000128094 001__ 128094
000128094 005__ 20241125101159.0
000128094 0247_ $$2doi$$a10.1126/sciadv.adi8219
000128094 0248_ $$2sideral$$a135267
000128094 037__ $$aART-2023-135267
000128094 041__ $$aeng
000128094 100__ $$aKwak, Yeonsu
000128094 245__ $$aMicrowave-assisted, performance-advantaged electrification of propane dehydrogenation
000128094 260__ $$c2023
000128094 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128094 5203_ $$aNonoxidative propane dehydrogenation (PDH) produces on-site propylene for value-added chemicals. While commercial, its modest selectivity and catalyst deactivation hamper the process efficiency and limit operation to lower temperatures. We demonstrate PDH in a microwave (MW)–heated reactor over PtSn/SiO2 catalyst pellets loaded in a SiC monolith acting as MW susceptor and a heat distributor while ensuring comparable conditions with conventional reactors. Time-on-stream experiments show active and stable operation at 500°C without hydrogen addition. Upon increasing temperature or feed partial pressure at high space velocity, catalysts under MWs show resistance in coking and sintering, high activity, and selectivity, starkly contrasting conventional reactors whose catalyst undergoes deactivation. Mechanistic differences in coke formation are exposed. Gas-solid temperature gradients are computationally investigated, and nanoscale temperature inhomogeneities are proposed to rationalize the different performances of the heating modes. The approach highlights the great potential of electrification of endothermic catalytic reactions.
000128094 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000128094 590__ $$a11.7$$b2023
000128094 592__ $$a4.483$$b2023
000128094 591__ $$aMULTIDISCIPLINARY SCIENCES$$b11 / 134 = 0.082$$c2023$$dQ1$$eT1
000128094 593__ $$aMultidisciplinary$$c2023$$dQ1
000128094 594__ $$a21.4$$b2023
000128094 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000128094 700__ $$aWang, Cong
000128094 700__ $$aKavale, Chaitanya A.
000128094 700__ $$aYu, Kewei
000128094 700__ $$aSelvam, Esun
000128094 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, Reyes$$uUniversidad de Zaragoza
000128094 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, Jesus$$uUniversidad de Zaragoza
000128094 700__ $$0(orcid)0000-0003-3211-0485$$aJulian, Ignacio
000128094 700__ $$aCatala-Civera, Jose M.
000128094 700__ $$aGoyal, Himanshu
000128094 700__ $$aZheng, Weiqing
000128094 700__ $$aVlachos, Dionisios G.
000128094 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000128094 773__ $$g9, 37 (2023), eadi8219 [12 pp.]$$pSci. adv.$$tScience advances$$x2375-2548
000128094 8564_ $$s2106854$$uhttps://zaguan.unizar.es/record/128094/files/texto_completo.pdf$$yVersión publicada
000128094 8564_ $$s3667155$$uhttps://zaguan.unizar.es/record/128094/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000128094 909CO $$ooai:zaguan.unizar.es:128094$$particulos$$pdriver
000128094 951__ $$a2024-11-22-12:10:56
000128094 980__ $$aARTICLE