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A B S T R A C T

Extensions to the Roe and HLL method have been previously formulated in order to solve the
Shallow Water equations in the presence of source terms. These were named the Augmented
Roe (ARoe) method and the HLLS method, respectively. This paper continues developing these
formulations by examining how entropy corrections can be appropriately fitted in for the ARoe
method and how the HLLS method can be formulated more generally. This is done in two ways.
Firstly, this paper extends the reasoning of Harten and Hyman required by the ARoe method
to include the source term contributions and thus arrives to a more complete formulation of
the entropy fix, which will be compared with the approximation presented in previous works
through numerical experiments. Secondly, it is shown how a relaxation of the criteria used when
choosing waves in the HLLS method yields better solutions to problems where the HLLS would
previously fail. In summary, this paper seeks to offer a comprehensible review of the ARoe and
HLLS methods while improving its performance in cases with transcritical rarefactions for the
inhomogeneous Shallow Water Equations in one dimension.

1. Introduction

The study of the dynamics of water with a free surface has direct applications to environmental research [1]. The behavior of
ater in rivers, basins, coasts and lakes is modeled in order to predict the evolution of floods, debris flows or tsunamis, which are

ome of the most destructive catastrophes [2] and are said to be now more frequent [3]. Additionally, open channel modeling is
lso a crucial step when designing hydraulic structures and operating them [4]. Therefore, scientists, public entities and companies
re all invested in the development of the best predictive models for free surface flows. These models have often at their core the
hallow Water equations (SWE), which assume that flow acceleration is mostly confined to the directions parallel to the bed and the
quations are vertically averaged. The SWE are a set of first order partial differential equations which, in general, are hyperbolic.
t is common then to utilize conservative finite volume methods such as Godunov’s scheme to solve these conservation laws.

In practical applications, source terms need to be taken into consideration. Whether by changes in the geometry or by the effect
f friction, source terms are present in all SWE systems with any ambition to resemble a realistic case. The addition of sources
auses the system of equations to lose its properties of strict hyperbolicity, and therefore the numerical methods used to solve them
eed to be more sophisticated. While it is true that sometimes a naive addition of the source term contribution to the scheme can
ield good results, it might as well fail in some more complicated cases, inducing a degree of uncertainty. As a consequence, there
s a great deal of research into theoretical test cases to ensure robustness and to appropriately introduce source terms [5]. In this
egard, well-balanced upwind schemes [6–9] proved successful compared to point-centered schemes. These upwind schemes worked
y reformulating the numerical flux to allow it to be balanced with the source term. In general, failure to converge to the physically
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relevant solution has been the main problem when designing methods to solve conservation laws leading to the introduction of
entropy corrections, of which the most well-known is the Harten–Hyman entropy fix [10], based on wave-splitting.

For the last two decades the consensus has been that well-balanced methods [11] work well to solve conservation laws with
ource terms. Indeed, the ability to preserve steady states even in the presence of geometrical discontinuities is the desired benchmark
or these schemes [12–14]. Numerical schemes that exactly preserve the total head and the discharge in the simulation of smooth
teady flows and that correctly dissipate mechanical energy in the presence of hydraulic jumps were presented for the first time
n [15]. In [14], exactly energy balanced schemes were reviewed, and a comparison between a set of schemes from the literature
as presented, including models that exactly preserve quiescent flows and models that exactly preserve moving-water steady flow,
nd among them, an energy balanced version of the augmented Roe (ARoe) solver presented in [16,17].

In the ARoe in [16] the source term was accounted for by increasing the number of elementary waves used to construct a Roe-
ype scheme, inspired by the ideas present in [18]. In the original formulation of the Roe Riemann solver [19], the approximate
iemann Problem (RP) is linearized leading to an approximate solution of the system with 𝑘 equations, constituted by 𝑘 waves that

separate 𝑘+ 1 constant states, and the source term is discretized apart. In the ARoe solver [16], the source term is unified with the
homogeneous part of the balance law and an approximated solution with one more wave of zero celerity and therefore one more
inner constant state is achieved.

The strategies and results applied to the ARoe scheme can be also extended to construct energy balanced Harten–Lax–van Leer
(HLL) [20] type methods. The HLL scheme computes directly an approximation to the inter-cell flux, only requiring estimates for the
two largest signal speeds that bound the Riemann fan emerging from the initial discontinuity at the interface. Hence, HLL is a two-
wave model approximate Riemann solver, only appropriate for hyperbolic systems with 𝑘 = 2. If intermediate characteristic fields
appear, such as contact surfaces in the case of jumps in concentrations or shear waves jumps in tangential velocity components, the
more accurate HLLC method [21–24], a three-wave model where C stands for contact, is applicable. In [25] the number of waves
in the well known HLL and HLLC solvers was extended to provide well-balanced versions called HLLS and HLLCS involving an
stationary contact wave in the solution, that includes the presence of the source term. This new contact wave relates the approximate
states at each side of the inter-cell wall through the contribution of the source term and requires choosing a local approximation of
the determinant of the Jacobian. Typically [25], the ARoe eigenvalues are chosen since they can be computed easily but are also
well known to perform badly in the presence of transcritical rarefactions.

This family of augmented solvers provide a description of the approximate solution of the Riemann problem and a straight
forward evaluation of the inter-cell flux, and not only consider problems related with discontinuous bottom topography. The effect
of numerical integration of the source term in the solution can be explored allowing to define appropriate properties representing
the physical features associated with the problem. Augmented solvers such as ARoe and HLLS have been successfully developed
during this last decade in the modeling of environmental problems in shallow flows including rainfall/runoff events [26], flood
regulation [27], variable density [28] for erodible flows of one [29] or two layers, including loss of hyperbolicity [30], non-
Newtonian rheologies [31] with accurate stop-and-go triggering mechanisms [32], dry granular free-surface transient flow [33],
debris [34] and sediment transport in homogeneous [35] and heterogeneous [36] beds, thermally-driven and lava shallow flows [37],
among others, and using first [38] or higher order of accuracy [39,40,31]. They also have been applied to the numerical simulation
of blood flow in networks of arteries and veins [41–44].

However, the fact that the numerical flux is difficult to correct in order to single out the physical solutions is one of the main
disadvantages of this philosophy [45], leading to undesirable consequences in presence of wet/dry fronts, as negative water depths.
Some solutions to this issues where proposed, mainly reducing the time step to ensure convergence or the need to include tuning
parameters. In all the previous applications of the ARoe and HLLS methods, the approximate Roe eigenvalues play an important
role and may be observed when they do not represent correctly the features of the physical problem. The Roe method is only able
to resolve discontinuous jumps, an therefore in transcritical rarefactions may fail, as the continuous fan of intermediate states is
represented using a Roe eigenvalue with approximately zero velocity. This problem is revisited in presence of source terms under the
perspective of the ARoe method. On the other hand, the HLLS is influenced not only by the selection of the wave speed estimates,
but also by the evaluation of the determinant of the Jacobian. This paper is structured as follows. Section 2 presents the basic
equations representing the physics of the model. Section 3 continues by introducing the numerical methods used to solve said
equations, building the ARoe and HLLS methods from their basic principles. Then, Section 4 presents the corrections applied to the
ARoe while Section 5 discusses the possible choices of wave speed estimates and linearized Jacobian for the HLLS solver. Finally,
Section 6 contains numerical experiments involving challenging dynamical Riemann Problems extracted from [46] and steady-state
cases of flow over a bump in order to test the effects of the discussed corrections over the augmented solvers. As pointed out in [14],
the evaluation of the numerical models in the resonant regime is an important step when validating a numerical scheme. Section 7
presents the conclusions of this paper.

2. Mathematical model

2.1. 1D shallow water equations with source terms

In one dimension (1D) and assuming a frictionless channel of unit width, SWE are written as a conservation law as follows:
𝜕𝐔 + 𝜕𝐅 = 𝐒(𝐔), (1)

𝜕𝑡 𝜕𝑥

2
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where 𝑥 is the coordinate along the channel, 𝑡 is the time, 𝐔 is the vector of conserved variables, 𝐅 is the vector of fluxes, 𝐒 is the
source term, defined as:

𝐔 =
(

ℎ
𝑞

)

, 𝐅 =

(

𝑞
𝑞2

ℎ + 1
2 𝑔ℎ

2

)

, 𝐒 =
(

0
 (𝐔)

)

=

(

0
−𝑔ℎ 𝜕𝑧𝑏

𝜕𝑥

)

, (2)

where ℎ is the water depth, 𝑞 = ℎ𝑢 is the unitary flow rate and 𝑢 the cross sectional average velocity, 𝑔 is the gravity acceleration
and 𝑧𝑏 is the bed level.

The source term 𝐒 in this work focuses in the presence of discontinuous source terms, therefore, only changes in the bed level
will be examined.

From the flux 𝐅, the Jacobian matrix 𝐉 of the equation can be found, with:

𝐉 =
𝜕𝐅(𝐔)
𝜕𝐔

=
(

0 1
𝑐2 − 𝑢2 2𝑢

)

, (3)

where 𝑐 =
√

𝑔ℎ is the speed of perturbations in the water. Then, the system can be rewritten as:
𝜕𝐔
𝜕𝑡

+ 𝐉 𝜕𝐔
𝜕𝑥

= 𝐒(𝐔). (4)

If the homogeneous variant of the conservation law is strictly hyperbolic, then 𝐉 has a distinct set of eigenvalues 𝜆𝑘 which in
his case take the form:

𝜆1 = 𝑢 − 𝑐, 𝜆2 = 𝑢 + 𝑐, (5)

ith eigenvectors 𝐞𝑘:

𝐞1 =
(

1
𝜆1

)

, 𝐞2 =
(

1
𝜆2

)

, (6)

hich can be organized into the matrix 𝐏 = (𝐞1, 𝐞2) so that the Jacobian can be diagonalized.
The relative sign of the eigenvalues determines the regime of the system, which can be subcritical if 𝜆1𝜆2 < 0 or supercritical

f 𝜆1𝜆2 > 0. This is reflected into the Froude number, a dimensionless quantity which gives idea of the balance between inertial
ovement and gravity driven movement. It is defined as:

Fr = 𝑢
√

𝑔ℎ
(7)

The exact point (ℎ, 𝑢) at which Fr = 1 is the critical point, where the regime changes. In such circumstances, one of the eigenvalues
ecomes 0, which brings along some numerical problems, for which the entropy corrections are formulated. These kind of situations
re the studied in this paper.

. Numerical model

.1. Homogeneous SWE

First, for the sake of completeness the system in (1) without source terms is considered:
𝜕𝐔
𝜕𝑡

+ 𝐉 𝜕𝐔
𝜕𝑥

= 0. (8)

To solve it, the domain is discretized so that between each two adjacent cells 𝑖 and 𝑖+1 of constant length 𝛥𝑥 = 𝑥𝑖+1 − 𝑥𝑖 a local
RP appears at each time step, defined as the following initial value problem (IVP):

𝜕𝐔
𝜕𝑡

+ 𝐉 𝜕𝐔
𝜕𝑥′

= 0, 𝐔(𝑥′, 0) =
{

𝐔𝑖 𝑖𝑓 𝑥′ < 0
𝐔𝑖+1 𝑖𝑓 𝑥′ > 0

(9)

where a new local coordinate 𝑥′ = 𝑥 − 𝑥𝑖+ 1
2

is defined for the 𝑖th local RP.
Constant vectors 𝐔𝑖 = 𝐔𝑛

𝑖 and 𝐔𝑖+1 = 𝐔𝑛
𝑖+1 are the initial conditions for the RP at time 𝑡𝑛 at the left and right side of the

discontinuity respectively, and are defined by averaging the solution in each cell:

𝐔𝑛
𝑖 =

1
𝛥𝑥 ∫

𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝐔(𝑥, 𝑡 = 𝑡𝑛)𝑑𝑥. (10)

owever, the RP will be solved using approximate linear solutions by means of Godunov’s method, an explicit conservative method
iven by:

𝐔𝑛+1
𝑖 = 𝐔𝑛

𝑖 −
𝛥𝑡
𝛥𝑥

[

𝐅−
𝑖+ 1

2
− 𝐅+

𝑖− 1
2

]𝑛
, (11)

with 𝐅±
𝑖∓1∕2 the inter-cell numerical fluxes whose expression need to be found. The exact solution 𝐔(𝑥, 𝑡) for this problem depends

on the initial conditions and consists of a combination of possible wave patterns. In the subcritical case, they are (a) left rarefaction,
3
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Fig. 1. Left: one of the possible solutions of the RP at time 𝛥𝑡. Right: approximation of left solution of the RP time 𝛥𝑡.

right shock (b) left shock, right rarefaction (c) left rarefaction, right rarefaction (d) left shock, right shock [47]. Fig. 1 pictures case
(a) as an example. In the supercritical situations, waves travel in the same direction. Even when ignoring the exact solution 𝐔(𝑥, 𝑡)
f the RP, it is possible to estimate its variation around the inter-cell wall at a certain time step 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛 by integrating (9) over

the control volume defined by [− 𝛥𝑥
2 , 𝛥𝑥2 ] × [𝑡𝑛, 𝑡𝑛 + 𝛥𝑡]:

∫

𝛥𝑥
2

− 𝛥𝑥
2
∫

𝑡𝑛+1

𝑡𝑛

(

𝜕𝐔
𝜕𝑡

+ 𝜕𝐅
𝜕𝑥′

)

𝑑𝑡𝑑𝑥′ = 0. (12)

Although the fluxes are not constant in time, it is assumed that they do not vary inside each time step 𝛥𝑡, leading to:

∫

𝛥𝑥
2

− 𝛥𝑥
2

𝐔(𝑥′, 𝛥𝑡)𝑑𝑥′ = 𝛥𝑥
2
(

𝐔𝑖+1 + 𝐔𝑖
)

−
(

𝐅𝑖+1 − 𝐅𝑖
)

𝛥𝑡, (13)

where 𝐅𝑖+1 = 𝐅(𝐔𝑖+1) and 𝐅𝑖 = 𝐅(𝐔𝑖). This assumption means that the accuracy order of the scheme must be one. All schemes used
and mentioned in this work are first order.

The evolution of the RP is determined by the eigenvalues of the local Jacobian 𝐉𝑖+ 1
2
, where subscript 𝑖 + 1

2 implies that it
depends on the values of 𝐔 at each side of the inter-cell wall 𝑥 = 𝑥𝑖+ 1

2
, as pictured in Fig. 1. These eigenvalues

(

𝜆1, 𝜆2
)

𝑖+ 1
2

are not
determined since the conservative system is non-linear, and need to be approximated. A new linearized RP is introduced, where the
local Jacobian has been linearized:

𝜕𝐔
𝜕𝑡

+ 𝐉̄
(

𝐔𝑖,𝐔𝑖+1
) 𝜕𝐔
𝜕𝑥′

= 0, 𝐔(𝑥′, 0) =
{

𝐔𝑖 𝑖𝑓 𝑥′ < 0
𝐔𝑖+1 𝑖𝑓 𝑥′ > 0

. (14)

This yields a set of linear PDEs whose solution is known [16]. Information will travel in the (𝑥, 𝑡) plane along lines of slope
∕𝑡 = 𝜆̄𝑘 which will bound different constant states. Then, a weak solution is given by 𝐔̂(𝑥′, 𝛥𝑡), a piecewise approximated solution
t 𝛥𝑡 constructed by different constant states separated by shock waves traveling with speed 𝜆̄𝑘 [11]. In the subcritical case, it can
e written:

𝐔̂(𝑥′, 𝛥𝑡) =
⎧

⎪

⎨

⎪

⎩

𝐔𝑖 𝑖𝑓 𝑥′ < 𝜆̄1𝛥𝑡
𝐔⋆
𝑖+ 1

2

𝑖𝑓 𝜆̄1𝛥𝑡 < 𝑥′ < 𝜆̄2𝛥𝑡

𝐔𝑖+1 𝑖𝑓 𝑥′ > 𝜆̄2𝛥𝑡

(15)

The central approximate inter-cell state is obtained integrating (14) in a volume defined by the eigenvalues of the linearized
Jacobian 𝐉̄, namely [𝜆̄1𝛥𝑡, 𝜆̄2𝛥𝑡] domain:

𝐔⋆
𝑖+ 1

2
(𝜆̄1, 𝜆̄2, 𝛥𝑡) =

1
(𝜆̄2 − 𝜆̄1)𝛥𝑡 ∫

𝜆̄2𝛥𝑡

𝜆̄1𝛥𝑡
𝐔(𝑥′, 𝛥𝑡)𝑑𝑥′ =

(

𝜆̄2𝐔𝑖+1 + 𝜆̄1𝐔𝑖
)

−
(

𝐅𝑖+1 − 𝐅𝑖
)

𝜆̄2 − 𝜆̄1
, (16)

This solution can be integrated in the
[

− 𝛥𝑥
2 , 𝛥𝑥2

]

:

∫

𝛥𝑥
2

𝛥𝑥
𝐔̂(𝑥′, 𝛥𝑡)𝑑𝑥′ =

(

𝜆̄1𝛥𝑡 +
𝛥𝑥)𝐔𝑖 + 𝛥𝑡

(

𝜆̄2 − 𝜆̄1
)

𝐔⋆
1 +

(𝛥𝑥 − 𝜆̄2𝛥𝑡
)

𝐔𝑖+1, (17)

− 2

2 𝑖+ 2 2

4
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and then, since 𝐔̂ is a weak solution of the RP, then it must satisfy integral Eq. (13), leading to:

𝐅𝑖+1 − 𝐅𝑖 = 𝜆̄2

(

𝐔𝑖+1 − 𝐔⋆
𝑖+ 1

2

)

+ 𝜆̄1

(

𝐔⋆
𝑖+ 1

2
− 𝐔𝑖

)

. (18)

Then, the inter-cell flux can be computed from the contributions of each of the waves:

𝐅⋆
𝑖+ 1

2
= 𝐅𝑖 + 𝜆̄1

(

𝐔⋆
𝑖+ 1

2
− 𝐔𝑖

)

= 𝐅𝑖+1 − 𝜆̄2

(

𝐔𝑖+1 − 𝐔⋆
𝑖+ 1

2

)

. (19)

The question of linearizing the Jacobian remains open, as the weak solution in (15) has been achieved assuming that 𝜆̄𝑘 are
known. This paper looks at the ARoe and HLLS methods to find suitable 𝜆̄𝑘.

3.2. Inhomogenous SWE

The source term is added to the right hand side of the conservation law in the Riemann problem:

𝜕𝐔
𝜕𝑡

+ 𝐉 𝜕𝐔
𝜕𝑥′

= 𝐒, 𝐔(𝑥′, 0) =
{

𝐔𝑖 𝑖𝑓 𝑥′ < 0
𝐔𝑖+1 𝑖𝑓 𝑥′ > 0

. (20)

The solution of this problem will satisfy integral equation:

∫

𝛥𝑥
2

− 𝛥𝑥
2
∫

𝑡𝑛+1

𝑡𝑛

(

𝜕𝐔
𝜕𝑡

+ 𝜕𝐅
𝜕𝑥′

− 𝐒
)

𝑑𝑡𝑑𝑥′ = 0. (21)

By again assuming the fluxes are constant in the time-step 𝛥𝑡:

∫

𝛥𝑥
2

− 𝛥𝑥
2

𝐔(𝑥′, 𝛥𝑡)𝑑𝑥 = 𝛥𝑥
2
(

𝐔𝑖+1 + 𝐔𝑖
)

−
(

𝐅𝑖+1 − 𝐅𝑖
)

𝛥𝑡 + ∫

𝛥𝑥
2

− 𝛥𝑥
2
∫

𝑡𝑛+1

𝑡𝑛
𝐒𝑑𝑡𝑑𝑥′, (22)

where the change in time of the source term vector 𝐒 is unknown. Therefore, a suitable time linearization is required:

∫

𝛥𝑥
2

− 𝛥𝑥
2
∫

𝑡𝑛+1

𝑡𝑛
𝐒𝑑𝑡𝑑𝑥 ≈ 𝛥𝑡𝐒̄𝑖+ 1

2
, (23)

with 𝐒̄𝑖+ 1
2
= [0, 𝑆̄𝑖+ 1

2
]𝑇 . The details of this linearization are discussed in Appendix A.

It is assumed that the action of the source term occurs only at the inter-cell wall [16], as a steady contact wave at 𝑥′ = 0. By
gain introducing a linearized Jacobian natrux 𝐉̄𝑖+ 1

2
= 𝐉

(

𝐔𝑖+1,𝐔𝑖
)

, whose eigenvalues are 𝜆1, 𝜆2, locally defined at the 𝑥′ = 0 wall,
hen the integral equation can be written:

𝜕𝐔
𝜕𝑡

+ 𝐉̄
(

𝐔𝑖,𝐔𝑖+1
) 𝜕𝐔
𝜕𝑥′

= 𝐒̄𝑖+ 1
2
, 𝐔(𝑥′, 0) =

{

𝐔𝑖 𝑖𝑓 𝑥′ < 0
𝐔𝑖+1 𝑖𝑓 𝑥′ > 0

. (24)

This linearized RP is solved by constructing a weak solution in four parts, which in the subcritical regime is

𝐔̂(𝑥, 𝛥𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐔𝑖 𝑖𝑓 𝑥′ < 𝜆̄1𝛥𝑡
𝐔−
𝑖 𝑖𝑓 𝜆̄1𝛥𝑡 < 𝑥′ < 0

𝐔+
𝑖+1 𝑖𝑓 0 < 𝑥′ < 𝜆̄2𝛥𝑡

𝐔𝑖+1 𝑖𝑓 𝑥′ > 𝜆̄2𝛥𝑡

, (25)

which needs to satisfy (22), leading to the condition:

𝐅𝑖+1 − 𝐅𝑖 − 𝐒̄𝑖+ 1
2
= 𝜆̄2

(

𝐔𝑖+1 − 𝐔+
𝑖+1

)

+ 𝜆̄1
(

𝐔−
𝑖 − 𝐔𝑖

)

. (26)

This means that the change in homogeneous fluxes from one cell to the next is given by the waves as in (18). In constructing
piecewise approximate solution, the inter-cell state 𝐔⋆ from the homogeneous case has been split in two approximate states 𝐔−

𝑖
and 𝐔+

𝑖+1. Reformulating the integral Eq. (22) between [𝜆1𝛥𝑡, 𝜆̄2𝛥𝑡] in order to solve for the two central states only leads to:

∫

𝜆̄2𝛥𝑡

𝜆1𝛥𝑡
𝐔(𝑥′, 𝛥𝑡)𝑑𝑥′ =

(

𝜆̄2 − 𝜆̄1
) (

𝐔+
𝑖+1 − 𝐔−

𝑖
)

𝛥𝑡 −
(

𝐅+
𝑖+1 − 𝐅−

𝑖 − 𝐒̄𝑖+ 1
2

)

𝛥𝑡. (27)

While the same integration performed on the linearized system (24) allows to write:

∫

𝜆̄2𝛥𝑡

𝜆1𝛥𝑡
𝐔(𝑥′, 𝛥𝑡)𝑑𝑥′ =

(

𝜆̄2 − 𝜆̄1
) (

𝐔+
𝑖+1 + 𝐔−

𝑖
)

𝛥𝑡 − 𝐉̄𝑖+ 1
2

(

𝐔+
𝑖+1 + 𝐔−

𝑖
)

𝛥𝑡 − 𝐒̄𝑖+ 1
2
𝛥𝑡. (28)

Subtracting equations Eqs. (27) and (28) leads to:

𝐅+ − 𝐅− = 𝐉̄ 1
(

𝐔+ − 𝐔−). (29)
𝑖+1 𝑖 𝑖+ 2 𝑖+1 𝑖

5
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Now, since a static shock wave is assumed between states 𝐔+
𝑖+1 and 𝐔−

𝑖 , the Rankine–Hugoniot condition can be imposed with a
wave speed 𝜎 = 0:

𝐅+
𝑖+1 − 𝐅−

𝑖 − 𝐒̄𝑖+ 1
2
= 𝜎

(

𝐔+
𝑖+1 − 𝐔−

𝑖
)

= 0. (30)

which, if substituted into (30), leads to the following result regarding the relationship between the source term and the approximate
states at each side of the inter-cell wall:

𝐉̄𝑖+ 1
2
(𝐔+

𝑖+1 − 𝐔−
𝑖 ) = 𝐒̄𝑖+ 1

2
. (31)

Then, the inverse of the approximate Jacobian matrix:

𝐉̄−1
𝑖+ 1

2
= 1

det 𝐉̄𝑖+ 1
2

(

2𝑢̄ −1
𝑢̄2 − 𝑐2 0

)

= 1
𝜆̄1𝜆̄2

(

2𝑢̄ −1
𝑢̄2 − 𝑐2 0

)

, (32)

can be used on both sides of (31) to define the new vector 𝐇̄:

𝐔+
𝑖+1 − 𝐔−

𝑖 = 𝐉̄−1
𝑖+ 1

2

(

0
𝑆𝑖+ 1

2

)

= − 1
𝜆̄1𝜆̄2

(

𝑆𝑖+ 1
2

0

)

= 𝐇̄𝑖+ 1
2
. (33)

here it is important to remember that 𝐉̄𝑖+ 1
2

is a linearized Jacobian dependent on the initial values of the RP. The existence of
̄
𝑖+ 1

2
requires the Jacobian to be invertible and 𝐇̄𝑖+ 1

2
provides a direct relationship between the two approximate inner states of

the weak solution across the inter-cell wall.
Regardless, the inter-cell flux in the subcritical case can be computed from the contributions of each of the waves:

𝐅−
𝑖+ 1

2
= 𝐅𝑖 + 𝜆̄1

(

𝐔−
𝑖+ 1

2
− 𝐔𝑖

)

≠ 𝐅+
𝑖+ 1

2

= 𝐅𝑖+1 − 𝜆̄2

(

𝐔𝑖+1 − 𝐔+
𝑖+ 1

2

)

. (34)

The supercritical case is included in Appendix B.

.3. The augmented Roe solver

Now the choice of approximate Jacobian 𝐉̄𝑖+ 1
2

is discussed. It can be based on the so-called Roe averaged values between cells:

𝐉̃ =
(

0 1
𝑐2 − 𝑢̃2 2𝑢̃

)

, ℎ̃ =
ℎ𝑖 + ℎ𝑖+1

2
, 𝑢̃ =

𝑢𝑖
√

ℎ𝑖 + 𝑢𝑖+1
√

ℎ𝑖+1
√

ℎ𝑖 +
√

ℎ𝑖+1
, (35)

where the tilde shall indicate that a certain variable is based on the Roe averaged values and thus always associated with an inter-cell
wall. For the sake of clarity the 𝑖 + 1

2 subscript is implied but omitted. Additionally, the celerity is defined 𝑐 =
√

𝑔ℎ̃. This constant
matrix is diagonalizable with eigenvalues:

𝜆̃1 = 𝑢̃ − 𝑐, 𝜆̃2 = 𝑢̃ + 𝑐. (36)

Their corresponding eigenvectors are:

𝐞̃1 =
(

1
𝜆̃1

)

𝐞̃2 =
(

1
𝜆̃2

)

, (37)

which can be arranged into matrices 𝐏̃ = (𝐞̃1, 𝐞̃2) and 𝐏̃−1 with the following property:

𝐉̃ = (𝐏̃Λ̃𝐏̃−1), Λ̃ =
(

𝜆̃1 0
0 𝜆̃2

)

, (38)

and system in (20) is transformed using 𝐏̃−1 matrix as into a decoupled system expressed in terms of the characteristic variables
𝐕 = 𝐏̃−1𝐔 the IVP is transformed in a set of two decoupled linear IVP’s, with the following form:

𝜕𝐕
𝜕𝑡

+ Λ̃
𝜕𝐕
𝜕𝑥

= 𝐁̄𝑖+ 1
2
, 𝐕(𝑥′, 0) =

{

𝐕𝑖 = 𝐏̃−1𝐔𝑖 𝑖𝑓 𝑥′ < 0
𝐕𝑖+1 = 𝐏̃−1𝐔𝑖+1 𝑖𝑓 𝑥′ > 0

, (39)

here 𝐁̄𝑖+ 1
2

= 𝐏̃−1
𝑖+ 1

2

𝐒̄ = [𝛽1, 𝛽2]𝑇𝑖+ 1
2

is the new transformed vector of source terms. Integration of (39) over control volume

[− 𝛥𝑥
2 , 𝛥𝑥2 ] × [𝑡𝑛, 𝑡𝑛 + 𝛥𝑡] yields one equation for each component:

∫

𝛥𝑥
2

− 𝛥𝑥
2

𝑉 𝑘(𝑥′, 𝛥𝑡)𝑑𝑥 = 𝛥𝑥
2
(

𝑉 𝑘
𝑖+1 + 𝑉 𝑘

𝑖
)

− 𝛥𝑡𝜆̃𝑘
(

𝑉 𝑘
𝑖+1 − 𝑉 𝑘

𝑖
)

+ 𝛥𝑡𝛽𝑘. (40)

here in this case 𝑘 = 1, 2. A weak solution 𝑉 𝑘 is proposed for each characteristic variable following the reasoning in Section 3.2.
wo cases are possible as 𝜆̃ can be either negative or positive. Thus, the weak solutions pictured in Fig. 2 are proposed, each built
𝑘

6
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w

Fig. 2. Piecewise solution for the decoupled primitive variable 𝑉 𝑘, involving an inner constant state bound by a stationary contact wave at 𝑥 = 𝑥𝑖+ 1
2

and by a
wave of speed 𝜆̃𝑘.

from a different piecewise reconstruction of the approximate solution for a characteristic variable 𝑉 𝑘 with a wave of speed 𝜆̃𝑘 < 0
(left) and 𝜆̃𝑘 > 0 (right):

𝑉 𝑘(𝑥′, 𝛥𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑉 𝑘
𝑖 𝑖𝑓 𝑥′ < 𝜆̃𝑘𝛥𝑡

𝑉 𝑘−
𝑖 𝑖𝑓 𝜆̃𝑘𝛥𝑡 < 𝑥′ < 0

𝑉 𝑘
𝑖+1 𝑖𝑓 𝑥′ > 0

𝑖𝑓 𝜆̃𝑘 < 0, (41)

𝑉 𝑘(𝑥′, 𝛥𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑉 𝑘
𝑖 𝑖𝑓 𝑥′ < 0

𝑉 𝑘+
𝑖+1 𝑖𝑓 0 < 𝑥′ < 𝜆̃𝑘𝛥𝑡

𝑉 𝑘
𝑖+1 𝑖𝑓 𝑥′ > 𝜆̃𝑘𝛥𝑡

𝑖𝑓 𝜆̃𝑘 > 0. (42)

The intermediate states can be found integrating in their respective domains. If 𝜆̃𝑘 < 0, then the state 𝑉 𝑘−
𝑖 bound between

[𝜆̃𝑘𝛥𝑡, 0], can be written as:

𝑉 𝑘−
𝑖 = ∫

0

𝜆̃𝑘𝛥𝑡
𝑉 𝑘(𝑥′, 𝛥𝑡)𝑑𝑥 =

𝜆̃𝑘𝑉 𝑘
𝑖 + 𝜆̃𝑘

(

𝑉 𝑘
𝑖+1 − 𝑉 𝑘

𝑖
)

− 𝛽𝑘
𝜆̃𝑘

= 𝑉 𝑘
𝑖 + 𝛿𝑉 𝑘

𝑖+ 1
2
−

𝛽𝑘
𝜆̃𝑘

. (43)

Likewise, the state 𝑉 𝑘+
𝑖+1 bound between [0, 𝜆̃𝑘𝛥𝑡] is given by:

𝑉 𝑘+
𝑖+1 = ∫

𝜆̃𝑘𝛥𝑡

0
𝑉 𝑘(𝑥′, 𝛥𝑡)𝑑𝑥 =

𝜆̃𝑘𝑉 𝑘
𝑖+1 − 𝜆̃𝑘

(

𝑉 𝑘
𝑖+1 − 𝑉 𝑘

𝑖
)

+ 𝛽𝑘
𝜆̃𝑘

= 𝑉 𝑘
𝑖+1 − 𝛿𝑉 𝑘

𝑖+ 1
2
+

𝛽𝑘
𝜆̃𝑘

. (44)

here the terms 𝛿𝑉 𝑘
𝑖+ 1

2

are kept in order to define the vector of wave strengths, which represent the difference in the primitive
variables across the shock that the waves represent

𝐀̃𝑖+ 1
2
= 𝛿𝐕𝑖+ 1

2
= 𝐏̃−1𝛿𝐔𝑖+ 1

2
= (𝛼̃1, 𝛼̃2)𝑇𝑖+ 1

2
(45)

In general, the average states at the cell wall can be written, according to the sign of the corresponding eigenvalue:

𝑉 𝑘−
𝑖 =

{

𝑉 𝑘
𝑖 𝑖𝑓 𝜆̃𝑘 > 0

𝑉 𝑘
𝑖 + 𝜃𝑘𝛿𝑉 𝑘

𝑖+ 1
2

𝑖𝑓 𝜆̃𝑘 < 0 , 𝑉 𝑘+
𝑖+1 =

{

𝑉 𝑘
𝑖+1 − 𝜃𝑘𝛿𝑉 𝑘

𝑖+ 1
2

𝑖𝑓 𝜆̃𝑘 > 0

𝑉 𝑘
𝑖+1 𝑖𝑓 𝜆̃𝑘 < 0

(46)

where

𝜃𝑘 = 1 −
𝛽𝑘

𝜆̃𝑘𝛼̃𝑘
. (47)

Expression (46) can be written in a more condensed form defining the positive and negative parts of the eigenvalue 𝜆̃−𝑘 and 𝜆̃+𝑘 :

𝜆̃±𝑘 = 1
2
(𝜆̃𝑘 ± |𝜆̃𝑘|), (48)

so the first is zero when 𝜆̃𝑘 is positive and equal to 𝜆̃𝑘 when it is negative. The opposite definition holds for 𝜆̃+𝑘 . Then:

𝑉 𝑘,−
𝑖 = 𝑉 𝑘

𝑖 +
(

𝜆̃−

𝜆̃

)

𝑘
𝜃𝑘𝛿𝑉

𝑘
𝑖+ 1

2
, 𝑉 𝑘,+

𝑖+1 = 𝑉 𝑘
𝑖+1 −

(

𝜆̃+

𝜆̃

)

𝑘
𝜃𝑘𝛿𝑉

𝑘
𝑖+ 1

2
, (49)

which allows grouping in matrix form

𝐕− = 𝐕 + Λ̃−1Λ̃−Θ̃𝛿𝐕 1 , 𝐕+ = 𝐕 − Λ̃−1Λ̃+Θ̃𝛿𝐕 1 , (50)
𝑖 𝑖 𝑖+ 2 𝑖+1 𝑖+1 𝑖+ 2

7
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Fig. 3. Approximate solution 𝐔̂(𝑥, 𝛥𝑡) in the subcritical (center) and supercritical (left/right) cases. In the former case, the solution consists of two inner constant
tates, 𝐔−

𝑖 and 𝐔+
𝑖+1 given by (52), separated by a contact wave at 𝑥 = 𝑥𝑖+ 1

2
. In the latter cases, the solution consists of two inner constant states, 𝐔−

𝑖 and 𝐔+
𝑖

hen 𝜆̃2 < 0, and 𝐔−
𝑖+1 and 𝐔+

𝑖+1 when 𝜆̃1 > 0.

here Θ̃ is a diagonal matrix with 𝜃’s in the main diagonal

Θ̃𝑖+ 1
2
=
(

𝜃1 0
0 𝜃2

)

𝑖+ 1
2

. (51)

Knowing the solution of the decoupled equations, it is now a matter of returning to the original conserved variables. The
ntermediate states 𝐔−

𝑖 and 𝐔+
𝑖+1 can be directly obtained by using 𝐏̃ matrix. Vector solutions 𝐔−

𝑖 = 𝐏̃𝐕−
𝑖 and 𝐔+

𝑖+1 = 𝐏̃𝐕+
𝑖+1 are

ecovered from (50) as follows

𝐔−
𝑖 = 𝐔𝑖 + (𝐏̃Λ̃−1Λ̃−Θ̃𝐏̃−1)𝑖+ 1

2
𝛿𝐔𝑖+ 1

2
= 𝐔𝑖 +

∑

𝜆̃𝑘<0

(

𝛼̃𝜃𝐞̃
)

𝑘 ,

𝐔+
𝑖+1 = 𝐔𝑖+1 − (𝐏̃Λ̃−1Λ̃+Θ̃𝐏̃−1)𝑖+ 1

2
𝛿𝐔𝑖+ 1

2
= 𝐔𝑖+1 −

∑

𝜆̃𝑘>0

(

𝛼̃𝜃𝐞̃
)

𝑘 .
(52)

These two constant states at each side of the cell wall can be related using Eq. (31), where the Roe Jacobian is introduced as
the constant and invertible Jacobian:

𝐔+
𝑖+1 − 𝐔−

𝑖 = 𝐉̃−1
𝑖+ 1

2
𝐒̄𝑖+ 1

2
= 𝐇̃𝑖+ 1

2
= − 1

𝜆̃1𝜆̃2

(

𝑆̄𝑖+ 1
2

0

)

. (53)

where 𝐇̃ has been defined in general in (33). The resulting self-similar solution of the IVP in (20) is depicted in Fig. 3 in all cases.
Since this piecewise description of the solution is based on shocks and steady waves, it is possible to utilize the Rankine–Hugoniot

conditions:

𝐅𝑖+1 − 𝐅+
𝑖+1 = 𝜆̃2(𝐔𝑖+1 − 𝐔+

𝑖+1), 𝐅−
𝑖 − 𝐅𝑖 = 𝜆̃1(𝐔−

𝑖 − 𝐔𝑖) (54)

and using the expressions for the intermediate states given in (53):

𝐅+
𝑖+ 1

2

= 𝐅+
𝑖+1 = 𝐅𝑖+1 −

∑

𝜆̃𝑘>0

[𝜆̃𝛼̃𝜃𝐞̃]𝑘, 𝐅−
𝑖+ 1

2
= 𝐅−

𝑖 = 𝐅𝑖 +
∑

𝜆̃𝑘<0

[𝜆̃𝛼̃𝜃𝐞̃]𝑘. (55)

hich is also appropiate in the supercritical cases.
The process is now completed, as the knowledge of the inter-cell fluxes at the cell wall given in (55) allows to substitute into

11), Godunov’s Scheme, with the following property:

𝐅+
𝑖+1 − 𝐅−

𝑖 = 𝐒̄𝑖+ 1
2
. (56)

.4. The HLLS solver

HLL methods also propose a piecewise weak solution constructed from constant approximate inter-cell states bound by the
igenvalues of the Jacobian. The key difference with the Roe method is that, rather than choosing an approximate linearization of
he Jacobian that yields certain eigenvalues 𝜆̃ associated with positive and negative contributions to the flux, the basic HLL method
onsiders two chosen waves, making the method simpler. An extension to the HLL, henceforth the HLLS method, includes a steady
ontact wave at the discontinuity and accounts for problems with source terms. The choice of waves, 𝜎𝐿 < 𝜎𝑅 is, of course, very
mportant to ensure good results, and will be discussed in Section 5.

Consider first the subcritical case 𝜎𝐿 < 0 < 𝜎𝑅. Then, a weak solution pictured in Fig. 4 is suggested. In order to find the fluxes
t the discontinuity at 𝑥 = 𝑥𝑖+ 1

2
, the weak solution 𝐔̂(𝑥′, 𝛥𝑡) is integrated over the control volume [𝜎𝐿𝛥𝑡, 𝜎𝑅𝛥𝑡]:

∫

𝜎𝑅𝛥𝑡

𝜎𝐿𝛥𝑡
𝐔̂(𝑥, 𝛥𝑡)𝑑𝑥 =

−𝜎𝐿𝐔−
𝑖 + 𝜎𝑅𝐔+

𝑖+1
𝜎𝑅 − 𝜎𝐿

, (57)

which in combination with the integral Eq. (22), leads to

− 𝜎 𝐔− + 𝜎 𝐔+ + 𝜎 𝐔 − 𝜎 𝐔 + (𝐅 − 𝐅 − 𝐒̄ 1 ) = 0. (58)
𝐿 𝑖 𝑅 𝑖+1 𝐿 𝑖 𝑅 𝑖+1 𝑖+1 𝑖 𝑖+ 2

8
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Fig. 4. Piecewise solution 𝐔̂(𝑥, 𝛥𝑡) in the subcritical case. The solution assumes of two inner constant states, 𝐔−
𝑖 and 𝐔+

𝑖+1 separated by a contact wave at 𝑥 = 0.

Another equation is necessary in order to solve for states 𝐔+
𝑖+1 and 𝐔−

𝑖 . Of course these two are related by the 𝐇̄ vector first
presented in (33).

𝐔+
𝑖+1 − 𝐔−

𝑖 = 𝐇̄𝑖+ 1
2
=
(

𝐉̄−1𝐒̄
)

𝑖+ 1
2
. (59)

Thus, assuming that 𝐇̄ is known, substitution of (59) into (58), allows to write the intermediate states:

𝐔+
𝑖+1 =

𝜎𝑅𝐔𝑖+1 − 𝜎𝐿𝐔𝑖 − 𝐅𝑖+1 + 𝐅𝑖 + 𝐒̄𝑖+1∕2 − 𝜎𝐿𝐇̄𝑖+1∕2

𝜎𝑅 − 𝜎𝐿
= 𝐔⋆

𝑖+1∕2 +
𝐒̄𝑖+1∕2 − 𝜎𝐿𝐇̄𝑖+1∕2

𝜎𝑅 − 𝜎𝐿
, (60)

𝐔−
𝑖 =

𝜎𝑅𝐔𝑖+1 − 𝜎𝐿𝐔𝑖 − 𝐅𝑖+𝐹1 + 𝐅𝑖 + 𝐒̄𝑖+1∕2 − 𝜎𝑅𝐇̄𝑖+1∕2

𝜎𝑅 − 𝜎𝐿
= 𝐔⋆

𝑖+1∕2 +
𝐒̄𝑖+1∕2 − 𝜎𝑅𝐇̄𝑖+1∕2

𝜎𝑅 − 𝜎𝐿
. (61)

here 𝐔⋆
𝑖+ 1

2
is the approximate state at the inter-cell wall in the homogeneous case, which in the context of the HLLS method, can

e written:

𝐔⋆ =
𝜎𝑅𝐔𝑖+1 − 𝜎𝐿𝐔𝑖 − 𝐅𝑖+1 + 𝐅𝑖

𝜎𝑅 − 𝜎𝐿
. (62)

Knowing the inner states, the fluxes can be obtained by using the Rankine–Hugoniot conditions:

𝐅𝑖+1 − 𝐅+
𝑖+1 = 𝜎𝑅(𝐔𝑖+1 − 𝐔+

𝑖+1), 𝐅−
𝑖 − 𝐅𝑖 = 𝜎𝐿(𝐔−

𝑖 − 𝐔𝑖). (63)

And therefore, in the subcritical regime, the fluxes needed to update following the Godunov method in (11) are:

𝐅+
𝑖+ 1

2

= 𝐅+
𝑖+1 =

𝜎𝑅𝐅𝑖 − 𝜎𝐿𝐅𝑖+1 − 𝜎𝐿𝜎𝑅(𝐔𝑖+1 − 𝐔𝑖) + 𝜎𝑅(𝐒̄𝑖+1∕2 − 𝜎𝐿𝐇̄𝑖+1∕2)
𝜎𝑅 − 𝜎𝐿

, (64)

𝐅−
𝑖+ 1

2
= 𝐅−

𝑖 =
𝜎𝑅𝐅𝑖 − 𝜎𝐿𝐅𝑖+1 − 𝜎𝐿𝜎𝑅(𝐔𝑖+1 − 𝐔𝑖) + 𝜎𝐿(𝐒̄𝑖+1∕2 − 𝜎𝑅𝐇̄𝑖+1∕2)

𝜎𝑅 − 𝜎𝐿
. (65)

The expressions for the inter-cell fluxes for the supercritical cases can be found in Appendix B.
In contrast to the HLL method, the need for an extra equation that forces the appearance of the 𝐇̄𝑖+ 1

2
can be problematic in

ertain situations, since an approximate Jacobian to compute 𝐇̄ needs to be chosen. Previous work in [25] universally chooses the
Roe approximation 𝐇̃ but this is not necessarily the best choice. Section 5 will detail why.

4. Entropy fix for transcritical rarefactions in the ARoe solver

The previous section dealt with finding weak solutions to the 1D SWE. However, not all weak solutions may correspond to
physically meaningful solutions. Therefore, a series of corrections, generally referred to as entropy corrections are necessary to
ensure the solution is the desired, physically correct solution [11,47,48]. These corrections were originally implemented for the
Euler equations to ensure that weak solutions satisfied the principle of maximum entropy production in gas dynamics [10]. In the
context of transcritical rarefaction, this is classically known as the Entropy Fix.

4.1. Homogeneous case

Consider first the homogeneous case in which the local RP is given by (8). Fig. 5 pictures a solution with a transcritical rarefaction
(top) and its Roe-approximated counterpart 𝐔̂(𝑥′, 𝛥𝑡) (bottom).
9
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s

a

c

Fig. 5. Analytical 𝐔(𝑥, 𝑡) and approximate solution 𝐔̂(𝑥, 𝑡) proposed by the ARoe method in the homogeneous case with a left transcritical rarefaction. The central
tate 𝐔⋆ barely propagates in the left direction.

Fig. 6. New average solution in the homogeneous case with a transcritical rarefaction to the left. A new average state, 𝐔⋆
𝑇 𝑟𝐶 is identified bounded by the

rarefaction.

The central state 𝐔⋆, given by:

𝐔⋆
𝑖+ 1

2
= 𝐔𝑖 +

∑

𝜆̃𝑘<0

(𝛼̃𝐞̃)𝑘
𝑖+ 1

2
= 𝐔𝑖+1 −

∑

𝜆̃𝑘>0

(𝛼̃𝐞̃)𝑘
𝑖+ 1

2
(66)

barely propagates in the left directions respectively. Following Godunov’s method in (11), the solution of the local RP is evolved
for a time equal to the time step and the resulting solution is cell-averaged obtaining the piecewise solution at the new time level.
However, in the case of a transcritical rarefaction, one of the Roe-averaged waves 𝜆̃𝑘 does not represent the correct propagation of
information carried by the rarefaction, as shown in Fig. 5, and thus the averaging is inaccurate.

Fig. 6 shows how the transcritical rarefaction, defined between 𝜆𝑖1 and 𝜆⋆1 , where:

𝜆𝑖1 = 𝜆1(𝐔𝑖) = 𝑢𝑖 −
√

𝑔ℎ𝑖 and 𝜆⋆1 = 𝜆1(𝐔⋆
𝑖+ 1

2
) = 𝑢⋆

𝑖+ 1
2
−
√

𝑔ℎ⋆
𝑖+ 1

2

, (67)

nd fulfilling

𝜆𝑖1 < 0 < 𝜆⋆1 , (68)

an be substituted by the following transcritical average solution:

𝐔⋆
𝑇 𝑟𝐶 = 1

( ⋆ 𝑖 ) ∫

𝜆⋆1 𝛥𝑡

𝑖
𝐔(𝑥, 𝛥𝑡)𝑑𝑥, (69)
𝜆1 − 𝜆1 𝛥𝑡 𝜆1𝛥𝑡

10
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u
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Fig. 7. New average solution in the homogeneous case with a transcritical rarefaction to the left. The split waves 𝜆←𝑘 , 𝜆→𝑘 allow to compute the new central
state as a linear combination.

where 𝐔⋆
𝑇 𝑟𝐶 is a constant value that approximates the solution inside the rarefaction, bound by waves 𝜆⋆1 and 𝜆𝑖1, as can be seen in

Fig. 6 at time 𝑡𝑛 + 𝛥𝑡. This is usually tackled by the Harten–Hyman entropy fix [10], which splits the troublesome 𝜆̃1 into two wave
contributions. The goal piecewise solution is represented in Fig. 7.

Integrating the approximate solution 𝐔̂ shown in Fig. 5 in the control volume given by the limits of the rarefaction fan (in red)
[𝜆𝑖1𝛥𝑡, 𝜆

⋆
1 𝛥𝑡] volume yields the average central state:

𝐔⋆
𝑇 𝑟𝐶 =

(𝜆̃1 − 𝜆𝑖1)𝐔𝑖 + (𝜆⋆1 − 𝜆̃1)𝐔⋆
𝑖+1∕2

𝜆⋆1 − 𝜆𝑖1
. (70)

Then, subtracting 𝐔𝑖 from both sides of the equation:

(

𝐔⋆
𝑇 𝑟𝐶 − 𝐔𝑖

)

=
𝜆⋆1 − 𝜆̃1
𝜆⋆1 − 𝜆𝑖1

(

𝐔⋆
𝑖+ 1

2
− 𝐔𝑖

)

. (71)

nd then, if the 𝜆̃1 wave is treated like a shock, the Rankine–Hugoniot condition can be applied to it in order to obtain the flux
ifference across it:

𝐅⋆
𝑇 𝑟𝐶 − 𝐅𝑖 = 𝜆𝑖1

(

𝐔⋆
𝑇 𝑟𝐶 − 𝐔𝑖

)

= 𝜆𝑖1
𝜆⋆1 − 𝜆̃1
𝜆⋆1 − 𝜆𝑖1

(

𝐔⋆
𝑖+ 1

2
− 𝐔𝑖

)

. (72)

Therefore, the flux across the cell wall is obtained:

𝐅𝑖+ 1
2
= 𝐅⋆

𝑇 𝑟𝐶 = 𝐅𝑖 + 𝜆𝑖1
𝜆⋆1 − 𝜆̃1
𝜆⋆1 − 𝜆𝑖1

𝛼̃1𝐞̃𝟏 = 𝐅𝑖 + 𝜆←1 𝛼̃1𝐞̃𝟏 (73)

by using the newly defined:

𝜆←1 = 𝜆𝑖1
𝜆+1 − 𝜆̃1
𝜆⋆1 − 𝜆𝑖1

. (74)

This new wave can be thought of the part of the information traveling upstream with the transcritical rarefaction. Likewise,
sing the same reasoning, the celerity of the wave traveling downstream can be written as:

𝜆→1 = 𝜆⋆1
𝜆̃1 − 𝜆𝑖1
𝜆⋆1 − 𝜆𝑖1

. (75)

Note that these waves fulfill the property 𝜆→1 + 𝜆←1 = 𝜆̃1, as expected from the splitting. Fig. 7 shows the resulting approximate
solution, with the central state 𝐔⋆

𝑇 𝑟𝐶 bounded by the split waves.
In the case of a right transcritical rarefaction, bounded by 𝜆⋆2 = 𝑢⋆

𝑖+ 1
2

+
√

𝑔ℎ⋆
𝑖+ 1

2

and 𝜆𝑖+12 = 𝑢𝑖+1 +
√

𝑔ℎ𝑖+1, the same process can

be followed, arriving to the inter-cell flux given by:

𝐅𝑖+ 1
2
= 𝐅⋆

𝐓𝐫𝐂 = 𝐅𝑖+1 − 𝜆𝑖+12

𝜆̃2 − 𝜆⋆2
𝜆𝑖+12 − 𝜆⋆2

𝛼̃2𝐞̃𝟐 = 𝐅𝑖+1 − 𝜆→2 𝛼̃2𝐞̃𝟐, (76)

here, again, two new waves appear in order to split the contribution of the rarefaction:

𝜆→2 = 𝜆𝑖+12

𝜆̃2 − 𝜆⋆2
𝜆𝑖+12 − 𝜆⋆2

, 𝜆←2 = 𝜆⋆2
𝜆𝑖+12 − 𝜆̃2
𝜆𝑖+12 − 𝜆⋆2

. (77)

fulfilling 𝜆→ + 𝜆← = 𝜆̃ .
2 2 2

11
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c

i

Fig. 8. Approximate solution 𝐔̂(𝑥, 𝑡) with a transcritical rarefaction to the left using the Roe averages 𝜆̃𝑘. The central state 𝐔−
𝑖 (left) barely propagate.

Fig. 9. Approximate solution 𝐔̂(𝑥, 𝑡) with a transcritical rarefaction to the left . Two new average states, 𝐔−
𝑇 𝑟𝐶 and 𝐔−

𝑇 𝑟𝐶 are identified bounded by the rarefaction.

4.2. Inhomogeneous case

Now the channel bed is added to the SWE model as a source term. Assume it is appropriately linearized at each inter-cell wall
so its approximate solution resembles Fig. 8, with the source term acting at 𝑥′ = 0.

The approximate solution is constructed from central states 𝐔−
𝑖 and 𝐔+

𝑖+1 as defined in (52). However, only one of the these
entral states can be calculated normally, 𝐔+

𝑖+1 in this case:

𝐔+
𝑖+1 = 𝐔𝑖+1 − 𝛼̃2𝜃2𝐞̃2. (78)

It is assumed for now that the rarefaction is bounded between 𝜆𝑖1 and 𝜆+1 , where:

𝜆𝑖1 = 𝜆1(𝐔𝑖) = 𝑢𝑖 −
√

𝑔ℎ𝑖 and 𝜆+1 = 𝜆1(𝐔+
𝑖+1) = 𝑢+𝑖+1 −

√

𝑔ℎ+𝑖+1, (79)

with:

𝜆𝑖1 < 0 < 𝜆+1 . (80)

making it transcritical. Unlike the homogeneous case, the rarefaction is now represented by two new averaged states separated by
the contact wave at 𝑥′ = 0 (see Fig. 9), whose expressions are given by the following average solutions:

𝐔−
𝑇 𝑟𝐶 = − 1

𝜆𝑖1𝛥𝑡 ∫

0

𝜆𝑖1𝛥𝑡
𝐔(𝑥′, 𝛥𝑡)𝑑𝑥, 𝐔+

𝑇 𝑟𝐶 = 1
𝜆+1 𝛥𝑡 ∫

𝜆+1 𝛥𝑡

0
𝐔(𝑥′, 𝛥𝑡)𝑑𝑥, (81)

where 𝐔±
𝑇 𝑟𝐶 are constant inner states defined in the rarefaction region at time 𝑡𝑛 + 𝛥𝑡 and separated by the inter-cell wall. It is still

desirable to be able to compute the inter-cell fluxes as linear combinations of wave contributions as in (52). Again, the troublesome 𝜆̃1
needs to be split into two wave contributions that can accomplish this, given that two new intermediate states have been generated,
as shown in Fig. 10. By integrating (22) in the control volume [𝜆𝑖1𝛥𝑡, 𝜆̃2], a consistency equation relating 𝐔−

𝑇 𝑟𝐶 and 𝐔+
𝑇 𝑟𝐶 can be

found:

− 𝜆𝑖1𝐔
−
𝑇 𝑟𝐶 + 𝜆+1𝐔

+
𝑇 𝑟𝐶 + (𝜆̃2 − 𝜆+1 )𝐔

+
𝑖+1 + 𝜆𝑖1𝐔𝑖 − 𝜆̃2𝐔𝑖+1 + (𝐅𝑖+1 − 𝐅𝑖 − 𝐒̄𝑖+ 1

2
) = 0. (82)

While in the homogeneous case it was already possible to find the intermediate state, the fact that there are two unknown
ntermediates makes the inhomogenoeus case need another equation that relates them. We suggest using the approximated
12
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t
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Fig. 10. New wave schemes resulting from applying a wave splitting method on the transcritical wave. In green, the new averaged waves that are used in the
calculations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

relation (53), where the inner states across the discontinuity are related through Roe’s linearized Jacobian. Thus, the difference
is approximated to:

(

𝐔+
𝑇 𝑟𝐶 − 𝐔−

𝑇 𝑟𝐶
)

= 𝐉̃−1𝐒̄𝑖+ 1
2
= 𝐇̃ = −1

𝜆1𝜆̃2

(

𝑆̄𝑖+ 1
2

0

)

. (83)

where 𝐇̄ in (33) has been approximated by 𝐇̃, that is, Roe’s linearization has been chosen in order to keep consistent with the
scheme. With this expression, it is possible to substitute out one of the unknown states and solve for them, finding:

𝐔+
𝑇 𝑟𝐶 =

𝜆̃2𝐔𝑖+1 − 𝜆𝑖1𝐔𝑖 − (𝜆̃2 − 𝜆+1 )𝐔
+
𝑖+1 + 𝐅𝑖 − 𝐅𝑖+1 + 𝐒̄𝑖+1∕2 − 𝜆𝑖1𝐇̃

𝜆+1 − 𝜆𝑖1
(84)

𝐔−
𝑇 𝑟𝐶 =

𝜆̃2𝐔𝑖+1 − 𝜆𝑖1𝐔𝑖 − (𝜆̃2 − 𝜆+1 )𝐔
+
𝑖+1 + 𝐅𝑖 − 𝐅𝑖+1 + 𝐒̄𝑖+1∕2 − 𝜆+1 𝐇̃

𝜆+1 − 𝜆𝑖1
. (85)

Further manipulation of these two expressions, using Eq. (26) to substitute out the flux terms, leads to expressing the inner states
s:

𝐔+
𝑇 𝑟𝐶 =

(𝜆̃1 − 𝜆𝑖1)𝐔𝑖 + (𝜆+1 − 𝜆̃1)𝐔+
𝑖+1

𝜆+1 − 𝜆𝑖1
−

𝜆𝑖1
𝜆+1 − 𝜆𝑖1

𝐇̃ (86)

𝐔−
𝑇 𝑟𝐶 =

(𝜆̃1 − 𝜆𝑖1)𝐔𝑖 + (𝜆+1 − 𝜆̃1)𝐔+
𝑖+1

𝜆+1 − 𝜆𝑖1
−

𝜆+1
𝜆+1 − 𝜆𝑖1

𝐇̃ (87)

meaning that the difference between the transcritical inner states and their neighboring average states can be expressed using known
states such as 𝐔+

𝑖+1 and 𝐔𝑖

𝐔+
𝑖+1 − 𝐔+

𝑇 𝑟𝐶 =
𝜆̃1 − 𝜆+1
𝜆+1 − 𝜆𝑖1

(𝐔+
𝑖+1 − 𝐔𝑖) +

𝜆𝑖1
𝜆+1 − 𝜆𝑖1

𝐇̃ (88)

𝐔−
𝑇 𝑟𝐶 − 𝐔𝑖 =

𝜆+1 − 𝜆̃1
𝜆+1 − 𝜆𝑖1

(𝐔+
𝑖+1 − 𝐔𝑖) −

𝜆+1
𝜆+1 − 𝜆𝑖1

𝐇̃. (89)

By virtue of the Rankine–Hugoniot conditions and treating discontinuities 𝜆+1 and 𝜆𝑖1 as shocks, the fluxes corresponding to the
ranscritical states can be expressed as

𝐅+
𝑖+1 − 𝐅+

𝑇 𝑟𝐶 =𝜆+1 (𝐔
+
𝑖+1 − 𝐔+

𝑇 𝑟𝐶 ) (90)

𝐅−
𝑇 𝑟𝐶 − 𝐅𝑖 =𝜆𝑖1(𝐔

−
𝑇 𝑟𝐶 − 𝐔𝑖), (91)

r, expanding the jumps into the wave strengths as it is done in the Roe method

𝐅+
𝑇 𝑟𝐶 =𝐅+

𝑖+1 − 𝜆+1
(𝜆̃1 − 𝜆+1 )

𝜆+1 − 𝜆𝑖1

(

𝛼̃1 −
𝛽1
𝜆̃1

)

𝐞̃𝟏 −
𝜆+1 𝜆

𝑖
1

𝜆+1 − 𝜆𝑖1
𝐇̃𝑖+ 1

2
(92)

𝐅−
𝑇 𝑟𝐶 =𝐅𝑖 + 𝜆𝑖1

(𝜆+1 − 𝜆̃1)

𝜆+1 − 𝜆𝑖1

(

𝛼̃1 −
𝛽1
𝜆̃1

)

𝐞̃𝟏 −
𝜆𝑖1𝜆

+
1

𝜆+1 − 𝜆𝑖1
𝐇̃𝑖+ 1

2
. (93)

Precisely from these expressions, the new split waves are defined, along with the splitting of the source term

𝜆→1 =𝜆+1
𝜆̃1 − 𝜆𝑖1
+ 𝑖 𝛽→1 =

𝜆+1
̃

𝜆̃1 − 𝜆𝑖1
+ 𝑖 𝛽1 =

𝜆→1
̃ 𝛽1, (94)
𝜆1 − 𝜆1 𝜆1 𝜆1 − 𝜆1 𝜆1

13
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t
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w

a

𝜆←1 =𝜆𝑖1
𝜆+1 − 𝜆̃1
𝜆+1 − 𝜆𝑖1

𝛽←1 =
𝜆𝑖1
𝜆̃1

𝜆+1 − 𝜆̃1
𝜆+1 − 𝜆𝑖1

𝛽1 =
𝜆←1
𝜆̃1

𝛽1. (95)

Of course, these fulfill 𝜆←1 + 𝜆→1 = 𝜆̃1 and 𝛽←1 + 𝛽→1 = 𝛽1, as should be. Using the new waves, the fluxes can be rewritten:

𝐅+
𝑇 𝑟𝐶 =𝐅+

𝑖+1 −
(

𝜆→1 𝛼̃1 − 𝛽→1

)

𝐞̃𝟏 −
𝜆+1 𝜆

𝑖
1

𝜆+1 − 𝜆𝑖1
𝐇̃𝑖+ 1

2
(96)

𝐅−
𝑇 𝑟𝐶 =𝐅𝑖 +

(

𝜆←1 𝛼̃1 − 𝛽←1

)

𝐞̃𝟏 −
𝜆𝑖1𝜆

+
1

𝜆+1 − 𝜆𝑖1
𝐇̃𝑖+ 1

2
. (97)

where 𝐅+
𝑖+1 can be calculated using the other wave 𝜆̃2. Then, all of the quantities involved in their calculation are known, and

therefore these expressions can be implemented in the Riemann Solver in a manner that resembles the usual Roe implementations.
Recalling the definition of 𝜃𝑘 in Eq. (47), the fluxes can be compactly written:

𝐅+
𝑖+ 1

2

= 𝐅+
𝑇 𝑟𝐶 =𝐅𝑖+1 − 𝜆̃2𝜃2𝐞̃𝟐 − 𝜆→1 𝜃→1 𝐞̃𝟏 −

𝜆+1 𝜆
𝑖
1

𝜆+1 − 𝜆𝑖1
𝐇̃𝑖+ 1

2
(98)

𝐅−
𝑖+ 1

2
= 𝐅−

𝑇 𝑟𝐶 =𝐅𝑖 + 𝜆←1 𝜃←1 𝐞̃𝟏 −
𝜆𝑖1𝜆

+
1

𝜆+1 − 𝜆𝑖1
𝐇̃𝑖+ 1

2
, (99)

having substituted:

𝐅+
𝑖+1 = 𝐅

(

𝐔+
𝑖+1

)

= 𝐅𝑖+1 − 𝜆̃2𝜃2𝐞̃𝟐, (100)

nd

𝜃←𝑘 = 1 −
( 𝛽←𝑘
𝜆←𝑘 𝛼𝑘

)

, 𝜃→𝑘 = 1 −
( 𝛽→𝑘
𝜆→𝑘 𝛼𝑘

)

. (101)

If the rarefaction is bounded between 𝜆−2 and 𝜆𝑖+12 , it is considered a right transcritical rarefaction, where:

𝜆−2 = 𝜆2(𝐔−
𝑖 ) = 𝑢−𝑖 +

√

𝑔ℎ−𝑖 and 𝜆𝑖+12 = 𝜆2(𝐔𝑖+1) = 𝑢𝑖+1 +
√

𝑔ℎ𝑖+1. (102)

Then, the entropy fix requires computation of new waves 𝜆→2 and 𝜆←2 , and source contributions 𝛽→ and 𝛽←. Their forms is given
n Appendix C, along with the reasoning used to obtain them. Then, the fluxes are computed as:

𝐅+
𝑖+ 1

2

= 𝐅+
𝑇 𝑟𝐶 =𝐅𝑖+1 −

(

𝜆←2 𝛼̃2 − 𝛽←2

)

𝐞̃𝟐 −
𝜆𝑖+12 𝜆−2

𝜆𝑖+12 − 𝜆−2
𝐇̃𝑖+ 1

2
(103)

𝐅−
𝑖+ 1

2
= 𝐅−

𝑇 𝑟𝐶 =𝐅𝑖 +
(

𝜆̃1𝛼̃1 − 𝛽1

)

𝐞̃𝟏 −
(

𝜆→2 𝛼̃2 − 𝛽→2

)

𝐞̃𝟐 −
𝜆−2 𝜆

𝑖+1
2

𝜆𝑖+12 − 𝜆−2
𝐇̃𝑖+ 1

2
, (104)

ith

𝜆→2 =𝜆𝑖+12

𝜆̃2 − 𝜆−2
𝜆𝑖+12 − 𝜆−2

𝛽→2 =
𝜆𝑖+12

𝜆̃2

𝜆̃2 − 𝜆−2
𝜆𝑖+12 − 𝜆−2

𝛽2 =
𝜆→2
𝜆̃2

𝛽2 (105)

𝜆←2 =𝜆−2
𝜆𝑖+12 − 𝜆̃2
𝜆𝑖+12 − 𝜆−2

𝛽←2 =
𝜆−2
𝜆̃2

𝜆𝑖+12 − 𝜆̃2
𝜆𝑖+12 − 𝜆−2

𝛽2 =
𝜆←2
𝜆̃2

𝛽2. (106)

.3. Simplification of the ARoe entropy correction

A simplification of the entropy correction for the ARoe method is shown here, relating the results obtained in this Section with
he Harten–Hyman entropy correction for homogeneous cases. Given a transcritical rarefaction to the left that fulfills (68), the
ollowing approximation to the bounding waves of the rarefaction is taken [17,48]:

𝜆1(𝐔+
𝑖+1) ≈ 𝜆1(𝐔𝑖+1) = 𝜆𝑖+11 , (107)

hich means that the approximate condition to identify a left transcritical rarefaction is

𝜆1(𝐔𝐢) < 0 < 𝜆1(𝐔𝑖+1). (108)

The same idea can be applied to a right transcritical rarefaction, where:

𝜆2(𝐔−) ≈ 𝜆2(𝐔𝐢) = 𝜆𝑖2, (109)

nd so the condition to identify it will be:

𝜆 (𝐔 ) < 0 < 𝜆 (𝐔 ). (110)
2 𝐢 2 𝑖+1

14
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In addition to changing the criteria to identify transcritical rarefactions, this approximation changes the method used to fix the
imitations of the ARoe solver under transcritical flow conditions. The split waves defined by (94) and (105) can also be simplified
y eliminating the evaluation of the averaged state, allowing its calculation from only the left and right initial states.

𝜆→1 ≈ 𝜆𝑖+11

𝜆̃1 − 𝜆𝑖1
𝜆𝑖+11 − 𝜆𝑖1

𝜆←1 ≈ 𝜆𝑖1
𝜆𝑖+11 − 𝜆̃1
𝜆𝑖+11 − 𝜆𝑖1

. (111)

𝜆→2 ≈ 𝜆𝑖+12

𝜆̃2 − 𝜆𝑖2
𝜆𝑖+12 − 𝜆𝑖2

𝜆←2 ≈ 𝜆𝑖2
𝜆𝑖+12 − 𝜆̃2
𝜆𝑖+12 − 𝜆𝐿2

(112)

The Entropy Fix has been derived here by investigating the solution of an IVP with a non trivial solution, unlike steady states
here the initial conditions match the final solution. This is the case of the acceleration and deceleration of a subsonic flow over
bump [17] where sonic flow conditions are achieved at the highest elevation point. The exact numerical discrete solution at this
oint with 𝑧𝑖+1 = 𝑧𝑚𝑎𝑥, yields Fr𝑖+1 = 1, with 𝑧𝑖 < 𝑧𝑖+1, and with Fr𝑖 < 1.

The resulting eigenvalues are 𝜆𝑖1 < 0 and 𝜆𝑖+11 = 0 which does not fulfill condition (108). However, in the transitory regime
volving towards the stationary case described, the entropy correction must ensure convergence to the exact solution in the sonic
oint. There, the RP evolves to 𝜆𝑖 < 0 and 𝜆𝑖+1 = 𝜖. When steady state is achieved, 𝜖 → 0 to ensure Fr𝑖 < 1 and Fr𝑖+1 = 1 and to
chieve this exact convergence the entropy correction is necessary. This is done using:

𝜆←1 (𝜖 → 0) = 𝜆̃1 𝜆→1 (𝜖 → 0) = 0 . (113)

It must be noted too that in the limit 𝜖 = 0, 𝛽→1 must forcibly be zero, as the inner state 𝐔→ has null length. It is related to the
tatic solution ray 𝑥∕𝑡 = 0 at the inter-cell wall, producing a discontinuity between its neighbors 𝐔← and 𝐔+

𝑖+1. Thus, this approximate
tate cannot participate either on the left or on the right side of the solution and an exact splitting of the source term cannot be
rovided. Therefore, only if setting

𝛽←1 = 𝛽1 , 𝛽→1 = 0 , (114)

onvergence to the exact sonic point or its preservation is ensured, as the balance of fluxes and source terms is exactly reproduced.
urthermore, due to the approximations (107) and (109), the 𝐇̃ term present in the calculation of the inter-cell fluxes in (98) and
99) vanishes when 𝜖 → 0 at the critical point in the steady case. Following this reasoning, the expressions for the inter-cell fluxes
n the steady case:

𝐅+
𝑖+ 1

2

= 𝐅+
𝑇 𝑟𝐶 =𝐅𝑖+1 −

(

𝜆̃2𝛼̃2 − 𝛽2

)

−
(

𝜆→1 𝛼̃1

)

(115)

𝐅−
𝑖+ 1

2
= 𝐅−

𝑇 𝑟𝐶 =𝐅𝑖 −
(

𝜆←1 𝛼̃1 − 𝛽1

)

, (116)

or a left transcritical rarefaction and, equivalently:

𝐅+
𝑖+ 1

2

= 𝐅+
𝑇 𝑟𝐶 =𝐅𝑖+1 −

(

𝜆→2 𝛼̃2 − 𝛽2

)

(117)

𝐅−
𝑖+ 1

2
= 𝐅−

𝑇 𝑟𝐶 =𝐅𝑖 +
(

𝜆̃1𝛼̃1 − 𝛽1

)

+
(

𝜆←2 𝛼̃2

)

(118)

or a right transcritical rarefaction.

. Choice of waves in the HLLS solver

When computing the HLLS numerical fluxes, the selection of estimates for the wave speeds is of utmost importance, as they can
ompromise the quality of the numerical results. The simplest of these, according to Davis [49], are provided by direct wave speed
stimates providing minimum and maximum signal velocities:

𝜎𝐿 = min(𝑢𝑖 − 𝑐𝑖, 𝑢𝑖+1 − 𝑐𝑖+1), 𝜎𝑅 = max(𝑢𝑖 + 𝑐𝑖, 𝑢𝑖+1 + 𝑐𝑖+1). (119)

In the context of gas dynamics, Einfeldt [50] combined the direct estimates in (119) with the Roe averages (36). This option
an be applied to shallow flows by including in the selection the average values 𝜆̃1 = 𝑢̃− 𝑐 and 𝜆̃2 = 𝑢̃+ 𝑐. An important criterion in
he selection, is that the resulting solver must ensure positively conservative solutions [51], that is, positive reconstructions of the
onserved variables must be provided when necessary. In the shallow water context, this property ensures positive values of water
epth in all the regions of the weak solution. In [23], Toro provided estimates based on approximations to exact solutions for the
omogeneous shallow water equations.
15
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In [25] the wave speeds 𝜎𝐿 and 𝜎𝑅 were approximated using

𝜎𝐿 =

⎧

⎪

⎨

⎪

⎩

min(𝜆1, 𝑢𝑖 − 𝑐𝑖, 𝑢𝑖+1 − 𝑐𝑖+1) if |𝑆̄𝑖+ 1
2
| = 0

𝜆1 if |𝑆̄𝑖+ 1
2
| ≠ 0

𝜎𝑅 =

⎧

⎪

⎨

⎪

⎩

max(𝜆2, 𝑢𝑖 + 𝑐𝑖, 𝑢𝑖+1 + 𝑐𝑖+1) if |𝑆̄𝑖+ 1
2
| = 0

𝜆2 if |𝑆̄𝑖+ 1
2
| ≠ 0

(120)

where, if source terms present at the local Riemann problem, the Roe estimates are chosen directly. However, the forced use of Roe-
averaged waves in (120) also leads to the usual problems of this method, such as the need for an entropy correction in transcritical
rarefaction, underlined in Section 4. As a solution, this work proposes the following approach:

𝜎𝐿 = min (𝜆̃1, 𝑢𝑖 − 𝑐𝑖), 𝜎𝑅 = max (𝜆̃2, 𝑢𝑖+1 + 𝑐𝑖+1) (121)

any case. This proves to be an advantage, since values of 𝜆̃ ≈ 0, present in transcritical rarefactions, are never chosen. Rarefactions
are represented by the wave whose velocity is the greatest in absolute terms.

Regarding the choice of approximate Jacobian 𝐉̄𝑖+ 1
2
, necessary to formulate the difference in states across the inter-cell wall in

the form of vector 𝐇̄, it was previously [25] always chosen to be the Roe Jacobian 𝐉̃. It was argued that the Roe average variables
would be a better approximation to the real unknown intermediate values. Nevertheless, it is worth considering other options for
several reasons:

• The Roe eigenvalues 𝜆̃1 and 𝜆̃2 may not coincide in sign with the chosen waves 𝜎𝐿 and 𝜎𝑅.
• The Roe eigenvalues may provide inaccurate estimates of the wave celerities, specially in transcritical rarefactions.

As a result it seems that approximating det 𝐉̄𝑖+ 1
2
= 𝜎𝐿𝜆𝑅 is also a reasonable approach. This selection has a consequence when

anaging steady solutions including critical points with 𝑢𝑖 =
√

𝑔ℎ𝑖 and 𝜆𝑖1 = 0, where it is possible to find cases with 𝜆𝑖1 < 𝜆̃.
nder this conditions, det 𝐉̄𝑖+ 1

2
= 0 and the resulting solution does not represent the correct propagation of information, as in those

ases where entropy corrections were required, and exact solutions with critical points cannot be reproduced. In order to avoid this
roblem the following selection for det 𝐉̄𝑖+ 1

2
is proposed:

det 𝐉̄𝑖+ 1
2
=
{

𝜆̃1𝜆̃2 if |𝑢𝑖 − 𝑐𝑖| < 𝜀 or |𝑢𝑖+1 + 𝑐𝑖+1| < 𝜀
𝜎𝐿𝜆𝑅 otherwise , (122)

here 𝜀 = 10−10 is the numerical tolerance used in this work.

. Numerical experiments

A series of numerical experiments are presented here to show the improvements of the corrections over the previous imple-
entations of the ARoe and HLLS methods. The particular goals are to test whether the fully expanded entropy fix for the ARoe

olver is in any way better than the approximated entropy fix, and to compare the different versions of the HLLS method, varying
he choice of waves and of linearized Jacobian. To do so, the test cases have been selected in order to check the preservation of
he well-balanced property in cases with non zero velocity, or because previous works were unable to find a satisfactory numerical
olution.

First, the batch of classic Riemann Problem first presented by LeFloch and Thanh in [5] have been selected. They include a
ed elevation discontinuity so the source term has influence in their exact solutions and, additionally, their analytical solution is
nown. Out of these Riemann Problems, the first (RP 1) will serve to test whether the corrections keep the well-balancedness of the
chemes, while cases 6 and 7 (RP 6 and RP 7) include critical transitions.

Second, the methods have been tested by solving the steady flow over a bump in the bed elevation for three different
onfigurations that produce different combinations of hydraulic regimes in the domain. The interest of this test case lies in the
act that the critical point has known location. If the flow undergoes a transition from subcritical to supercritical, it will take place
xactly at the point where the bed elevation is maximum.

In using the ARoe method, the variations tested and compared in order to evaluate the validity of the entropy fix are:

• The ARoe solver without any entropy correction for the purpose of showing why it is necessary. This version is labeled ARoe1.
• The ARoe solver, with a simplified version of the entropy fix, laid out in Section 4.3. This version is labeled ARoe2.
• The ARoe solver, with the full entropy correction developed in this paper and presented in Section 4.2. This version is labeled
ARoe3.

Additionally, three instances of the HLLS method will be used and compared in order to evaluate the choice of waves and of the

inearized Jacobian for the method:
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𝛿

Table 1
Collection of Riemann problems used to test the ARoe solvers.

ℎ (m) 𝑢 (m/s) 𝑧 [m]

L R L R L R

RP 1 1.0 1.223656 5.0 4.086116 0.0 0.2
RP 2 0.3 0.374728 2.2 2.088732 0.1 0.0
RP 3 1.0 2.0 3.0 0.5 0.2 0.0
RP 4 1.0 1.2 3.0 0.5 0.1 0.0
RP 5 0.2 0.5 4.0 1.5 0.0 0.1
RP 6 0.2 0.759049 5.0 1.341074 0.0 0.2
RP 7 1.0 0.8 2.0 4.0 0.1 0.0

Table 2
Order of convergence of the six different methods tested to solve RP 7.

RP 7 
(

𝐿1
)

N ARoe1 ARoe2 ARoe3 HLL1 HLL2 HLL3

100 0.4501 0.7220 0.8979 0.4501 1.0496 0.7791
200 0.2582 0.6990 0.7372 0.2582 1.0019 0.7267
400 0.2060 0.6427 0.8018 0.2060 0.9233 0.7112
800 0.1217 0.7144 0.7163 0.1217 0.9099 0.7942

1600 0.0864 0.7162 0.7497 0.0864 0.7988 0.7338
3200 0.0541 0.7218 0.7388 0.0541 0.7262 0.7188

• The HLLS solver with wave speed estimates reduced to the Roe-averaged eigenvalues chosen whenever there is source term
contribution, as laid out in (120), and the determinant of the Jacobian is det 𝐉̄𝑖+ 1

2
= 𝜆̃1𝜆̃2. This version will be labeled HLLS1.

• The HLLS solver with wave speed estimates selected among the most negative and positive between the Roe averages and the
eigenvalues evaluated in the cells neighboring the inter-cell wall, (121). The determinant of the linearized Jacobian is still
det 𝐉̄𝑖+ 1

2
= 𝜆̃1𝜆̃2. This version will be labeled HLL2.

• The HLLS solver with wave speed estimates selected among the most negative and positive between the Roe averages and the
eigenvalues evaluated in the cells neighboring the inter-cell wall, (121). The determinant of the linearized Jacobian is chosen
to be det 𝐉̄𝑖+ 1

2
= 𝜎𝐿𝜎𝑅, unless these are too close to zero, in which case the Roe-averaged waves are chosen, as seen in (122).

This version will be labeled HLL3.

6.1. Riemann problems with exact solutions

The initial conditions of the RP selected from [5] are presented in Table 1, where L and R refer to the left and right side of the
discontinuity respectively. A domain 2 m long centered at 𝑥 = 0 m is chosen and discretized in 𝑁 cells of varying 𝛥𝑥, in order to
perform a convergence analysis.

The computations have been carried out with a global time-step selected as the lowest of all local time-steps, computed as
𝛿𝑡𝑖 = CFL 𝛿𝑥𝑖

max𝑘

(

𝜆̃𝑘
𝑖± 1

2

) , where 𝜆̃𝑘
𝑖+ 1

2

are the Roe-averaged eigenvalues evaluated at either wall of each cell, for the ARoe method or

𝑡𝑖 = CFL 𝛿𝑥𝑖

max𝑘

(

𝜎𝐿,𝑅
𝑖± 1

2

) for the HLLS method. A value of CFL = 0.95 is chosen to show the capabilities of the methods.

The numerical results are plotted in different colors for an evolved time 𝑡 = 0.1 s in Figs. 11–13, along with the analytical solution
in black. Additionally, the error computed with respect to the analytical solution using the 𝐿1 norm is plotted for all cases in Figs. 14
and 15. (See Table 2).

RP 1 has as initial state the exact solution of the problem and, therefore, is used to ensure that the method is able to maintain
equilibrium states in time in presence of a discontinuous bed step. As Fig. 11 shows, the evolved state at 𝑡 = 0.1 s matches the
exact solution of a steady contact wave between the equilibrium states and the first plot at 14 shows that the error is of the order
of machine precision, confirming that all methods are well-balanced in the absence of transcritical rarefactions. RPs 2 to 5 further
show that all methods behave as expected from previous results [17], with all methods performing equally well. This was to be
expected in the ARoe method, as in the absence of transcritical rarefaction all three variations work in the same way. However,
for the HLLS method, it proves that all the choices of wave speeds presented are right. The rate of convergence of all methods is
found to be approximately of 1, as expected for first order methods (see Table 2). The particularities of the test cases, which are
very dynamical and contain sharp discontinuities, produce the discrepancies in this number.

RP 6 is singled out because it contains a transition from supercritical to subcritical regime. When this occurs, a discontinuity in
water surface elevation, known as a hydraulic jump, takes place. Hydraulic jumps dissipate energy and are known to cause numerical
defects which in this case manifest as oscillations near the discontinuity. This is a well-known problem already discussed in depth
in [52] caused by the fact that the hydraulic jump, taking place at an unknown position, must be represented in a discretized grid.
17
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Fig. 11. RPs 1 trough 3 solved using the different versions of the ARoe solver (left) and of the HLLS solver (right). Methods ARoe1 and HLLS1 are plotted in
blue, ARo2 and HLLS2 in red and ARoe3 and HLLS3 in yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
18



J. Mairal, J. Murillo and P. García-Navarro Comput. Methods Appl. Mech. Engrg. 417 (2023) 116411
Fig. 12. RPs 4 trough 6 solved using the different versions of the ARoe solver (left) and of the HLLS solver (right). Methods ARoe1 and HLLS1 are plotted in
blue, ARo2 and HLLS2 in red and ARoe3 and HLLS3 in yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
19
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Fig. 13. RP 7 solved using the different versions of the ARoe solver (left) and of the HLLS solver (right). Methods ARoe1 and HLLS1 are plotted in blue, ARo2
and HLLS2 in red and ARoe3 and HLLS3 in yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 14. Errors of RPs 1 trough 6 solved using the different versions of the ARoe solver (left) and of the HLLS solver (right).
20
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Fig. 15. RP 7 solved using the different versions of the ARoe solver (left) and of the HLLS solver (right).

Table 3
Boundary conditions in each bump case.

ℎ (m) 𝑞 (m2/s)

𝑥 = 0 𝑥 = 𝐿 𝑥 = 0 𝑥 = 𝐿

C1 Subcritical Free 2.0 4.42 Free
C2 Transcritical Free Free 1.53 Free
C3 Transcritical with shock Free 0.33 0.18 Free

It is almost impossible that the jump falls exactly on the wall between cells. This problem is unrelated to any of the issues discussed
in this paper and therefore all these methods behave identically.

RP 7 is specially relevant because it contains a transcritical rarefaction at the bed step. The initial discontinuity causes the left
ide of the RP to be continuously accelerated towards the right, increasing its Froude number until it reaches the critical point
r = 1 at the bed discontinuity. The HLLS solver in [17] was unable to match this solution, while the ARoe solver with an Entropy
ix could. Fig. 13 shows that the analytical solution is matched by the ARoe solver as long as the entropy is fixed: both the simplified
ix and the full fix, pictured at the left in red and yellow respectively, yield the correct solution. The HLLS solver shows that the
ey to obtain the right solution is to allow the choice of waves between the eigenvalues evaluated at the adjacent cells and those
btained by using the Roe-averages, as done in HLLS2 and HLLS3. It seems that the choice of linearized Jacobian does not have an
ffect on the solution in a dynamic case such as this one.

.2. Flow over a bump

The test case of a steady flow over a bump has been selected to tests these methods because, if the correct boundary conditions
re given, a critical point of Fr = 1 develops at the cusp of the bump. It has been widely used [53–55,17] since its exact solution is
eadily available. A domain of length 𝐿 = 25 m is set up with a bed elevation defined as:

𝑧(𝑥) =
{

0.2 − 0.05(𝑥 − 10)2 if 8 ⩽ 𝑥 ⩽ 12
0 otherwise , (123)

with different boundary conditions which define different steady solutions, as shown in Table 3.
To work well, the solvers must preserve the steady solution and, importantly, if a regime transition is present, they should

replicate Fr = 1 to machine precision at the point of maximum bed elevation.
Case C1 considers subcritical flow in the entire domain, determined by a fixed discharge upstream and a fixed water depth

downstream. Fig. 16 (top-left) shows that all versions of the ARoe solver manage to maintain the steady state in agreement with
the analytical solution. This is to be expected in the ARoe, since no regime transition is present. Therefore, the entropy fix, which
is what differentiates the versions, does not come into play.

On the other hand, the top-right plot of Fig. 16 shows that the third version of the HLLS solver does not maintain the steady
state correctly. The deviation appears at 𝑥 = 8 m, exactly where the effect of the source starts. Since the effect of the source term
in the HLLS solver is applied through the 𝐇̄ term, it seems that approximating the determinant of the Jacobian by 𝜎𝐿𝜎𝑅 unbalances
the contribution of the source term to the fluxes, provoking 𝐅+

1 − 𝐅−
1 − 𝐒̄ 1 ≠ 0, which produces inaccurate results. When the
𝑖+ 2 𝑖+ 2
𝑖+ 2
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Fig. 16. All three instances (C1-C3) of the bump configuration solved using the different versions of the ARoe solver (left) and of the HLLS solver (right).
Methods ARoe1 and HLLS1 are plotted in blue, ARo2 and HLLS2 in red and ARoe3 and HLLS3 in yellow. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

determinant of the Jacobian is approximated by 𝜆̃1𝜆̃2 instead, the effect of the source term produces the correct results of constant
discharge.

Table 4 shows the error computed as the L1 norm of the difference between the numerical solutions and the exact solution.
Case C2 includes a critical point where the flow regime changes from subcritical to supercritical. It is known [56] that the regime

transition occurs at the cusp of the bump. Numerically, this means that the cell with maximum bed elevation will have 𝑢𝑖 =
√

𝑔ℎ𝑖
uch that Fr𝑖 = 1, but only if the mesh includes the cell with maximum 𝑧. Otherwise, convergence to the analytical solution is
mpossible. As a consequence, the corrections presented in Sections 4 and 5 are here tested.

Fig. 16 (middle) shows that, again, all versions of the ARoe solver maintain the steady state in agreement with the analytical
olution, even the data series ARoe 1, where no entropy fix is included. Again, only method HLLS 3 fails to reproduce the exact
olution whenever the bed elevation contributes to the source term. This keeps confirming that det 𝐉̄ = 𝜎𝐿𝜎𝑅 is a bad approximation

and even more so in a case where a certain cell is known to fulfill 𝑢𝑖 =
√

𝑔ℎ𝑖 since 𝜎𝐿 = 0 and the approximate Jacobian cannot be
inverted to obtain the 𝐇̄ term. This is also reflected in Table 4.

In case C3, a constant water depth is used as downstream boundary condition forcing the flow to be in the subcritical regime,
hile a constant discharge is imposed upstream. The acceleration after the bump causes a critical transition at the cusp, but the
22
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Table 4
Error between the exact and the different numerical solution, computed using the L1 norm for all 3 instances of the bump
configuration.

C1 C2 C3

ℎ (m) 𝑞 (m2/s) ℎ (m) 𝑞 (m2/s) ℎ (m) 𝑞 (m2/s)

ARoe1 0.0 0.0 0.0 0.0 5.63e−05 3.76e−05
ARoe2 0.0 0.0 0.0 0.0 5.63e−05 3.76e−05
ARoe3 0.0 0.0 0.0 0.0 5.63e−05 3.76e−05
HLLS1 0.0 0.0 0.0 0.0 5.63e−05 3.76e−05
HLLS2 0.0 0.0 0.0 0.0 5.63e−05 3.76e−05
HLLS3 7.25e−07 1.05e−06 2.17e−05 7.37e−06 6.77e−05 4.52e−05

flow at the exit must be subcritical. This leads to a hydraulic jump that dissipates energy. As the energy is known both upstream
and downstream of the jump, how much energy is dissipated can be known and an analytical solution is readily available to judge
the results of the solvers.

In this case, Fig. 16 (bottom) shows how convergence to the exact solution is achieved by all methods except at the cell of the
issipative shock. This numerical defect appeared in RP6, in the previous section: failure to locate the hydraulic jump in the discrete
esh is causing the integral in the cell containing the shock to be wrong [52]. Table 4 shows that none of the methods actually

chieve machine precision because of that. Except for the HLLS 3 data series, all solutions exhibit the same numerical error, on
ccount of the defect generated by the hydraulic jump. The error of the HLLS 3 series is different due to its defects, but in any case,
t is of the same order of magnitude because the error provoked by the jump still dominates.

. Conclusions

The goal of this paper was two-fold. First, it aimed at clearly deriving the entropy fix of Harten–Hyman for the ARoe solver
s formulated in [16], including source terms contributions. A complete formulation of the entropy fix has been given rigorously
eveloping the 𝜆←, 𝜆→ terms in the presence of source terms for the first time, showing that a 𝐇̄ term can be introduced to establish

a relation between the intermediate states across the local Riemann problem. This has been related to the classical Harten–Hyman
fix in problems with source terms, and it has been shown that one reduces to the other in the steady limit. In addition to giving
a better understanding of its formulation and of the place that the source terms have in it, the numerical experiments undertaken
and exposed in Section 6 show that both implementations of the fix yield good results.

Second, a closer look to the HLLS method has been taken, exploring the different choices of waves and of the linearized Jacobian
present in the source term contribution. It has been shown that, restricting 𝜎𝐿, 𝜎𝑅 to only the Roe eigenvectors 𝜆̃1, 𝜆̃2 in cases with
source term, as it was previously proposed in [25], is not necessary and it was in fact causing the HLLS solver to be less accurate
than its ARoe counterpart in dynamic cases with transcritical rarefactions and bed elevation discontinuities. It was argued in [17]
that a more sophisticated choice of waves would be necessary to produce accurate results capable of handling critical transitions like
those of RP7 or the transcritical flow over a bump. Nevertheless, this paper shows the opposite. A simpler choice of waves achieves
convergence to the analytical solution in the former. Additionally, it is suggested that a different determinant of the linearized
Jacobian could be chosen to calculate the difference in the approximate solution across the inter-cell wall, labeled 𝐇. Previously [25]
the Roe-averaged eigenvalues were used, which made sense since these were always chosen when source terms where present and
the determinant of the Jacobian appears only in such cases. Nevertheless, by opening the choice of waves even when source terms
are present, it seemed natural to allow this freedom to the determinant as well. However, the numerical results of the flow over a
bump show that this provides the wrong solutions and unbalances the solver. A possible explanation for this defect is the fact that
the choice of 𝜎𝐿𝜎𝑅 is less precise at approximating the characteristic polynomial of the Jacobian evaluated at the inter-cell wall.
This imprecision unbalances the contribution of the source term in the calculation of the flux, yielding slightly incorrect results that
propagate as the calculation advances in time.

To conclude, the version of the entropy fix labeled ARoe 2 is recommended henceforth due to its precision and comparative
simplicity. The fact that fewer calculations need to be done to identify a transcritical rarefaction and perform the wave splitting
while keeping the same precision as the more complex entropy fix is clearly an advantage. Regarding the HLLS solver, the choice of
waves and of characteristic polynomial labeled HLLS 2 is recommended henceforth. It is the only choice that solves correctly both
the dynamic case of the transcritical RP and the flow over a bump in all regime combinations. With it, this work confirms that the
HLLS solver can perform as well as the ARoe solver.
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ppendix A. Source term linearization

One of the key questions when solving this system of equation is how to formulate and integrate the source term. In this case,
t accounts for the change in momentum caused by the varying geometry of the bed. Given a discretization so that every cell 𝑥𝑖

has an associated constant bed elevation 𝑧𝑖, the channel can be thought of as a succession of steps. At each cell wall, there is a
discontinuity of the bed and therefore a step that exerts a certain thrust. The source term is assumed to be constant in the timestep
[𝑡𝑛, 𝑡𝑛+1] and acting only at cell walls. It is now a matter of finding a right formulation for it.

A.1. Differential linearization

The simplest possible formulation stems from assuming a hydrostatic pressure distribution which gives the differential formula-
tion of the thrust

𝑆𝑎 = −
(

𝑔ℎ
𝜕𝑧𝑏
𝜕𝑥

)

hich, if discretized

𝑆̄𝑎
𝑖+ 1

2
= −

(

𝑔ℎ̄𝛥𝑧
)

𝑖+ 1
2

(A.1)

where ℎ̄𝑖+ 1
2

is the average water height of the adjacent cells and 𝛥𝑧 1
2

is the size of the bed step, which can be positive for an
increasing bed level or negative for a decreasing bed level. This, in combination with the negative sign in the expression, yields a
positive thrust if water moves towards a lower bed section and a negative thrust if it moves towards a higher bed section, which
agrees with common sense.

A.2. Integral linearization

The differential formulation, while useful, does not consider the whole picture. Indeed, it might be the case that at a certain cell
wall, the total water height 𝑧𝑖 + ℎ𝑖 is lower that the height of the bed at the next cell 𝑧𝑖+1 > 𝑖. In such a case, only the height of the
tep covered by fluid would need to be into account when evaluating the thrust. Including this possibility into the linearization of
he source term requires changing the expression of 𝑆̄

𝑆̄𝑏
𝑖+ 1

2
= −𝑔

(

ℎ𝑗 −
|𝛿𝜁 |
2

)

𝑖+ 1
2

𝛿𝜁𝑖+ 1
2

(A.2)

where the index 𝑗 gives which cell around the discontinuity has a lower bed level

𝑗 =

{

𝑖 if 𝑧𝑖 ⩽ 𝑧𝑖+1
𝑖 + 1 if 𝑧𝑖 > 𝑧𝑖+1

nd where 𝛿𝜁 controls whether the whole step is under water or not

𝛿𝜁 =

⎧

⎪

⎨

⎪

⎩

ℎ𝑖 if 𝑧𝑖 ⩽ 𝑧𝑖+1 and (𝑧𝑖 + ℎ𝑖) < 𝑧𝑖+1
−ℎ𝑖+1 if 𝑧𝑖 > 𝑧𝑖+1 and (𝑧𝑖+1 + ℎ𝑖+1) < 𝑧𝑖
𝛿𝑧 otherwise

his is a more complete formulation which allows for some better results in cases with larger discontinuities in the bed step [16].

.3. Linearization based on energy conservation

The integral and differential formulations seem to work well in general even if they do not take into account some physical
ffects present when a flow encounters a positive or negative step. Phenomena including non-hydrostatic pressure caused by the
ertical acceleration of the fluid that climbs upwards or downwards is not present in a simplified model such as this one. However,
here are other ways to ensure that the source term contribution is as accurate as possible [17]. Starting from a stationary state in
one-dimensional Shallow Water system, the conservation of momentum yields

𝜕
𝜕𝑥

(

ℎ𝑢2 + 1
2
𝑔ℎ2

)

= 𝑆, (A.3)

where 𝑆 is the non-linearized version of the source term. Integration leads to

𝛿
(

ℎ𝑢2 + 1 𝑔ℎ2
)

1 = 𝑆̄ 1 , (A.4)

2 𝑖+ 2 𝑖+ 2
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c

where the left-hand side is the difference between the total momenta in cells 𝑖 + 1 and 𝑖, and the right-hand side is the linearized
source term. As explained, there are different ways to formulate the linearization, based on arguments of hydrostatics. However, a
possible approach is to formulate a linear combination of both methods using a weight parameter , so that a better approximation
ould be

𝑆̄𝑒
𝑖+ 1

2
= (1 −)𝑆̄𝑎

𝑖+ 1
2
+𝑆̄𝑏

𝑖+ 1
2
. (A.5)

In order to find the weight parameter , energy conservation is enforced across the discontinuity in the channel bed, which is
equivalent to assuming that there is neither friction nor dissipation at any hydraulic jumps. Thus, mechanical energy

𝐻𝑖 =
𝑢2𝑖
2𝑔

+ ℎ𝑖 + 𝑧𝑖 (A.6)

must be equal in both cells around the discontinuity. This can be written simply using a discretization
1
2𝑔

𝛿(𝑢2)𝑖+ 1
2
+ 𝛿ℎ𝑖+ 1

2
+ 𝛿𝑧𝑖+ 1

2
= 0. (A.7)

On the other hand, the discretized equation of momentum between cells 𝑖 and 𝑖 + 1 has already been formulated in (A.4) and its
source term can be approximated by the linearization shown in Eq. (A.5)

𝛿(ℎ𝑢2)𝑖+ 1
2
+ 1

2
𝑔𝛿(ℎ2)𝑖+ 1

2
= 𝑆̄𝑖+ 1

2
= (1 −)𝑆̄𝑎

𝑖+ 1
2
+𝑆̄𝑏

𝑖+ 1
2
. (A.8)

Rearranging and using 1
2 𝛿(ℎ

2) = ℎ̄𝛿ℎ, where ℎ̄ is the arithmetic average of depths ℎ𝑖 and ℎ𝑖+1, and the definition of the differential
source term 𝑆̄𝑎

𝑖+ 1
2

 =
𝛿(ℎ𝑢2)𝑖+ 1

2
+ 𝑔ℎ̄𝛿(ℎ + 𝑧)𝑖+ 1

2
(

𝑆̄𝑏 − 𝑆̄𝑎
)

𝑖+ 1
2

. (A.9)

It must be noted that while the  parameter can be isolated in this expression using just the discrete momentum equation, it would
not be uniquely determined due to the fact that it is an approximation from the differential momentum equation that requires
the integration of the source term. Thus, to determine an appropriate parameter the energy Eq. (A.7) must be introduced. Since
this equation can be integrated exactly without approximation, it ensures the correct parameter is found in exchange for a loss of
generality. Indeed, energy is conserved in situations without friction or hydraulic jumps. The latter case, present when a regime
transition occurs, needs to be solved with the integral or differential approximations of the source term.

Thus, using and the discrete energy Eq. (A.7), the weight parameter 𝐸 can be written

𝐸 =
𝛿(ℎ𝑢2)𝑖+ 1

2
+ 1

2 ℎ̄𝛿(𝑢
2)𝑖+ 1

2
(

𝑆̄𝑏 − 𝑆̄𝑎
)

𝑖+ 1
2

. (A.10)

This expression needs to be include an exception where hydraulic jumps occur, which can be formulated as a conditional

 =

⎧

⎪

⎨

⎪

⎩

𝐸 if 𝑢𝑖+1𝑢 > 0 and |Fr𝑖+1| < 1 and |Fr𝑖| < 1
𝐸 if 𝑢𝑖+1𝑢 > 0 and |Fr𝑖+1| > 1 and |Fr𝑖| > 1
1 otherwise,

where the first two cases account for a flow that moves in the same direction and which has the same regime at both sides of the
discontinuity. The third case accounts for regime changes and therefore The question that arises now is whether this parameter is
bounded in a certain interval. Since 𝑆̄𝑒 is formulated as a weighted average, it is logical to think that the weight parameter should
be contained in the interval [0, 1] [17]. However, this is not necessarily the case. In fact, it has been witnessed in certain test cases
that 𝐸 can fall outside of this interval. If it was constrained to it, it would mean that the value of the linearized source term needs
to be bounded by the values obtained using the integral and differential methods. However, there is no reason to think that a value
outside of this range is unacceptable. While this is an interesting question, it falls outside of the scope of this paper.

Appendix B. Weak solutions in the supercritical regime

The piecewise solution given by (25) is not valid if the eigenvalues 𝜆̄1, 𝜆̄2 have the same sign, either positive or negative, where
the regime is said to be supercritical. Then, the weak solution is given by:

𝐔̂(𝑥′, 𝛥𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

𝐔𝑖 𝑖𝑓 𝑥′ < 𝜆̄1𝛥𝑡
𝐔−
𝑖 𝑖𝑓 𝜆̄1𝛥𝑡 < 𝑥′ < 𝜆̄2𝛥𝑡

𝐔+
𝑖 𝑖𝑓 𝜆̄2𝛥𝑡 < 𝑥′ < 0

𝐔𝑖+1 𝑖𝑓 𝑥′ > 0

, (B.1)
⎩
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Fig. B.17. Piecewise solution 𝐔̂(𝑥, 𝛥𝑡) in the supercritical case.

f 𝜆̄1 < 𝜆̄2 < 0 and

𝐔̂(𝑥′, 𝛥𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐔𝑖 𝑖𝑓 𝑥′ < 0
𝐔−
𝑖+1 𝑖𝑓 0 < 𝑥′ < 𝜆̄1𝛥𝑡

𝐔+
𝑖+1 𝑖𝑓 𝜆̄1𝛥𝑡 < 𝑥′ < 𝜆̄2𝛥𝑡

𝐔𝑖+1 𝑖𝑓 𝑥′ > 𝜆̄2𝛥𝑡

, (B.2)

f 0 < 𝜆̄1 < 𝜆̄2 with intermediate states defined as:

𝐔−
𝑖 = − 1

(𝜆̄1 − 𝜆̄2)𝛥𝑡 ∫

𝜆̄2𝛥𝑡

𝜆̄1𝛥𝑡
𝐔(𝑥′, 𝛥𝑡)𝑑𝑥, 𝐔+

𝑖 = − 1
𝜆̄2𝛥𝑡 ∫

0

𝜆̄2𝛥𝑡
𝐔(𝑥′, 𝛥𝑡)𝑑𝑥, (B.3)

if 𝜆̄1 < 𝜆̄2 < 0 and:

𝐔−
𝑖+1 =

1
𝜆̄1𝛥𝑡 ∫

𝜆̄1𝛥𝑡

0
𝐔(𝑥′, 𝛥𝑡)𝑑𝑥, 𝐔+

𝑖+1 =
1

(𝜆̄2 − 𝜆̄1)𝛥𝑡 ∫

𝜆̄2𝛥𝑡

𝜆̄1𝛥𝑡
𝐔(𝑥′, 𝛥𝑡)𝑑𝑥, (B.4)

for 0 < 𝜆̄1 < 𝜆̄2. The subscript indicates on which side of the inter-cell wall these states lie.

B.1. The supercritical case in the HLLS method

If the regime is supercritical both intermediate states are located on the same side of the inter-cell wall as shown in Fig. B.17.
In this case, the approximate central states of the weak solution are given by:

𝐅+
𝑖+ 1

2

= 𝐅𝑖+1, 𝐅−
𝑖+ 1

2
= 𝐅𝑖+1 − 𝐒̄𝑖+ 1

2
, (B.5)

if 𝜎𝑅 < 0 and 𝜎𝐿 < 0, and

𝐅+
𝑖+ 1

2

= 𝐅𝑖+1 + 𝐒̄𝑖+ 1
2
, 𝐅−

𝑖+ 1
2
= 𝐅𝑖, (B.6)

f 𝜎𝑅 > 0 and 𝜎𝐿 > 0.

ppendix C. Inhomogeneous right transcritical rarefaction

Fig. 8 (right) shows a right transcritical rarefaction with the bed source term acting at 𝑥′ = 0. This time, it is assumed that the
arefaction is bounded between 𝜆−2 and 𝜆𝑖+12 , where:

𝜆−2 = 𝜆2(𝐔−
𝑖 ) = 𝑢−𝑖 +

√

𝑔ℎ−𝑖 and 𝜆𝑖+12 = 𝜆2(𝐔𝑖+1) = 𝑢𝑖+1 +
√

𝑔ℎ𝑖+1, (C.1)

nd fulfills:

𝜆−2 < 0 < 𝜆𝑖+12 . (C.2)

Again, the rarefaction can be better represented by two new constant states separated by the contact wave, whose expressions
re given by the following average solutions:

𝐔−
𝑇 𝑟𝐶 = 1

∫

0

−
𝐔(𝑥, 𝛥𝑡)𝑑𝑥, 𝐔+

𝑇 𝑟𝐶 = 1
∫

𝜆𝑖+12 𝛥𝑡
𝐔(𝑥, 𝛥𝑡)𝑑𝑥. (C.3)
𝛥𝑥 𝜆2 𝛥𝑡
𝛥𝑥 0
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If 𝜆̃2 fulfills condition (C.2), the rarefaction is to the right and 𝜆̃2 needs to be split in order to generate a weak solution with a
tructure as shown in Fig. 10 (right). By integrating (22) in the control volume [𝜆−2 𝛥𝑡, 𝜆

𝑖+1
2 𝛥𝑡], a consistency equation relating 𝐔−

𝑇 𝑟𝐶
nd 𝐔+

𝑇 𝑟𝐶 can be found:

− (𝜆̃1 − 𝜆−2 )𝐔
−
𝑖 − 𝜆−2𝐔

+
𝑇 𝑟𝐶 + 𝜆𝑖+12 𝐔+

𝑇 𝑟𝐶 + 𝜆̃2𝐔𝑖 − 𝜆𝑖+12 𝐔𝑖+1 + (𝐅𝑖+1 − 𝐅𝑖 − 𝐒̄𝑖+ 1
2
) = 0, (C.4)

From this equation, the same process is repeated and the 𝐇̃ term is introduced in the same way to finally obtain fluxes:

𝐅+
𝑇 𝑟𝐶 =𝐅𝑖+1 − 𝜆−2

𝜆𝑖+12 − 𝜆̃2
𝜆𝑖+12 − 𝜆−2

(

𝛼̃2 −
𝛽2
𝜆̃2

)

𝐞̃𝟐 −
𝜆𝑖+12 𝜆−2

𝜆𝑖+12 − 𝜆−2
𝐇̃ (C.5)

𝐅−
𝑇 𝑟𝐶 =𝐅−

𝐋 − 𝜆𝑖+12

𝜆̃2 − 𝜆−2
𝜆𝑖+12 − 𝜆−2

(

𝛼̃2 −
𝛽2
𝜆̃2

)

𝐞̃𝟐 −
𝜆−2 𝜆

𝑖+1
2

𝜆𝑖+12 − 𝜆−2
𝐇̃. (C.6)

rom which the new split waves can be naturally defined as:

𝜆→2 =𝜆𝑖+12

𝜆̃2 − 𝜆−2
𝜆𝑖+12 − 𝜆−2

𝛽→2 =
𝜆𝑖+12

𝜆̃2

𝜆̃2 − 𝜆−2
𝜆𝑖+12 − 𝜆−2

𝛽2 =
𝜆→2
𝜆̃2

𝛽2 (C.7)

𝜆←2 =𝜆−2
𝜆𝑖+12 − 𝜆̃2
𝜆𝑖+12 − 𝜆−2

𝛽←2 =
𝜆−2
𝜆̃2

𝜆𝑖+12 − 𝜆̃2
𝜆𝑖+12 − 𝜆−2

𝛽2 =
𝜆←2
𝜆̃2

𝛽2. (C.8)

So the fluxes are computed as:

𝐅+
𝑖+ 1

2

= 𝐅+
𝑇 𝑟𝐶 =𝐅𝑖+1 −

(

𝜆←2 𝛼̃2 − 𝛽←2

)

𝐞̃𝟐 −
𝜆𝑖+12 𝜆−2

𝜆𝑖+12 − 𝜆−2
𝐇̃𝑖+ 1

2
(C.9)

𝐅−
𝑖+ 1

2
= 𝐅−

𝑇 𝑟𝐶 =𝐅𝑖 +
(

𝜆̃1𝛼̃1 − 𝛽1

)

𝐞̃𝟏 −
(

𝜆→2 𝛼̃2 − 𝛽→2

)

𝐞̃𝟐 −
𝜆−2 𝜆

𝑖+1
2

𝜆𝑖+12 − 𝜆−2
𝐇̃𝑖+ 1

2
. (C.10)
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