework for modeling infectious diseases. These models have been continuously refined to incorporate all the realistic mechanisms that can shape the course of an epidemic outbreak. Building on a compartmental model that accounts for early detection and isolation of infectious individuals through testing, in this article we focus on the viability of detection processes under limited availability of testing resources, and we study how the latter impacts on the detection rate. Our results show that, in addition to the well-known epidemic transition at R0=1, a second transition occurs at R★0>1 pinpointing the collapse of the detection system and, as a consequence, the switch from a regime of mitigation to a regime in which the pathogen spreads freely. We characterize the epidemic phase diagram of the model as a function of the relevant control parameters: the basic reproduction number, the maximum detection capacity of the system, and the fraction of individuals in shelter. Our analysis thus provides a valuable tool for estimating the detection resources and the level of confinement needed to face epidemic outbreaks.
000128068 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E36-23R-FENOL$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113582GB-I00
000128068 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000128068 590__ $$a2.2$$b2023
000128068 592__ $$a0.805$$b2023
000128068 591__ $$aPHYSICS, MATHEMATICAL$$b12 / 60 = 0.2$$c2023$$dQ1$$eT1
000128068 593__ $$aCondensed Matter Physics$$c2023$$dQ1
000128068 591__ $$aPHYSICS, FLUIDS & PLASMAS$$b17 / 40 = 0.425$$c2023$$dQ2$$eT2
000128068 593__ $$aStatistics and Probability$$c2023$$dQ2
000128068 593__ $$aStatistical and Nonlinear Physics$$c2023$$dQ2
000128068 594__ $$a4.5$$b2023
000128068 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000128068 700__ $$aReyna-Lara, Adriana
000128068 700__ $$0(orcid)0000-0002-6388-4056$$aSoriano-Paños, David
000128068 700__ $$aLatora, Vito
000128068 700__ $$0(orcid)0000-0001-5204-1937$$aGómez-Gardeñes, Jesús$$uUniversidad de Zaragoza
000128068 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000128068 773__ $$g108, 2 (2023), 024305 [7 pp.]$$pPhys. rev., E$$tPhysical Review E$$x2470-0045
000128068 8564_ $$s675602$$uhttps://zaguan.unizar.es/record/128068/files/texto_completo.pdf$$yPostprint
000128068 8564_ $$s3167822$$uhttps://zaguan.unizar.es/record/128068/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000128068 909CO $$ooai:zaguan.unizar.es:128068$$particulos$$pdriver
000128068 951__ $$a2025-06-19-08:41:29
000128068 980__ $$aARTICLE