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A B S T R A C T

Cellular adaptation is the ability of cells to change in response to different stimuli and environmental
conditions. It occurs via phenotypic plasticity, that is, changes in gene expression derived from changes in
the physiological environment. This phenomenon is important in many biological processes, in particular in
cancer evolution and its treatment. Therefore, it is crucial to understand the mechanisms behind it. Specifically,
the emergence of the cancer stem cell phenotype, showing enhanced proliferation and invasion rates, is an
essential process in tumour progression.

We present a mathematical framework to simulate phenotypic heterogeneity in different cell populations
as a result of their interaction with chemical species in their microenvironment, through a continuum model
using the well-known concept of internal variables to model cell phenotype. The resulting model, derived from
conservation laws, incorporates the relationship between the phenotype and the history of the stimuli to which
cells have been subjected, together with the inheritance of that phenotype. To illustrate the model capabilities,
it is particularised for glioblastoma adaptation to hypoxia. A parametric analysis is carried out to investigate the
impact of each model parameter regulating cellular adaptation, showing that it permits reproducing different
trends reported in the scientific literature. The framework can be easily adapted to any particular problem of
cell plasticity, with the main limitation of having enough cells to allow working with continuum variables.
With appropriate calibration and validation, it could be useful for exploring the underlying processes of cellular
adaptation, as well as for proposing favourable/unfavourable conditions or treatments.
1. Introduction

Cellular adaptation comprises the changes induced in cell behaviour
in response to changes in their environment. It can occur via natural
selection (long term response) or via phenotypic plasticity, which is the
ability of a cell with a given genotype to produce different phenotypes
in reaction to environmental changes [1]. There are many examples of
phenotypic plasticity in nature. For example, some butterflies develop
different wing colours depending on factors such as the amount of food
available [2]. Another strategy is bet-hedging, consisting in randomly
diversifying into different populations so that, should the environment
change, some of them would have a higher probability of survival [3].
Cells can also be reprogrammed towards stem-like phenotypes and then
differentiated to other cell types [4,5]. This strategy is now used in
the development of biomaterials, which are designed to induce cellular
adaptation and reprogramming to improve tissue regeneration [6–8].
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Epigenetics is the study of heritable changes in gene expression
(phenotype) which are not caused by alterations in the DNA sequence
or genotype (detailed information about epigenetic mechanisms can
be found in [9,10]). Epigenetic changes can be triggered by the en-
vironment and hence, they are key in cell plasticity [10]. In a sense,
epigenetics is the link between the environment and phenotypic plas-
ticity leading to cellular adaptation [11]. Epigenetic mechanisms are
responsible for cell differentiation, since all cells in our organism have
the same genotype, and it is their different gene expression what
characterises them [12]. Throughout our lifespan, we are subjected to
epigenetic changes depending on environmental factors, such as diet,
habits (e.g. smoking) and social interactions [13]. Besides, epigenetics
is involved in the occurrence and progression of diverse human dis-
eases [14,15] and, in particular, in cancer. While cancer was initially
thought to be caused by the accumulation of genetic mutations, in
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the past decades, epigenetics has been shown to play a central role in
cancer development and progression [16,17].

Tumours are now recognised as heterogeneous cell populations,
presenting both genetic and non-genetic (epigenetic) differences among
them [18]. Indeed, in 2022, phenotypic plasticity was included among
the cancer hallmarks, and epigenetic reprogramming as an enabling
characteristic facilitating the acquisition of this hallmark capability
[19]. Phenotypic plasticity explains some of the most characteristic
features of cancer, such as metastasis and drug resistance, probably
the main challenges for improving cancer prognosis [20]. Cells, in
order to become metastatic, must acquire some plasticity following
the epithelial to mesenchymal transition (EMT), by which cells in-
crease their motility [21]. This transition is triggered by different
environmental factors, such as epigenetic reprogramming or external
factors like hypoxia, which are now object of important research [22].
Among the different populations present in tumours, cancer stem cells
(CSCs) have gained much attention in recent years [23]. These cells
are believed to drive tumour initiation and growth, as well as to be
related with aggressiveness and therapy resistance [24]. In opposition
to differentiated tumour cells, CSCs share capacities with normal stem
cells, having a higher capacity of self-renewal. The tumour population
is in permanent evolution, with cells moving from differentiated pheno-
types to stem-like phenotypes and vice versa depending on the tumour
microenvironment (TME) [25]. Also, the EMT has been closely related
to the acquisition of stem phenotypes [26].

Hypoxia is one of the main features of solid tumours, due to
their high oxygen demand and their aberrant vasculature [27]. Hy-
poxic tumours usually correlate with increased aggressiveness and
drug resistance. Current evidence supports that hypoxia drives cells
towards CSC phenotypes, whereas high oxygen levels promote differ-
entiation [28,29]. Thus, the effects that hypoxia causes in tumours and
the mechanisms behind their enhanced aggressiveness are currently a
hot topic in cancer research [30]. In this work, we take the example
of glioblastoma (GBM) evolution under hypoxic conditions. GBM is the
most common and lethal primary brain cancer, with a 5-year survival
rate of only 6.8% [31], rendering it one of the cancers with worst
prognosis. Hypoxia is a defining feature of GBM, and a major concern
for its prognosis, since it increases cell aggressiveness, increasing the
cells capacity to proliferate and invade the surrounding tissue [32].
Hence, it is important to better understand how hypoxia triggers cel-
lular adaptation in GBM, and in tumours in general, since it can help
improving cancer prognosis and treatment response.

Mathematical models are valuable tools to understand complex
phenomena relating tumours and their TME and test hypotheses regard-
ing the effects of different environmental conditions on the adaptive
response of tumours. In the last years, some mathematical models have
been developed to deal with cellular phenotypic plasticity and adapta-
tion from different perspectives, ranging from agent-based models [33–
35] to continuum ones [36–39]. Here we focus on the latter type.
This family constitutes the majority of adaptation models developed to
date and they use well known formalisms as partial integro-differential
equations which are easily implemented and allow modelling the most
relevant phenomena in cancer evolution together with the interac-
tions with the TME. Several of these models define a finite number
of phenotypes that behave differently, with the transitions between
them mediated by environmental conditions. This approach has been
widely applied to model drug resistance [40–42], but also to other
adaptation processes such as hypoxia-driven adaptation [38]. However,
this discrete approach to the phenotypic state does not correspond with
biological observations, in which cells go through a wide spectrum
of different phenotypes caused by epigenetic changes [37]. Hence, it
makes more sense to consider gene expression as a continuum variable.
Very recently, some authors have followed this standpoint, defining a
new artificial dimension corresponding to the cell’s phenotypic state.
2

Some of these models consider adaptation as driven by random effects d
(genetic mutations) [36], while others incorporate the effect of the
environment as a key agent driving phenotypic evolution [37,39].

In this work, we propose a new mathematical framework to model
cell adaptation processes and phenotypic plasticity driven by the envi-
ronment. Although the equations above have been particularised here
to model GBM evolution under hypoxic conditions, the framework’s
formulation is general and can be adapted to other biological problems
of cellular adaptation after suitable definition of the different terms in
the corresponding equations and identification of the involved param-
eters, with the only constraint that continuum hypothesis is fulfilled.
The core idea of this formulation is to consider cell phenotype as
a continuum variable, but instead of adding an extra dimension to
the problem [37,39], the phenotype is modelled as a set of internal
variables that define the cell state, and consequently the cells response.
This allows an easy physical interpretation of the internal variables
and their relationship with the environment, while keeping the idea
of continuum phenotype. The proposed approach closely follows the
concept of state from control systems or non-linear mechanics. Cell
phenotype (or state) represents at the cell level the changes at the
molecular level (e.g. epigenetic changes) that lead to alterations in
the cell’s gene expression and therefore in its expression. A differential
equation, analogous to the ones defined for cells and chemical species,
is derived to describe the evolution of each internal variable, relating
its change with different signal levels coming from the TME. The
activation functions regulating cell behaviour are now also dependent
on those internal variables. Thus, the proposed framework allows to
incorporate cell response to environmental changes as well as the
reversibility and inheritance typical of phenotypic changes.

The framework is first formulated in Section 2, for an arbitrary
number of cell populations, chemical species and internal variables.
Then, we particularise it to the case of GBM evolution under hypoxic
conditions, the example chosen to illustrate the model capabilities.
In Section 3, we present the results derived from the numerical sim-
ulations perform and study the influence of the parameters and the
oxygenation conditions. In Section 4, we discuss the capabilities and
the results of our approach to situate it within the existing approaches
to model cell adaptation in the literature. Finally, Section 5 presents
the main conclusions of the work.

2. Mathematical framework

In this section, we present the general mathematical framework
developed to describe cell adaptation processes and phenotypic hetero-
geneity in tumour evolution. This framework can then be particularised
to simulate a wide range of different problems, depending on the
precise conditions and parameters. In this paper, we focus on GBM
evolution under hypoxic conditions.

2.1. General framework

The starting point is a previously published continuum model [43,
44] describing the spatio-temporal evolution of different cell popu-
lations and chemical species constituting the TME. In what follows,
𝑇 and 𝑋 are used to represent the temporal and spatial coordinates,
respectively. All variables are considered at the population level, within
a continuum framework. Considering the concentration of 𝑚 cell popu-
lations 𝐶𝑖 = 𝐶𝑖(𝑋, 𝑇 ) (𝑖 = 1,… , 𝑚) and 𝑛 chemical species 𝑆𝑖 = 𝑆𝑖(𝑋, 𝑇 )
(𝑖 = 1,… , 𝑛), we can write a vector of field solutions 𝑼 with 𝑚 + 𝑛
components, formed as:

𝑼 = [𝐶1,… , 𝐶𝑚, 𝑆1,… , 𝑆𝑛].

The transport equation for each component 𝑈𝑖 is then written as:
𝜕𝑈𝑖
𝜕𝑇

= −𝛁 ⋅ 𝒒𝑖 + 𝐹𝑖, 𝑖 = 1,… , 𝑚 + 𝑛. (1)

In Eq. (1), 𝒒𝑖 is the flux term, which in general can include both
iffusive and convective terms. Analogously, 𝐹 is the source term. In
𝑖
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the case of cell populations, the source term 𝐹𝑖 comprises proliferation
nd death:

𝑖 = 𝑓𝑖𝑈𝑖 − 𝑑𝑖𝑈𝑖, 𝑖 = 1,… , 𝑚, (2)

ith 𝑓𝑖 the growth rate and 𝑑𝑖 the death rate.
For the chemical species, the source term includes the phenomena

f decay, as well as production and/or consumption by cells. We can
herefore write these terms as:

𝑖 = −𝑑𝑖𝑈𝑖 +
𝑚
∑

𝑗=1
𝑈𝑗𝑓𝑖𝑗 , 𝑖 = 𝑚 + 1,… , 𝑛, (3)

ith 𝑑𝑖 the decay rate, and 𝑓𝑖𝑗 the function modelling the consumption
r production rate of the 𝑖th species by the 𝑗th cell population. In
eneral, all the aforementioned terms and functions (𝒒𝑖, 𝑓𝑖, 𝑑𝑖, 𝑓𝑖𝑗)
ay depend on any solution field and their derivatives. That is, every
henomena involved in cell evolution can depend on the current cell
nd species concentrations and on the changes in these quantities. Their
articular functional form will depend on the problem in hands, and
ill be defined later for our reference problem, GBM evolution.

Once this primary model has been defined, we extend it to incor-
orate the phenomenon of cell adaptation, taking into account the cell
istory and how they keep ‘‘in memory’’ their past states. To do that,
e introduce the concept of cell state (or phenotypic state) [45], which

s described by one or more internal variables, that jointly represent
he current phenotypic state of the cell. This is based on the state
heory, widely used in other disciplines such as control theory [46]
r non-linear mechanics [47] as a way to model phenomena that are
ependent on past states. These variables constitute a macroscopic
epresentation of the microscopic changes inside a cell that lead to
henotypic heterogeneity; examples include epigenetic changes [10,
8].

In general, we consider that the state of each cell population 𝑖
an be fully described by 𝑟𝑖 internal variables, accounting for the
ell phenotypic changes in response to different intrinsic or extrinsic
timuli. Each variable must lie within its corresponding state space,
hich comprises the set of all possible configurations. Let 𝑉𝑖𝑘 denote

he 𝑘th internal variable affecting the cell population 𝑈𝑖, for 𝑖 = 1,… , 𝑚,
ith 𝑉𝑖𝑘 ∈ [0, 𝑉 max

𝑖𝑘 ]. We can write the corresponding evolution equation
s:
𝜕𝑉𝑖𝑘
𝜕𝑇

= 𝛺𝑖𝑘 − 𝛬𝑖𝑘𝑉𝑖𝑘 + (𝛽𝑖𝑘 − 1)𝑓𝑖𝑉𝑖𝑘 −
1
𝑈𝑖

𝒒𝑖 ⋅ 𝛁𝑉𝑖𝑘,

𝑖 = 1,… , 𝑚, 𝑘 = 1,… , 𝑟𝑖.
(4)

Since this is a population model, internal variables are measured in
he corresponding units per unit cell, expressing the average epigenetic
hanges per cell in the population of a Representative Volume Element
RVE) that lead to the current phenotypic state, as usual in continuum
hysics. The details of the mathematical derivation of Eq. (4), from
he perspective of conservation laws, can be found in Appendix A. The
eaning of the different terms in Eq. (4) is detailed next:

• In the first term, 𝛺𝑖𝑘 represents the function of epigenetic changes
acquisition and may depend on a combination of external stimuli,
their derivatives, and the current level of the internal variables
themselves. This allows to model cell adaptation as a response to
environmental changes.

• The second term in Eq. (4) is the decay term, with 𝛬𝑖𝑘 the decay
coefficient. This term accounts for the natural reparation paths
that cells follow to overcome genetic and epigenetic mutations,
which are, in general, reversible [49–51].

• The third term takes into account the fact that epigenetic changes
may be inherited through cell division [52–54]. In this regard,
the term is proportional to the growth rate in cells (𝑓𝑖) through
the coefficient 𝛽𝑖𝑘. If 𝛽𝑖𝑘 = 1, daughter cells inherit the same
phenotypic state as their progenitor, whereas if 𝛽𝑖𝑘 < 1, only
a percentage of daughter cells inherits the state of the parents.
Otherwise, this could be interpreted as a partial repair of the
phenotypic changes present in those parent cells.
3

• Finally, the last term is a convection term, necessary to adapt the
state equation to our Eulerian framework (see Appendix A for the
details). Each internal variable 𝑉𝑖𝑘 is convected with the flux term
𝒒𝑖 of its related cell population 𝑈𝑖.

Lastly, we must define the effect that internal variables may have
n cell behaviour. In the most general case, the set of internal variables
𝑖 = (𝑉𝑖𝑘), 𝑘 = 1,… , 𝑟𝑖, associated with the population 𝑈𝑖, (for 𝑖 =

1,… , 𝑚, since we assume that internal variables affect cell behaviour,
but not chemical species) could affect every mechanism involved in the
evolution of this population, so we would have:

𝒒𝑖 = 𝒒𝑖
(

𝑼 ,𝛁𝑼 ,𝑽𝑖
)

, 𝑖 = 1,… , 𝑚,

𝑓𝑖 = 𝑓𝑖
(

𝑼 ,𝛁𝑼 ,𝑽𝑖
)

, 𝑖 = 1,… , 𝑚,

𝑑𝑖 = 𝑓𝑖
(

𝑼 ,𝛁𝑼 ,𝑽𝑖
)

, 𝑖 = 1,… , 𝑚,

𝑓𝑖𝑗 = 𝑓𝑖𝑗
(

𝑼 ,𝛁𝑼 ,𝑽𝑖
)

, 𝑖 = 𝑚 + 1,… , 𝑛, 𝑗 = 1,… , 𝑚.

2.2. One-dimensional model of GBM evolution under hypoxic conditions

Next, we particularise the proposed general model to a specific
problem, namely the evolution of GBM subjected to oxygen variations.
For the sake of simplicity in the implementation and computations,
we shall consider a one-dimensional model with two cell populations,
corresponding to alive (𝐶a) and dead (𝐶d) cells respectively, a chemical
species which is oxygen (𝑆) and an internal variable (𝑉 ), accounting
for the effects of hypoxia on the phenotypic state of GBM cells.

This model is based on a previous work [55], which is extended by
incorporating this internal variable, thus allowing for the simulation of
more complex processes such as those of cell memory and adaptation.
The reader is therefore referred to [55] for further details about the
model and the physical meaning of its parameters and functions.

The equations governing the evolution of the concentration of alive
and dead cells are:
𝜕𝐶a
𝜕𝑇

= 𝜕
𝜕𝑋

(

𝐷C
𝜕𝐶a
𝜕𝑋

−𝑀C𝐶a
𝜕𝑆
𝜕𝑋

)

+ 𝐺C𝐶a −𝑁C𝐶a, (5)

𝜕𝐶d
𝜕𝑇

= 𝑁C𝐶a, (6)

where 𝐷C is the diffusion term and 𝑀C is the chemotaxis term. They
jointly model cell movement, both in a random way (diffusion or
pedesis) and towards oxygen gradients (chemotaxis). With regards to
the source term, it comprises cell proliferation and death through the
terms 𝐺C and 𝑁C respectively.

The corresponding coefficients may be written as:

𝐷C = 𝐾p𝛹mot (𝑉 ), (7a)

𝑀C = 𝐾ch𝛱ch(𝑆)𝐹sat (𝐶a)𝛹mot (𝑉 ), (7b)

𝐺C = 𝐾gr𝛱gr (𝑆)𝐹sat (𝐶a)𝛹gr (𝑉 ), (7c)

𝑁C = 𝐾d𝛱d(𝑆)𝛹d(𝑉 ). (7d)

As can be seen in the above equations, all terms may be affected by
the phenotypic state through the 𝛹 functions, which will be detailed
later, as we define more precisely the internal variable 𝑉 , its meaning
and the hypotheses related to its effects on cell behaviour.

The diffusion or pedesis term (Eq. (7a)) is considered constant
(except for the influence of phenotypic changes), with 𝐾p the pedesis
coefficient.

Both chemotaxis (Eq. (7b)) and proliferation (Eq. (7c)) are regulated
by the go or grow hypothesis [56] in GBM evolution, which states
that cells spend their resources either in proliferating or migrating,
depending on the oxygen level and, in particular, on the hypoxia
threshold 𝑆𝐻 . To model this dependence with oxygen, we use for both
phenomena the ReLU-like activation functions 𝛱ch, 𝛱gr [55]:

𝛱ch(𝑆;𝑆𝐻 ) =
{

1 − 𝑆∕𝑆𝐻 if 0 ≤ 𝑆 ≤ 𝑆𝐻
𝐻 ,
0 if 𝑆 > 𝑆
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𝛱gr (𝑆;𝑆𝐻 ) =
{

𝑆∕𝑆𝐻 if 0 ≤ 𝑆 ≤ 𝑆𝐻

1 if 𝑆 > 𝑆𝐻
.

Also, both phenomena are restricted by space considerations assum-
ng that cells cannot proliferate nor migrate in saturated areas [55,57]
y means of a logistic growth model. Hence, we define 𝐹sat to take into
ccount this effect:

sat (𝐶a;𝐶sat ) = 1 −
𝐶a
𝐶sat

.

As for the coefficients regulating these phenomena, 𝐾ch is the
chemotaxis coefficient, while 𝐾gr is the characteristic growth rate.

Cell death (Eq. (7d)) is regulated by 𝐾d, the characteristic death
rate, also depending on the oxygen concentration, with cells mainly
dying below an anoxia threshold. This is modelled with an hyperbolic
tangent activation function, depending both on a location parameter
𝑆𝐴 and a spread parameter 𝛥𝑆𝐴, to allow stochastic death (apoptosis)
as well [55]:

𝛱d(𝑆;𝑆𝐴, 𝛥𝑆𝐴) =
1
2

(

1 − tanh
(

𝑆 − 𝑆𝐴

𝛥𝑆𝐴

))

.

Moving on to chemical species, the governing equation for the
xygen concentration is:
𝜕𝑆
𝜕𝑇

= 𝜕
𝜕𝑋

(

𝐷𝑆
𝜕𝑆
𝜕𝑋

)

− 𝐺𝑆𝐶a. (8)

As can be seen in Eq. (8), the evolution of oxygen is driven by dif-
fusion through the diffusion term 𝐷𝑆 and by a source term accounting
for cell oxygen uptake 𝐺𝑆 . These terms are written as:

𝐷𝑆 = 𝐾𝑓 , (9a)

𝐺𝑆 = 𝐾u𝛱u(𝑆)𝛹u(𝑉 ). (9b)

As for the cells, the oxygen diffusion term (Eq. (9a)) is constant, with
𝐾𝑓 the diffusion coefficient. Oxygen uptake by alive cells (Eq. (9b)) is
regulated by the uptake rate 𝐾u and 𝛱u, a nonlinear correction function
accounting for the dependence between cell uptake and the oxygen
level, following oxygen consumption kinetics [58]:

𝛱u(𝑆;𝑆𝑀 ) = 𝑆
𝑆 + 𝑆𝑀

,

ith 𝑆𝑀 the Michaelis–Menten constant. The value of the parameters
egarding GBM evolution have been obtained from [55], where they
ere fitted to different in vitro experiments in microfluidic devices.

Finally, we define an internal variable 𝑉 which models the effects
f hypoxia on cell state. GBM cells are known to undergo phenotypic
hanges under hypoxia, which promote their dedifferentiation towards

CSC phenotype [59]. The variable 𝑉 represents the state of the
ell (comprising factors such as gene expression levels or the number
nd position of DNA methylation) in an averaged macroscopic sense
n the RVE population. It is bounded, so 𝑉 ∈ [0, 𝑉max]. When 𝑉 =
, the state of the cell corresponds to a totally differentiated GBM
ell, while for 𝑉 = 𝑉max, the cell behaves like a cancer stem cell.
he governing equation for the evolution of the internal variable is
henomenologically expressed as:
𝜕𝑉
𝜕𝑇

= 𝛺 − 𝛬𝑉 + (𝛽 − 1)𝑓C𝑉 +

1
𝐶a

𝜕𝑉
𝜕𝑋

(

𝐷C
𝜕𝐶a
𝜕𝑋

−𝐾C𝐶a
𝜕𝑆
𝜕𝑋

)

.
(10)

In absence of suitable experimental data, it is difficult to accurately
efine the functional forms as well as the value of the parameters
nvolved in Eq. (10). Hence, in what follows we propose reasonable
unctional forms and parameters which may help us to show the poten-
ial of the model for qualitatively reproducing biologically-consistent
ehaviours, in compliance with what has been reported in literature.

We consider that the phenotypic changes are driven by external
actors, in particular by the oxygen level, such that cells go towards a
ore stem like phenotype when the oxygen level is below the hypoxic

hreshold 𝑆𝐻 while cells may differentiate again when the oxygen level
4

𝑚

s above 𝑆𝐻 . To model this, and taking into account that 𝑉 is bounded,
e define 𝛺 as:

= 𝛩+
(

1 − 𝑉
𝑉max

)

+ 𝛩− 𝑉
𝑉max

,

with 𝛩+ = max(0, 𝛩), 𝛩− = min(−𝛩, 0) and the function 𝛩 defined as:

= 𝐾𝑉 (1 − 𝛾𝐹 (𝑆)),

where 𝐾𝑉 is the rate at which epigenetic changes are acquired (i.e., the
rate at which the phenotypic state is modified) and 𝛾 ∈ [1, 2] is
he parameter regulating whether cells move towards a differentiated
henotype when 𝑆 > 𝑆𝐻 (𝛾 = 2) or not (𝛾 = 1), that is, whether
he epigenetic change is elastic/inelastic. 𝐹 is an asymmetric gener-
lised normal distribution function, 𝐹 (𝑆) = 𝛷(𝑦), with 𝛷 the normal
umulative distribution function and 𝑦 is defined as:

(𝑆; 𝑘, 𝛯) = − 1
𝑘
log

(

1 + 𝑆 − 𝛯
𝛯

)

,

with 𝑘 < 0 the shape parameter and 𝛯 > 0 the location parameter. This
function is convenient since it has positive support (the oxygen level
cannot be negative) and allows enough flexibility to consider different
dependencies and the possibility of phenotype changes (or lack thereof)
above 𝑆𝐻 in a non-symmetric way.

The second, third and fourth terms in Eq. (10) correspond to the
decay, inheritance and convection of the internal variable, respectively,
as explained in Section 2.1, with 𝛬 the decay rate and 𝛽 the degree of
phenotypic inheritance.

Regarding the effects of phenotypic changes in cell behaviour,
we define the 𝛹 functions as beta distribution functions, which are
bounded and therefore coherent with our definition of 𝑉 as a bounded
function. They also allow great flexibility for modelling different be-
haviours. In general, we write:

𝛹𝑖(𝑉 ; 𝑎𝑖, 𝑏𝑖) = 1 +
(𝑉 ∕𝑉max)𝑎𝑖−1(1 − 𝑉 ∕𝑉max)𝑏𝑖−1

B(𝑎𝑖, 𝑏𝑖)
,

with 𝑖 = {mot, gr, d, u} and:

B(𝑎𝑖, 𝑏𝑖) =
𝛤 (𝑎𝑖)𝛤 (𝑏𝑖)
𝛤 (𝑎𝑖 + 𝑏𝑖)

,

and 𝛤 the Gamma function.

Model non-dimensionalisation. To simplify the interpretation of the in
silico results, the model is reformulated in a dimensionless form, using
the following dimensionless variables:

𝑥 = 𝑋
𝐿
, 𝑡 = 𝑇𝐾gr , 𝑐𝑖 =

𝐶𝑖
𝐶sat

(𝑖 = a, d),

𝑣 = 𝑉
𝑉max

, 𝑠 = 𝑆
𝑆𝐻

,

where 𝐿 is the length of the computational domain, 𝐿 = 0.2 cm. The
alue of the rest of the parameters used to define the dimensionless
ariables are 𝐾gr = 200 h, 𝑆𝐻 = 7mmHg, 𝐶sat = 5 ⋅107 cell∕mL (obtained
rom [55]) and 𝑉max = 1 cell−1 (arbitrarily set to define the 𝑉 value
orresponding to the CSC phenotype).

With such definitions, Eqs. (5), (6), (8), (10) can then be expressed
s:
𝜕𝑐a
𝜕𝑡

= 𝜕
𝜕𝑥

(

𝑑c
𝜕𝑐a
𝜕𝑥

− 𝑚c𝑐a
𝜕𝑠
𝜕𝑥

)

+ 𝑔c𝑐a − 𝑛c𝑐a, (11)

𝜕𝑐d
𝜕𝑡

= 𝑛c𝑐a, (12)
𝜕𝑠
𝜕𝑡

= 𝜕
𝜕𝑥

(

𝑑𝑠
𝜕𝑠
𝜕𝑥

)

− 𝑔𝑠𝑐a, (13)

𝜕𝑣
𝜕𝑡

= 𝜔 − 𝜆𝑣 + (𝛽 − 1)𝑓c𝑣 +
1
𝑐a
𝜕𝑣
𝜕𝑥

(

𝑑c
𝜕𝑐a
𝜕𝑥

− 𝑚c𝑐a
𝜕𝑠
𝜕𝑥

)

, (14)

with

𝑑c = 𝜅p𝜓mot (𝑣), (15a)

= 𝜅 𝜋 (𝑠)𝑓 (𝑐 )𝜓 (𝑣), (15b)
c ch ch sat a mot
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Table 1
Dimensionless parameters related
with cell evolution.

Parameter Value

𝜅p 9.0 ⋅ 10−3

𝜅ch 0.95
𝜅d 0.24
𝜅u 5.1 ⋅ 103

𝜅𝑓 1.6 ⋅ 103

𝑠𝐴 0.23
𝛥𝑠𝐴 1.4 ⋅ 10−2

𝑠𝑀 0.36

The value of the parameters has
been taken from [55] and are
presented in their non-dimensional
form.

𝑔c = 𝜋gr (𝑠)𝑓sat (𝑐a)𝜓gr (𝑣), (15c)

𝑛c = 𝜅d𝜋d(𝑠)𝜓d(𝑣), (15d)

𝑑s = 𝜅𝑓 , (15e)

𝑔𝑠 = 𝜅u𝜋u(𝑠)𝜓u(𝑣), (15f)

𝜔 = 𝜃+(1 − 𝑣) + 𝜃−𝑣, (15g)

𝜃 = 𝜅𝑣(1 − 𝛾𝐹 (𝑠)), (15h)

and the following dimensionless parameters:

𝜅p =
𝐾p

𝐿2𝐾gr
, 𝜅ch =

𝐾ch𝑆𝐻

𝐿2𝐾gr
, 𝜅d =

𝐾d
𝐾gr

, 𝜅u =
𝐾u𝐶sat

𝑆𝐻𝐾gr
,

𝜅𝑓 =
𝐾𝑓
𝐿2𝐾gr

, 𝜅𝑣 =
𝐾𝑉
𝐾gr

, 𝜆 = 𝛬
𝐾gr

.

The non-dimensional activation functions are expressed as:

𝜋ch(𝑠) =
{

1 − 𝑠 if 0 ≤ 𝑠 ≤ 1
0 if 𝑠 > 1

,

𝜋gr (𝑠) =
{

𝑠 if 0 ≤ 𝑠 ≤ 1
1 if 𝑠 > 1

,

d(𝑠; 𝑠𝐴, 𝛥𝑠𝐴) =
1
2

(

1 − tanh
(

𝑠 − 𝑠𝐴

𝛥𝑠𝐴

))

,

𝜋u(𝑠; 𝑠𝑀 ) = 𝑠
𝑠 + 𝑠𝑀

,

𝑓sat (𝑐a, 𝑐d) = 1 −
(

𝑐a + 𝑐d
)

,

𝜓𝑖(𝑣; 𝑎𝑖, 𝑏𝑖) = 1 +
𝑣𝑎𝑖−1(1 − 𝑣)𝑏𝑖−1

B(𝑎𝑖, 𝑏𝑖)
, 𝑖 = mot, gr, d, u,

with the parameters:

𝑠𝐴 = 𝑆𝐴

𝑆𝐻
, 𝛥𝑠𝐴 = 𝛥𝑆𝐴

𝑆𝐻
, 𝑠𝑀 = 𝑆𝑀

𝑆𝐻
, 𝜉 = 𝛯

𝑆𝐻
.

The presented model has to be completed with suitable initial and
boundary conditions.

Model parameters. As stated before, the parameters related to cell
evolution are taken from a previous model [55]. The corresponding
non-dimensional values are included in Table 1.

The value for the rest of the parameters is estimated within reason-
able biological ranges and for illustrative purposes. In particular, the
value of 𝜅𝑣 is set to 0.72 and the decay rate is assumed to be zero
(𝜆 = 0). The value of the parameters defining the function 𝜃 will be
further explored in the next section. Regarding the parameters related
to effect of the phenotype on cell behaviour, i.e., the parameters in
the 𝜓 functions, we define them to achieve functions consistent with
biological evidence:

• Cells with a stem-phenotype have increased proliferation [60–
63].

• Cells with a stem-like phenotype undergo the EMT and hence,
5

increase their migratory activity [60,64]. c
Table 2
Value of the parameters defining the 𝜓 functions.

Parameter 𝜓mot 𝜓gr 𝜓d 𝜓u

𝑎 2 4 1.5 1.5
𝑏 1 2 4 1

The parameters regulating how the state affects each phenomenon
related to cell behaviour are presented.

Fig. 1. Shape of the 𝜓 functions for the different phenomena. 𝜓mot and 𝜓u are
onotonically increasing functions; while 𝜓gr and 𝜓d are both non-monotonic, they

ncrease, reach a maximum, and then decrease, reflecting that cells are most active in
he phenotype corresponding to the maximum in the 𝜓 function.

• Stem cells are more resistant to apoptosis than differentiated cells
and therefore, they present an overall lower death rate [65,66].

• Due to their increase in metabolic activity, cells with a stem-
like phenotype consume more resources, and thus have a higher
uptake rate [67].

The precise values of the parameters is shown in Table 2 and the
hape of the functions are presented in Fig. 1.

. Results

In this section, we present the results obtained in different situa-
ions, to illustrate the model capacity to reproduce different trends in
BM evolution. First, in Section 3.1, an extensive parametric analysis

s performed to analyse the effect of each parameter regulating the cell
tate evolution and to show the potential of the model for capturing
ifferent trends. Next, in Section 3.2, we study GBM evolution under
ifferent environmental conditions.

.1. Model inspection

.1.1. Model set-up
We investigate the effect of the different parameters involved in

he evolution model of the internal variable (Eq. (14)) in a benchmark
xperiment of GBM evolution under cyclic hypoxia in microfluidic
evices. Microfluidic techniques allow nowadays to reproduce, in a
ontrolled microenvironment, the three-dimensional structure of tu-
ours. In a previous work [55], a model of GBM evolution under
ypoxia based on experiments on microfluidic devices was developed.
n this work we continue to embrace this framework, since the recent
evelopment and advances in microfluidics enable the generation of
arge amounts of data which may be used for validation purposes.

The experimental configuration is one-dimensional, and recreates
ells within the central chamber of a microfluidic device, of width
, with two lateral channels through which oxygen-rich medium can
e perfused. This configuration simulates cells between two blood
essels in the brain, and allows controlling oxygenation conditions
nd creating oxygen gradients within the chamber. To subject cells to
yclic hypoxia, we simulate alternative oxygen perfusion through the
hannels, in cycles of 𝑇 = 7 days (𝑡 = 0.84). A scheme of the device
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Fig. 2. Schematic representation of the microfluidic device and the experiment modelled. The microfluidic device reproduces the evolution of cancer cells between two
blood vessels, which supply oxygen and nutrients. The experiment of cyclic hypoxia consists on perfusing oxygenated medium alternately through each channel while keeping the
other one sealed, thus creating gradients. Created with BioRender.com.
configuration and our cyclic hypoxia in silico experiment are shown in
Fig. 2.

The level of oxygen is above the hypoxic threshold in the oxy-
genated channel, 𝑠 = 9∕7, and below it in the non-oxygenated channel,
𝑠 = 1∕7. Consequently, we impose time-dependent Dirichlet boundary
conditions for oxygen in both channels, with the corresponding value
at each time point. The initial condition is set to be a straight line join-
ing both channels, with constant gradient between the two boundary
conditions. This is due to the quick oxygen diffusion, which causes the
stationary profile to be reached in a short period of time, compared
with the characteristic time of the cell processes considered.

Regarding alive cells, we assume that they are initially uniformly
distributed within the chamber, at a low concentration 𝑐a(𝑥, 𝑡 = 0) =
0.08 (far from the saturation limit). We assume that, initially, there are
no dead cells (𝑐d(𝑥, 𝑡 = 0) = 0). Neither alive nor dead cells can go away
from the chamber, so homogeneous Neumann boundary conditions are
imposed for cells. The initial phenotypic state is uniform 𝑣(𝑥, 𝑡 = 0) = 𝑣0
and, in order to explore its impact, it will be varied in each simulation.

We simulate 4 cycles of hypoxia, each with a duration of 𝑡 = 0.84,
yielding a total duration of the experiment of 𝑡 = 3.36, corresponding to
28 days. The time step used for the computer simulations is 𝛥𝑡 = 0.0014
(equivalent to 1000 s) and the element size for the spatial discretisation
is 𝛥𝑥 = 0.005 (equivalent to 10 μm). The system of partial differential
equations (PDEs) is implemented in MATLAB and solved with the
library pdepe [68].

To analyse the results, we introduce some metrics to represent the
global macroscopic state of the tumour, aggregating spatial effects.
First, we define the tumour burden (TB) as the total number of alive
cells, as a measure of the size of the active tumour at each time:

TB(𝑡) = ∫

1

0
𝑐a(𝑥, 𝑡) d𝑥.

Analogously, we define the mean phenotypic state (MS) as the mean
phenotype in the population at each point and time:

MS(𝑡) = ∫

1

0
𝑣(𝑥, 𝑡) d𝑥.

3.1.2. Parametric analysis
First, in Fig. 3, we present a summary of simulations varying the

parameters related with the evolution of the phenotypic state. Sim-
ulations have been performed and analysed for different values of
the parameters that determine the function 𝐹 , which establishes how
the phenotypic state changes due to specific environmental conditions
(in this case, due to the oxygen concentration). Also, we perform
simulations for different values of the parameter 𝛽, which determines
how cells inherit the phenotypic state of their progenitors. Finally, we
have studied three different scenarios regarding the initial cell precon-
ditioning, ranging from a tumour mainly composed of differentiated
cells (𝑣 = 0.1) to a tumour predominantly formed of CSCs (𝑣 = 0.9).
6

0 0
Details of these and other simulations, showing the whole temporal
evolution of the TB and MS for the different parameters involved in
the evolution of the phenotypic state, can be found in Appendix B.

From Fig. 3, it can been seen that different values of 𝑘 and 𝜉 lead
to different global tumour dynamics, due to the nonlinear nature of the
model. That is, the impact that the environment has on the phenotypic
state of the tumour cells is determinant for the evolution of the tissue.
In general, tumours with high 𝜉 and 𝑘 (in absolute value) evolve
towards CSC phenotypes. Also, a low value of 𝜉 generally translates
into tumours made of differentiated cells. This is further explored in
Figs. 4, 5. Besides, low initial preconditioning (𝑣0 = 0.1) facilitates the
decrease in the number of alive cells.

Fig. 4 represents the simulation results for different values of 𝜉,
leaving 𝑘 = −0.1, 𝛽 = 1 and 𝑣0 = 0.1. 𝜉 represents, somehow, the
threshold determining if the cell’s phenotype evolves towards a CSC
phenotype (𝑠 < 𝜉) or towards a differentiated one (𝑠 > 𝜉). The higher
the parameter 𝜉, the closer to CSC phenotype is the final phenotypic
state. This is because a high value of 𝜉 implies that cells are driven
towards the CSC phenotype for a wider range of oxygen concentrations,
that is, they are more sensitive to hypoxia.

Analogously, in Fig. 5 we can see simulations corresponding to
different values of 𝑘, leaving 𝜉 = 1, 𝛽 = 1 and 𝑣0 = 0.1. This parameter
affects the spread of 𝜔 in the sense that higher absolute values of 𝑘 lead
to a smoother 𝜔 function, where cells are less sensitive to changes in the
oxygen concentration. In particular, for 𝑘 = −10 the cells’ phenotype is
almost insensitive to the oxygen concentration, so the phenotypic state
is only slightly modified throughout the simulation. Indeed, in Fig. 3,
we can observe that, in all the cases with 𝑘 = −10, the final phenotypic
state is similar to the initial one. For lower absolute values of 𝑘, the
tumour is more aggressive in terms of velocities of proliferation and
migration.

Phenotypic state inheritance also modifies the way the tumour
evolves. Assuming 𝛽 = 0 implies that cells, in some sense, repair
the epigenetic changes caused by hypoxia through proliferation. At
the other end, 𝛽 = 1 implies that the population mean phenotypic
state is preserved regardless of cell proliferation. From Fig. 3 it can be
deduced that when the tumour is composed of differentiated cells (low
𝑣, greenish marker colours), tumour growth is favoured by no state
inheritance (𝛽 = 0). Conversely, for tumours with a phenotypic state
that is close to CSC, tumours with 𝛽 = 1 grow more. There are even
some cases where an intermediate state conservation by inheritance
(𝛽 = 0.67) yields the tumours with the highest number of alive cells,
which we can relate with a higher size of the active tumour. This can be
explained by the hypotheses regarding the effect of the phenotypic state
on cells via the 𝜓 functions (see Fig. 1). For low values of 𝑣 (phenotype
of differentiated cells), overall tumour survival and growth is maximal
for 𝑣 = 0, since both death and uptake reach a minimum, compared
with low 𝑣 ≠ 0, where death is at its peak. Thus, 𝛽 = 0 helps achieving

the 𝑣 = 0 phenotype since, as commented above, it acts as a repair

https://BioRender.com
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Fig. 3. Summary of simulations varying the parameters related with the phenotypic state evolution. Each diagram contains a grid of different shape-location parameters
in function 𝜔 (modelling the acquisition-repair of epigenetic changes that lead to phenotypic plasticity), for a different initial preconditioning condition (that is, a different value
of the initial phenotypic state 𝑣0). The marker’s shape determines the global trend of the number of cells in each simulation, that is, if the TB tends to increase, decrease or
remains stable. The marker’s contour colour represents which value of the inheritance parameter 𝛽 favours the most tumour growth and, finally, the marker’s inner colour shows
the mean phenotypic state of the tumour cells at the end of the simulation. The percentage above each marker corresponds to the change in number of alive tumour cells during
the simulation, when compared with the initial number.
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process. Likewise, in the regime of CSCs (high values of 𝑣), the scenario
romoting tumour growth coincides with the peak in 𝜓gr (𝑣 ≈ 0.8) and
= 1 helps cells achieving that range of phenotypic states. Since 𝜓gr is

not monotonic, there may be cases where a value of 𝛽 < 1 helps getting
the phenotype which best promotes tumour growth.

In Fig. 6 we analyse the effect of 𝛽 for two different scenarios (I
and II), corresponding to different behaviours, and also for different
initial phenotypic states. Scenario I (Fig. 6(a)) corresponds to a case
where cells barely change their phenotype. On the other hand, scenario
II (Fig. 6(b)) corresponds to a case in which cells’ phenotype is highly
sensitive to changes in the oxygen concentration. Consequently, in the
former, the phenotypic state mainly changes due to inheritance when
cells proliferate while, in the latter, cells mainly evolve towards a CSC
phenotype throughout successive cycles. In scenario I, with 𝑣0 = 0.1,
it can be observed that the tumour is within the differentiated cells
regime, and therefore, as commented, 𝛽 = 0 yields the biggest TB. In the
other cases, cells have phenotypes closer to CSC and the value of 𝛽 that
roduces the largest tumour is that yielding the closest value to 𝑣 ≃ 0.8,
hat is, as pointed out before, the value that promotes tumour growth.
owever, in most cases the value of 𝛽 does not modify the general
rogression pattern. The only exception is scenario I with 𝑣0 = 0.9,
here there are two differentiated trends, 𝛽 = 1 produces a growing

umour with predominantly CSCs whereas 𝛽 < 1 leads to TB reduction.
Next, we investigate the effect of different initial spatial distri-

utions of the phenotypic state, that is, the effect of having cells
istributed in different patterns according to their phenotype. In par-
icular, we analyse four different distributions, all verifying that their
ean state is ∫ 1

0 𝑣(𝑥, 𝑡 = 0) d𝑥 = 0.5:

• uniform 𝑣0 = 0.5,
• left-skewed: step-like distribution, with CSCs in the left (𝑣0 = 0.9)

and differentiated cells in the right (𝑣0 = 0.1):

𝑣(𝑥, 𝑡 = 0) =
{

0.9 if 𝑥 ≤ 0.5
0.1 if 𝑥 > 0.5

,

• right-skewed: step-like distribution, with differentiated cells in
the left (𝑣0 = 0.1) and CSCs in the right (𝑣0 = 0.9):

𝑣(𝑥, 𝑡 = 0) =
{

0.1 if 𝑥 ≤ 0.5 ,
7

0.9 if 𝑥 > 0.5 p
Table 3
Summary of the different hypotheses regarding the effect of the internal variable in
cell behaviour.

Scenario Growth Motility Death Uptake

Base 𝜓gr 𝜓mot 𝜓d 𝜓u
Effect only on growth 𝜓gr 1 1 1
No effect on growth 1 𝜓mot 𝜓d 𝜓u
No effect on uptake 𝜓gr 𝜓mot 𝜓d 1

The different hypotheses are translated into the activation/deactivation of the corre-
sponding 𝜓 function, a value of 1 means that the phenotypic state has no effect on
that particular phenomenon.

• symmetric and non-uniform: logit-normal distribution with 𝜇 = 0,
𝜎 = 0.8:

𝑣(𝑥, 𝑡 = 0) = 1
2

1

𝜎
√

2𝜋

1
𝑥(1 − 𝑥)

exp

(

−
(logit(𝑥) − 𝜇)2

2𝜎2

)

.

Figs. 7 and 8 show the results of TB and MS in two scenarios, for
= 0 and 𝛽 = 1 respectively. In the first scenario, in both figures

Figs. 7(a), 8(a)), cells can withstand low levels of oxygen without
cquiring stemness (the location parameter 𝜉 is low), while the opposite
ccurs in scenario II (Figs. 7(b), 8(b)). Overall, it can be seen that
lthough the spatial distribution of the phenotypic state is different in
he early simulation times, this does not make a difference in the TB
volution or in the cell spatial distribution, neither qualitatively nor
uantitatively. Only in Fig. 8(a) we can appreciate some differences,
s an initial step right distribution yields a smaller tumour. Even in this
ase, differences are not significant, so we may conclude that the initial
istribution of the phenotypic state does not affect tumour evolution in
he long term.

To finish this study, we analyse the effect of modifying the hypothe-
es on the effect of the phenotypic state in cell behaviour, i.e., the
efinition of the 𝜓 functions in the model. We compare the initial
ypotheses defined in Section 2 (Fig. 1), which we consider the ‘‘base’’
ondition, with a case in which hypoxia only modifies the proliferation
apacity of cells, a scenario in which hypoxia modifies everything
ut the proliferation capacity, and a scenario in which it modifies
verything but the oxygen uptake. A summary of these scenarios is

resented in Table 3. The simulation results are presented in Fig. 9.
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Fig. 4. Effect of varying the location parameter 𝜉 in function 𝜔 (𝑘 = −0.1). The first column represents 𝜔 as a function of oxygen 𝑠 and the phenotypic state 𝑣. The second and
third columns show the spatio-temporal dynamics of alive cells and the phenotypic state respectively. The fourth column shows the evolution of TB with respect to time, taking
into account the variability induced by the inheritance parameter 𝛽 (coloured region), with the solid purple line corresponding to the TB in the complete inheritance case 𝛽 = 1.
From this figure, it can be seen that the effect of the phenotypic state
on growth is essential to explain the different trends observed, since
the assumption that there is no effect on growth leads to tumours that
do not grow significantly. Indeed, the increase in growth is one of the
defining features of CSCs [27]. On the other hand, considering that the
change in phenotype is restricted only to the growth capability always
yields bigger tumours. This is not a good representation of reality, since
it would always lead to growing tumours (for example, in Fig. 9(a), it
can be seen that the base hypothesis may lead to decreasing tumours,
while considering only the effect on growth does not produce that
trend). Besides, we know that the effect on motility (via the EMT) is
also needed to characterise the transition towards CSCs. Finally, other
authors have neglected the effect of phenotypic plasticity on oxygen
uptake [39]. As can be seen in Fig. 9, this also leads invariably to big
growing tumours. This hypothesis is not physiologically consistent as
it fails to fulfil energetic constraints. That is, since cells have limited
resources, an increase in their metabolic activity, either proliferative or
8

migratory, must lead to an increase in uptake to fulfil the cell energy
demands.

3.2. Study of GBM dynamics

In what follows we simulate GBM evolution under different oxy-
genation conditions. To simulate cyclic hypoxia, we define the (non-
dimensional) oxygen concentration at the left (𝑠𝐿) and right (𝑠𝑅) edges
of the domain with periodic boundary conditions in the form of si-
nusoidal functions, that can be parameterised by their period ( ),
minimum level of oxygen (𝑠min), amplitude (𝐴) and phase-shift between
both functions (𝜙):

𝑠𝐿(𝑡) = 𝑠min + 𝐴 sin
( 2𝜋

𝑡
)

,

𝑠𝑅(𝑡) = 𝑠min + 𝐴 sin
( 2𝜋

𝑡 + 𝜙

)

.

We perform a sensitivity analysis to elucidate the effect of each of
these four parameters on tumour evolution. We used latin hypercube
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Fig. 5. Effect of varying the shape parameter 𝑘 in function 𝜔 (𝜉 = 1). The first column of figures represents 𝜔 as a function of oxygen 𝑠 and the phenotypic state 𝑣. The second
and third columns show the spatio-temporal dynamics of alive cells and the phenotypic state respectively. The fourth column shows the evolution of the TB with respect to time,
taking into account the variability induced by the inheritance parameter 𝛽 (coloured region), with the solid purple line corresponding to the TB in the complete inheritance case
𝛽 = 1.
sampling to generate 300 combinations of the aforementioned parame-
ters, with 0.12 ≤  ≤ 1.4, 0 ≤ 𝑠min ≤ 1, 0.14 ≤ 𝐴 ≤ 1.14, 0 ≤ 𝜙 ≤ 𝜋. Then,
for each parameter combination, we simulate the tumour evolution
for our two reference scenarios up to 𝑡 = 10 and compute the partial
correlation coefficients (PCCs) of each parameter with the TB at the end
of the simulation. As observed in Fig. 10, in both scenarios, the period
has no relevant correlation with the output value (final TB), while the
TB has the highest correlation with the minimum value of oxygen 𝑠min.

In Fig. 11 we represent in a scatter plot the different simulations
organised in terms of the values of 𝑠min, 𝐴 and 𝜙. The dot size is
proportional to the period  (the bigger the dot, the higher the period
in that simulation). As previously shown,  does not have a significant
impact in the value of the final TB, so there is no particular pattern
in the distribution of dot sizes in Fig. 11. We distinguish three global
trends for the tumour burden: (i) the TB at the end is greater than at the
beginning of the simulation (represented with a blue dot); (ii) the TB at
the end is smaller than at the beginning of the simulation (represented
with a yellow dot); (iii) the tumour has remitted at some point in the
simulation (represented with an orange dot).

It can be seen that for both scenarios the results are similar. As
shown by the PCCs, the parameter with the highest influence on TB
dynamics is 𝑠min. Besides, lower values of the phase-shift increment
the possibilities of tumour remission. In the limits, when 𝜙 → 0 there
are times when the whole chamber is under hypoxic conditions, while
when 𝜙 → 𝜋 there is always an oxygen gradient, with the more
oxygenated area offering higher surviving possibilities.

Even if the results for both scenarios are alike in most cases, there
are some remarkable differences, particularly for values of 𝑠 under a
9

min
certain threshold (𝑠min < 0.25). Interestingly, insensitive tumours show
a rate of extinction of 14%, while in the case sensitive this rate drops to
9%, suggesting that our model is able to capture the increased resilience
that adaptation confers. To further study this, we calculate the surface
defining the ranges of the parameters 𝑠min, 𝐴 and 𝜙 that cause tumour
remission. We use support vector machines (SVMs) with a polynomial
kernel of order 2, since they provide an easy an efficient tool for
nonlinear classifications [69]. The resulting surfaces are represented
in Fig. 12, where it can be observed that the surface corresponding to
insensitive tumours encloses a bigger area of remission. In particular,
sensitive tumours seem to be able to withstand more severe hypoxia
levels (lower values of 𝑠min), especially for higher amplitudes. A video
showing the surfaces of Fig. 12 from different perspectives to allow an
easier visualisation is included in the Supplementary Material.

Additional results showing the complete temporal evolution of the
TB for some relevant parameter combinations can be found in Ap-
pendix B (Fig. 17). TB evolution shows that, in general, tumours that do
not adapt in response to hypoxia (insensitive tumours) have a greater
number of cells, i.e. a higher TB, than the ones that adapt. However,
these latter survive longer, showing that even if the adaptive changes
do not result in a higher TB, they provide an advantage for surviving
in adverse environments.

4. Discussion

Throughout this paper, we have presented a new approach to
modelling cellular adaptation and phenotypic plasticity in tumour evo-
lution. This approach is based on incorporating internal variables to a
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Fig. 6. Evolution of the TB (upper row in each subfigure) and the MS (lower row in each subfigure). Simulations consider different values of 𝛽 and 𝑣0, as well as two
different combinations of (𝑘, 𝜉) parameters.
previously defined continuum model. Here, internal variables fully de-
scribe cell state and its evolution representing, in a macroscopic sense,
the molecular pathways that lead to changes in the cell’s phenotype. In
turn, cell state controls the response to external stimuli and overall cell
behaviour.

A number of previous models tackle cell adaptation with continuum
models from different perspectives. Models with a certain number of
discrete phenotypes are the most widespread. In these models, each
phenotype has a different behaviour (e.g., different proliferation or
migration rate) usually represented by a differential equation, and cells
switch from one phenotype to another with a certain transition rate,
which is usually mediated by environmental conditions, such as the
concentration of oxygen or a drug [38,40]. These models are simple
to implement, because they only imply adding additional equations
(one per phenotype), including phenotype transitions and changing the
parameters; and they allow to reproduce some important tendencies.
However, they do not reproduce the biological reality, where cells do
not transition between discrete states, but undergo a range of different
behaviours according to their gene expression, as have been shown
for different cancers, such as colon [70] or lung [71]. Additionally,
the number of parameters increases linearly with the number of dif-
ferent phenotypes considered, thus obscuring the fitting procedure and
introducing numerical slack that may lead to overfitting.

There are also some approaches where cell phenotype is modelled
using an artificial independent variable 𝑑 ∈ [0, 𝑑max] [37,39], rep-
resenting the range of possible cell states, that is, adding an extra
dimension to the problem (we will refer to this approach as external
dimension approach, in opposition to our internal variable approach). This
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method overcomes the aforementioned limitation of discrete-phenotype
models. Also, it does not require additional equations, but only the in-
clusion of flux terms on dimension 𝑑 to account for cell state transitions.
Besides, this approach allows obtaining the phenotype spatial distribu-
tion at each time point. However, it may be necessary at some point
to include different internal variables, due to, for example, different
scales for different epigenetic processes, such as the response to hypoxia
and to a drug. In the external dimension approach, this implies adding
extra dimensions, whose interpretation and implementation may be
cumbersome, requiring discretisation in higher dimension spaces. This
leads to increases in the computational cost of the simulations, giving
rise to the so-called curse of dimensionality.

The work by Lei et al. [72] presents another approach to cell
adaptation that also takes into account the distribution of phenotypic
states at each point, on this occasion for the case of stem cell regen-
eration. However, the model does not use differential equations but
integral equations to evaluate cell number at each time point (there is
no spatial coordinate). The model also lacks the relationship between
the environment and the phenotype, with cells acquiring epigenetic
changes randomly, even if it does consider the inheritance of such
states.

The model presented in this paper describes phenotype as a con-
tinuum field, but instead of representing it as an extra dimension,
we use internal variables to describe it. To the authors’ knowledge,
this is the first model in cell evolution taking this approach, which is
otherwise widely used in other disciplines, such as damage [47,73,74]
or control theory [46]. This approach requires defining an evolution
equation for the internal variables, which in our case takes the form of
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Fig. 7. Effect of the initial distribution of cells according to their phenotype on tumour evolution, for the two different scenarios and no inheritance. Scenario I
corresponds to cell phenotype insensitive to oxygen variations (𝑘 = −1, 𝜉 = 0.1), and scenario II to cell phenotype insensitive to oxygen variations (𝑘 = −1, 𝜉 = 1.3). The TB and MS
are represented for each scenario, together with the spatial distributions of 𝑐a and 𝑣 at the end of each cycle.
another transport equation. State internal variables have been mostly
used in Lagrangian frameworks, whereas we introduce them within an
Eulerian one. This requires incorporating convective terms, inherent to
Eulerian frameworks, to enable cells to keep their state. This feature
represents another aspect of novelty of this paper. The definition of
the transport equation for cell phenotype is straightforward from the
biological hypotheses, allowing to include source terms directly relating
stimuli and cell state. This may represent an advantage with respect
to the external dimension approach, where interpretability is somehow
hindered and of course, with respect to [72], where there is no rela-
tionship between state and environment, something crucial for cellular
adaptation. In contrast to [72], our model also incorporates the spatial
coordinate to account for cell migration, especially relevant for tumour
invasion. Finally, sticking to the numerical complexity of the model,
including additional internal variables in our model (only) implies
adding equations, overcoming the drawbacks related to the computa-
tional cost mentioned for the external dimension approach [39]. Also in
this regard, it requires less parameters than discrete phenotype models,
yielding simpler models, easier to implement, calibrate and validate.

However, the proposed model also presents limitations, since it can
only provide the mean phenotypic state at each spatial point, whereas
both the external dimension model [39] as well as the integral model
with random epigenetic changes [72] allow to get the phenotypic
distribution at each point. In this sense, our model offers a simplified
representation of the models taking into account the phenotypic state
distribution [39,72], and can be seen as a result of averaging the
distribution of states at each point. The mathematical relationship
between these two different approaches could be further explored.

In summary, the presented framework permits simulating the inter-
play between cell behaviour and the environment, through the concept
of cell state. The framework is general and the formulation introduced
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in Section 2.1 can be adapted to different biological problems, with
different cell populations, chemical species, and other type of external
signals in the microenvironment as well as different internal variables.
Of course, each problem would require to define particular biologically-
adapted correction functions with their associated parameters. In the
model, the cell state has a unique value at each point. Hence, we
lose the state distribution in a local point, but we assume that, at
the population level, working with averaged values representing the
collective behaviour is a reasonable simplification.

Besides, there are some other limitations related to the validation
of the model. As previously said, the model for GBM evolution that
is used as a starting point has already been validated with different
experiments in microfluidic devices [38,55,75] However, the extension
presented here for describing cell adaptation has yet to be experi-
mentally validated. To endow this model with predictive capacity,
validating it with experimental data is paramount. Nevertheless, the
required experiments are cumbersome and present some important
technical difficulties. For example, the cyclic hypoxia experiment in
a microfluidic device used here as benchmark requires the ability of
opening and closing the channels of the device, and ideally some way of
measuring the epigenetic changes that take place, even if qualitatively.
Hopefully, microfluidics is a field in constant and rapid evolution, and
new techniques are emerging to measure epigenetic marks and gene
expression via, for example, RNA sequencing [76,77].

As a first approach to get a deeper insight on the performance of
the model and to compare with actual biological known facts, we have
presented here several illustrative examples with a thorough parametric
analysis. The objective of this study was to analyse the potential of
the model for capturing important biological trends. Indeed, the results
here presented reproduce some trends that have been reported in
the existing literature about CSCs, GBM and cyclic hypoxia. It has
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Fig. 8. Effect of the initial distribution of cells according to their phenotype on tumour evolution, for the two different scenarios and complete inheritance. Scenario
I corresponds to cell phenotype insensitive to oxygen variations (𝑘 = −1, 𝜉 = 0.1), and scenario II to cell phenotype insensitive to oxygen variations (𝑘 = −1, 𝜉 = 1.3). The TB and
MS are represented for each scenario, together with the spatial distributions of 𝑐a and 𝑣 at the end of each cycle.
Fig. 9. Effect of different hypotheses about the effect of the internal variable in cell behaviour. The results are presented for a moderately sensitive tumour (𝑘 = −1, 𝜉 = 1.3)
initially composed of differentiated cells (𝑣0 = 0.1). The coloured band represents tumour evolution taking into account all possible 𝛽 values, with the solid line corresponding to
the simulation with 𝛽 = 1.
been reported that the most aggressive tumours contain the highest
number of CSCs [62], which is in line with the results shown in Fig. 3
where tumours that initially have a higher proportion of CSCs grow
more. The model allows obtaining different global trends of tumour
evolution depending on the parameters regulating phenotype changes,
which reinforces the idea that epigenetic events are behind tumour
heterogeneity [29,78]. Moreover, with this model, different hypotheses
regarding the effect of phenotypic changes caused by hypoxia on
cell behaviour can be tested, and it has been shown that the effects
on growth and oxygen uptake are particularly relevant if we want
12
to reproduce GBM aggressiveness (see Fig. 9). This conclusion is in
agreement with previous findings, proving that increased growth [63]
and consumption [79] are defining features of these cells. Besides,
investigating the effect of cyclic hypoxia, we have shown that cells
that undergo phenotypic changes to adapt show increased resilience
in hypoxic environments (Figs. 11, 12). The use of an experiment
recreating cyclic hypoxia is supported by the fact that it is a relevant
phenomenon occurring inside most tumours due to their aberrant
vasculature [80], and yielding more aggressive tumours than chronic
hypoxia (Fig. 17) [81].
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Fig. 10. Partial correlation coefficients relating the parameters defining oxygen boundary conditions to the final tumour burden. Scenario I corresponds to cells whose
phenotype is quite insensitive to oxygen variation, while in scenario II, the cells’ phenotype is sensitive to changes in oxygen concentration.
Fig. 11. Scatter plot of the outcome of the simulations in terms of 𝑠min, 𝐴 and 𝜙. A blue dot indicates that the TB has grown, a yellow dot indicates that it has diminished,
and an orange dot indicates that the tumour has become extinct. The dot size is proportional to the period  so that bigger dots correspond to simulations with a higher period.
Fig. 12. Surface separating tumour remission and tumour survival. This surface has been calculated for sensitive (green) and insensitive (pink) populations using SVM with
a polynomial kernel of order 2. Two different perspectives are depicted to facilitate visualisation.
Finally, one-dimensional simulations are carried out as proof of
concept of the model, due to its easy implementation and reduced
computational cost, but they also imply some limitations. Moreover,
the proposed in silico experiment, consisting on back and forth mi-
gration within the chamber, does not correspond exactly with what
happens in the brain, where the tumour has no space constraint and
13
expands. Therefore, the application of this model to real patient-specific
geometries is an interesting line to explore in the future.

In spite of these limitations, mathematical models, and in particular
the one presented here to model epigenetic changes in cell populations
as well as the associated effect on the behaviour of the population,
are really useful for understanding biological phenomena. Our model is
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able to reproduce different trends reported in literature. Of course there
is room for improvement, and the validation of the model together with
the generalisation to more dimensions and internal variables should
be addressed in the future. For example, the inclusion of an internal
variable taking into account the phenotypic changes that take place
in response to chemotherapy treatments could be interesting, given
that there are studies suggesting that drug resistance is favoured by
hypoxia [82].

5. Conclusion

Cellular adaptation mediated by epigenetic changes and leading to
phenotypic heterogeneity is a major concern in cancer research since it
has proven to be determinant in the tumour aggressiveness, and hence,
in its prognosis, to the extent that it was included as a Cancer Hallmark
in 2022.

In this paper, we have presented a novel approach for modelling
these phenomena based on reaction–diffusion equations with internal
variables modelling the cell state. This model has been formulated in
general, and then particularised to the case of glioblastoma adapta-
tion to hypoxia. Hypoxia promotes the development of cancer stem
cells which have increased proliferation and migration rates and are
responsible for the dismal prognosis of this tumour.

The main features of the model, such as the acquisition of phe-
notypic changes, its inheritance and the effect of plasticity in cell
behaviour have been analysed by means of an extensive parametric
analysis showing the model’s flexibility and capability to get relevant
physiological results that capture the huge variability present in tu-
mours. Indeed, it is able to reproduce growing, stable or decreasing
tumours, depending on the sensitivity of the cells to changes in their
microenvironment and without particular trends, showing the non
linearity of the model and the hidden dependencies. We emphasise the
importance of taking into account the effect of adaptation to hypoxia
in proliferation, because otherwise we are not able to capture the
increased aggressiveness observed in literature in tumours subjected
to cyclic hypoxia. Besides, the increased consumption caused by phe-
notypic changes leading to cancer stem cells is also important not to
overestimate growth of tumours, neglecting the energetic constraints.

Finally, a study on tumour dynamics, when varying the boundary
conditions for oxygen concentrations has been carried out, showing
that incorporating cellular adaptation results in an increased resilience
of glioblastoma tumours. Indeed, tumours that undergo phenotypic
changes are less likely to remit.

The presented framework takes a further step towards creating mod-
els that are able to reproduce the complexity of this disease and provide
predictive tools to in silico test different treatments and conditions.
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Appendix A. Derivation of the evolution equations.

The main equations of the mathematical models presented through-
out this paper are differential conservation equations, which are de-
rived from their integral form.

A.1. Cells and chemical species

Let us suppose that we have 𝑚 cell populations whose concentration
s 𝐶𝑖, and 𝑛 chemical species with concentration 𝑆𝑖. We may define a
ector 𝑼 formed by all the 𝑚 + 𝑛 solution variables as:

= [𝐶1,… , 𝐶𝑚, 𝑆1,… , 𝑆𝑛], 𝑖 = 1,… , 𝑛 + 𝑚. (16)

The integral conservation law for any of the variables defined per
unit volume may be written as:

d
d𝑡 ∫

𝑈𝑖 d𝑣 = −∮𝜕
𝒒𝑖 ⋅ d𝑺 + ∫

𝐹𝑖 d𝑣, (17)

here 𝒒𝑖 stands for the flux of cells/chemical species that goes through
he surface of the control volume  , and 𝐹𝑖 represents the source term
n each time per unit volume.

Applying the divergence theorem, we get:

d
d𝑡 ∫

𝑈𝑖 d𝑣 = −∫
𝛁 ⋅ 𝒒𝑖 d𝑣 + ∫

𝐹𝑖 d𝑣, (18)

rom where we can obtain, for an arbitrary volume  :



(

𝜕𝑈𝑖
𝜕𝑡

+ 𝛁 ⋅ 𝒒𝑖 − 𝐹𝑖
)

d𝑣 = 0, (19)

o finally we derive the differential conservation equation:
𝜕𝑈𝑖
𝜕𝑡

= −𝛁 ⋅ 𝒒𝑖 + 𝐹𝑖, (20)

hich constitute the system of governing equations in the presented
odel.

The source term for cells 𝐹𝑖 (𝑖 = 1,… , 𝑚), which will be needed for
he derivation of the governing equation for internal variables, com-
rises the terms of cell proliferation and death, and can be expressed
s:

𝑖 = 𝑈𝑖(𝑓𝑖 − 𝑑𝑖). (21)

.2. Internal variables

To derive the evolution equation for internal variables, the starting
oint is the conservation law for the total amount of variable in a RVE.

Let 𝑉𝑖𝑘 be the 𝑘th internal variable affecting the 𝑖th cell popula-
ion, whose associated field variable is the cell concentration 𝑈𝑖 (𝑖 =
,… , 𝑚). Therefore, the total amount of internal variable per unit
olume is expressed as 𝑈𝑖𝑉𝑖𝑘 and its integral balance equation is:

d
d𝑡 ∫

𝑈𝑖𝑉𝑖𝑘 d𝑣 = −∮𝜕
𝑉𝑖𝑘𝒒𝑖 ⋅ d𝑺 + ∫

𝑅𝑖𝑘 d𝑣, (22)

𝑖 = 1,… , 𝑚; 𝑘 = 1,… , 𝑟𝑖. (23)

here 𝑟𝑖 is the number of internal variables affecting the 𝑖th population.
he first term of the RHS represents the amount of internal variable
oing in or out of the volume  due to the effect of the cell flux 𝒒𝑖, and
he second term is the source term.

Applying the divergence theorem to the surface integral:

d
d𝑡 ∫

𝑈𝑖𝑉𝑖𝑘 d𝑣 = −∫
𝛁 ⋅ (𝑉𝑖𝑘𝒒𝑖) d𝑣 + ∫

𝑅𝑖𝑘 d𝑣. (24)

Letting the temporal derivative inside the integral in the LHS and
ubsequently grouping the integrals, we obtain:
𝜕(𝑈𝑖𝑉𝑖𝑘) = −𝛁 ⋅ (𝑉 𝒒 ) + 𝑅 . (25)

𝜕𝑡 𝑖𝑘 𝑖 𝑖𝑘
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Fig. 13. Different shapes of function 𝜃. Simulations are performed for different values of the parameters defining function 𝜃. In particular, the location parameter in function 𝜃
increases from left to right, and the shape parameter 𝑘 increases from bottom to top. In each subfigure, functions with different values of the repair parameter 𝛾 are plotted with
different line styles (𝛾 = 1 with a continuous line, 𝛾 = 1.5 with a discontinuous line and 𝛾 = 2 with a dotted line).
Then, applying the product rule:

𝑈𝑖
𝜕𝑉𝑖𝑘
𝜕𝑡

+ 𝑉𝑖𝑘
𝜕𝑈𝑖
𝜕𝑡

= −𝑉𝑖𝑘𝛁 ⋅ 𝒒𝑖 − 𝒒𝑖 ⋅ 𝛁𝑉𝑖𝑘 + 𝑅𝑖𝑘. (26)

and using Eq. (20):

𝑈𝑖
𝜕𝑉𝑖𝑘
𝜕𝑡

+ 𝑉𝑖𝑘
(

−𝛁 ⋅ 𝒒𝑖 + 𝐹𝑖
)

= −𝑉𝑖𝑘𝛁 ⋅ 𝒒𝑖 − 𝒒𝑖 ⋅ 𝛁𝑉𝑖𝑘 + 𝑅𝑖𝑘. (27)

Reorganising and simplifying the previous equation, we arrive to a
differential equation for the evolution of the internal variables:

𝑈𝑖
𝜕𝑉𝑖𝑘
𝜕𝑡

= −𝒒𝑖 ⋅ 𝛁𝑉𝑖𝑘 + 𝑅𝑖𝑘 − 𝑉𝑖𝑘𝐹𝑖, (28)

where we can introduce the expression for 𝐹𝑖 defined in Eq. (21):

𝑈𝑖
𝜕𝑉𝑖𝑘
𝜕𝑡

= −𝒒𝑖 ⋅ 𝛁𝑉𝑖𝑘 + 𝑅𝑖𝑘 − 𝑉𝑖𝑘𝑈𝑖(𝑓𝑖 − 𝑑𝑖), (29)

In Eq. (29) it remains to be defined the source term for the internal
variables 𝑅𝑖𝑘, defining the amount of 𝑉𝑖𝑘 that is generated or disappears
at each time moment. 𝑅𝑖𝑘 is presented as a sum of different terms
𝑅𝑖𝑘 =

∑

𝑛 𝑅
𝑛
𝑖𝑘, comprising the following phenomena:

• 𝑅1
𝑖𝑘: Internal variable accumulation due to external effects. One of

the main hypothesis of this framework is that the phenotypic state
of a cell and its associated behaviour depend on the history of ex-
ternal stimuli to which the cell has been subjected. Therefore, the
internal variable representing this state depends on those external
stimuli through function 𝛺𝑖𝑘, which may depend on 𝑆1,… , 𝑆𝑛,
and other microenvironmental signals. With these assumptions,
the corresponding term is written as:

𝑅1
𝑖𝑘 = 𝛺𝑖𝑘𝑈𝑖. (30)

• 𝑅2
𝑖𝑘: Cell repair. In general, we assume that epigenetic changes,

that lead to the accumulation of internal variables and to the
change of cell behaviour, are reversible and that cells can repair
themselves through diverse pathways [49–51]. Thereupon, we
include a decay term:

𝑅2
𝑖𝑘 = −𝛬𝑖𝑘𝑈𝑖𝑉𝑖𝑘, (31)

with 𝜆 the decay rate.
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𝑖𝑘
• 𝑅3
𝑖𝑘: Inheritance. Daughter cells may inherit the epigenetic

changes acquired by their progenitors [52–54] in a proportion
𝛽𝑖𝑘 ∈ [0, 1], so that if 𝛽𝑖𝑘 = 1, daughter cells are identical to
their progenitors and they have the same phenotypic state, and if
𝛽𝑖𝑘 < 1, daughter cells do not inherit all the epigenetic changes.
The corresponding term is written as:

𝑅3
𝑖𝑘 = 𝛽𝑖𝑘𝑓𝑖𝑈𝑖𝑉𝑖𝑘, (32)

where 𝑓𝑖 is the cells growth term.
• 𝑅4

𝑖𝑘: Decrease due to death. When cells die, the total amount of
internal variable inside a volume diminishes at rate 𝑑𝑖, so we can
write:

𝑅4
𝑖𝑘 = −𝑑𝑖𝑈𝑖𝑉𝑖𝑘. (33)

Once all the terms have been defined, we can substitute 𝑅𝑖𝑘 in
Eq. (29) and simplify terms, obtaining the general transport equation
for internal variables 𝑉𝑖𝑘:
𝜕𝑉𝑖𝑘
𝜕𝑡

= 1
𝑈𝑖

(

−𝒒𝑖 ⋅ 𝛁𝑉𝑖𝑘
)

+𝛺𝑖𝑘 − 𝛬𝑖𝑘𝑉𝑖𝑘 + (𝛽𝑖𝑘 − 1)𝑓𝑖𝑉𝑖𝑘, (34)

𝑖 = 1,… , 𝑛, 𝑘 = 1,… , 𝑟𝑖. (35)

Appendix B. Details of parametric analyses

B.1. Model parameters

In this section we present an extended study of the parameters
defining the acquisition of phenotypic changes, mediated by function
𝜃:

𝜃 = 𝜅𝑣(1 − 𝛾𝐹 (𝑠; 𝑘, 𝜉)),

𝐹 (𝑠) = 𝛷(𝑦),

𝑦(𝑠; 𝑘, 𝜉) = − 1
𝑘
log

(

1 +
𝑠 − 𝜉
𝜉

)

.

First, in Fig. 13 we present the effect of the different parameters
on the shape of the function. Specifically, 𝜉 is a location parameter
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Fig. 14. Evolution of TB and MS for an initial phenotypic state 𝑣0 = 0.1. The grid shows simulations with different parameters related to the evolution of the phenotypic state.
In particular, the location parameter in function 𝜔 increases from left to right, and the shape parameter 𝑘 increases from bottom to top. In each subfigure, simulations for two
different 𝛽 values are plotted with different colours (𝛽 = 0 in blue and 𝛽 = 1 in purple) and different values of the repair parameter 𝛾 are plotted with different line styles (𝛾 = 1
with a continuous line, 𝛾 = 1.5 with a discontinuous line and 𝛾 = 2 with a dotted line).
and specifies the level of oxygen below which cells undergo phenotypic
changes towards a cancer stem cell phenotype. 𝑘 is a shape parameter
defining the spread of the function and finally, 𝛾 ∈ [1, 2] is a parameter
setting whether cells differentiate again when the oxygen concentration
is above 𝜉, that is, if epigenetic changes are elastic/inelastic. If 𝛾 = 1,
cells do not experiment any phenotypic changes when exposed to high
levels of oxygen (inelastic behaviour), while if 𝛾 = 2, cells move to-
wards differentiated phenotypes for high oxygen concentrations (elastic
behaviour).

In Figs. 14–16 we show the evolution of the TB and the MS for
the different functions 𝜃 depicted in Fig. 13 and for different initial
phenotypic states.
16
B.2. Environmental parameters related to the oxygenation conditions

Here we present some illustrative results of TB evolution in different
oxygenation conditions, parameterised in terms of  , 𝑠min, 𝐴 and 𝜙. As
shown by the PCCs (Fig. 10),  has no significant impact in the final
value of the TB. Hence, we represent its variability with a band for each
combination of 𝑠min, 𝐴 and 𝜙.

Table 4 presents twelve representative combinations of those three
parameters, together with the observed trend in the TB (growth, re-
gression or extinction). The temporal evolution of the TB for each
of the twelve configurations mentioned in Table 4 is represented in
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Fig. 15. Evolution of TB and MS for an initial phenotypic state 𝑣0 = 0.5. The grid shows simulations with different parameters related to the evolution of the phenotypic
state. In particular, the location parameter in function 𝜔 increases from left to right, and the shape parameter 𝑘 increases from bottom to top. In each subfigure, simulations for
two different 𝛽 values are plotted with different colours (𝛽 = 0 in blue and 𝛽 = 1 in purple) and different values of the repair parameter 𝛾 are plotted with different line styles
(𝛾 = 1 with a continuous line, 𝛾 = 1.5 with a discontinuous line and 𝛾 = 2 with a dotted line).
Fig. 17 with the corresponding colour (blue for TB growth, yellow for
TB regression and orange for tumour extinction), together with the
simulation in constant hypoxia (𝑠𝐿(𝑡) = 𝑠𝑅(𝑡) = 0.14) and constant
normoxia (𝑠𝐿(𝑡) = 𝑠𝑅(𝑡) = 1.3).

Interestingly, it can be seen that, although tumours composed of
cells insensitive to phenotypic variations are generally bigger at the
end of the simulation, they have a higher percentage of extinction. This
suggests that phenotypic plasticity endows the tumours with a kind of
17
resilience, even if that means being smaller in general, at least in what
regards the number of alive cells.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compbiomed.2023.107291.

https://doi.org/10.1016/j.compbiomed.2023.107291
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Fig. 16. Evolution of TB and MS for an initial phenotypic state 𝑣0 = 0.9. The grid shows simulations with different parameters related to the evolution of the phenotypic state.
In particular, the location parameter in function 𝜔 increases from left to right, and the shape parameter 𝑘 increases from bottom to top. In each subfigure, simulations for two
different 𝛽 values are plotted with different colours (𝛽 = 0 in blue and 𝛽 = 1 in purple) and different values of the repair parameter 𝛾 are plotted with different line styles (𝛾 = 1
with a continuous line, 𝛾 = 1.5 with a discontinuous line and 𝛾 = 2 with a dotted line).
Table 4
Summary of parameters and TB trends.
Case 𝑠min 𝐴 𝜙 TB (Scenario I) TB (Scenario II)
1 Low (0.14) Low (0.57) Phase opposition (𝜋) Regression Regression
2 Low (0.14) Low (0.57) 𝜋∕2 Extinction Regression
3 Low (0.14) Low (0.57) In phase (0) Extinction Extinction
4 Low (0.14) High (1.14) Phase opposition (𝜋) Growth Growth
5 Low (0.14) High (1.14) 𝜋∕2 Regression Growth
6 Low (0.14) High (1.14) In phase (0) Extinction Regression
7 High (0.57) Low (0.57) Phase opposition (𝜋) Growth Growth
8 High (0.57) Low (0.57) 𝜋∕2 Growth Growth
9 High (0.57) Low (0.57) In phase (0) Growth Growth
10 High (0.57) High (1.14) Phase opposition (𝜋) Growth Growth
11 High (0.57) High (1.14) 𝜋∕2 Growth Growth
12 High (0.57) High (1.14) In phase (0) Growth Growth

Twelve representative configurations of the oxygen boundary conditions are considered, representing each
possible trend.
18
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Fig. 17. TB evolution for the 12 cases detailed in Table 4. A blue line indicates that the TB at the end of the simulation is bigger than at the beginning, a yellow line indicates
that it is smaller, and an orange line indicates that the tumour extincts. TB evolution in both constant hypoxia (𝑠𝐿(𝑡) = 𝑠𝑅(𝑡) = 0.14) and constant normoxia (𝑠𝐿(𝑡) = 𝑠𝑅(𝑡) = 1.3) are
depicted in red and green respectively.
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