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The dynamics of classical field theories is usually governed by field equations, but when fields are
constrained to bounded domains it is also dependent on its boundary conditions. Usually boundary
conditions are constrained by the requirement of preserving themaximal symmetry of the system. In the case
of charged particles the symmetry is Uð1Þ, but there are many fields (e.g. electromagnetic fields) which are
neutral and charge conservation does not constraint its boundary conditions. In this paperwe explore themost
general boundary conditions that preserve another symmetry that all relativistic field theories do preserve:
space-time translations. In particular the families of boundary conditions of isolated systems which preserve
energy for scalar, electromagnetic and Yang-Mills field theories. We point out the global properties of the
space of all possible boundary conditions of confined systems in two special domains. We also explore the
connection between energy preserving and charge preserving boundary conditions.

DOI: 10.1103/PhysRevD.108.045008

I. INTRODUCTION

The new role of quantum boundary effects is boosting in
condensed matter a new era of quantum technologies.
Indeed, the presence of plasmons and other surface effects
in metals and dielectrics [1], the appearance of edge
currents in the Hall effect [2–4], and the discovery of
new edge effects in topological insulators [5–10] and Weyl
semiconductors [11] have very rich potential implications.
Although boundary effects arise in quantum physics since

the early days of the theory, the role of boundary effects in
quantum field theory have a much later development.
Boundary effects also appear today as an essential

ingredient in fundamental physics. Since the discovery
of the Casimir effect [12] they also arise behind new
quantum effects like Hawking radiation, black hole hori-
zons effects, topological defects, topology change [13–16],
and holography in the AdS=CFT correspondence.
The increasing relevant role of boundary effects is demand-

ing a comprehensive theory of boundary conditions. In spite
of the fact that quite a lot ofworkhas beendevoted to establish
the foundations of the quantum theory, a comprehensive
theory of boundary conditions for quantum field theories is
still missing. This gap was filled by using the unitarity
principle for time evolution [14] that was further extended to
quantum field theories [17,18]. This first global analysis was

based on the preservation of unitarity for time evolution. The
generalization for relativistic field theories requires a change
of the basic principles, from unitarity to the preservation of
the Uð1Þ symmetry which is responsible of electric charge
conservation [19]. However, this principle does not apply to
neutral or gauge fields where the new approach does not
provide any fundamental law to be preserved.
In this paper we address the analysis of the theory of

boundary conditions in field theories confined in isolated
domains based only on the requirement of conservation of
energy. This method applies to any bosonic or fermionic
relativistic field theory including neutral fields like gauge
fields, with the only exception of gravitation and topologi-
cal field theories.
In Sec. II we start our analysis with the neutral scalar

fields in the case of one boundary wall. In Sec. III we study
the case of charged scalar fields. In Sec. IV we complete the
discussion about charged scalar fields showing the com-
patibility between the condition of charge conservation and
energy conservation. In Sec. V we generalize this approach
to Yang-Mills theories developing the theory of boundary
conditions which preserve energy and gauge invariance.
In Sec. VI we address the case of interacting theories of
matter and gauge fields. In Sec. VII we study the case of
two different electromagnetic active media separated by a
planar surface. Finally, in Sec. VIII we summarize the
applications and conclusions of this work.

II. NEUTRAL SCALAR FIELDS IN HALF SPACE

The dynamics of a real scalar field is governed by the
Lagrangian density
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L ¼ 1

2
∂μϕ∂

μϕ −
1

2
m2ϕ2 − VðϕÞ; ð1Þ

where VðϕÞ is any arbitrary local potential function. The
space-time translation symmetry induces by Noether theo-
rem four conservation laws

∂
μTμν ¼ 0; ð2Þ

where the energy-momentum tensor is given by

Tμν ¼
1

2
∂μϕ∂νϕ −

1

2
ημν∂αϕ∂

αϕþ 1

2
m2ϕ2ημν

þ VðϕÞημν; ð3Þ

ημν being the Minkowski metric. In particular when ν ¼ 0

we get the energy conservation law

∂
μTμ0 ¼ ∂tE þ ∂

iPi ¼ 0;

where

E ¼ 1

2
∂tϕ∂tϕþ 1

2
∂iϕ∂iϕþ 1

2
m2ϕ2 þ VðϕÞ

is the energy density and

Pi ¼
1

2
∂0ϕ∂iϕ

the momentum density of the field (we assume that c ¼ 1
from now on). Thus, for any bounded domain Ω with
regular boundary ∂Ω the variation of the intrinsic field
energy is

d
dt

EΩ ¼
Z
Ω
∂tE d3x ¼ −

Z
Ω
∂
iPid3x ¼ −

Z
∂Ω

niPidσ∂Ω;

where n ¼ ðniÞ denotes the normal vector to the boundary
surface ∂Ω.
Let us consider a simple case whereΩ is just a half-space

Ω ¼ fx ¼ ðx1; x2; x3Þjx3 ≥ 0g whose boundary ∂Ω ¼
fx ¼ ðx1; x2; 0Þg is the plane perpendicular to the vector
n ¼ ð0; 0;−1Þ ∈ R3. In that case the conservation of
energy implies that

d
dt

EΩ ¼
ZZ

T03 dx1dx2 ¼
ZZ

φ̇φ0 dx1dx2 ¼ 0;

where

φ̇ ¼ ∂tϕj∂Ω
and

φ0 ¼ ∂3ϕj∂Ω

are the boundary values of the time derivative and the
normal derivative of the fields ϕ across the boundary ∂Ω.1 If
we consider only homogeneous boundary conditions which
are invariant under translations along the boundary plane
∂Ω, the conservation of energy requires that

φ̇φ0 ¼ 0 ð4Þ

which has two solutions φ0 ¼ 0 and φ̇ ¼ 0. The first
solution corresponds to Neumann boundary condition
which in string theory is the usual boundary condition
for open strings, whereas the second solution includes
the Dirichlet boundary conditions which corresponds to
D-branes in that theory [20].

III. CHARGED SCALAR FIELDS

Let us now consider the case of complex scalar fields
with Lagrangian density

L ¼ 1

2
∂μϕ

�
∂
μϕ −

1

2
m2jϕj2 − VðjϕjÞ; ð5Þ

where VðϕÞ is any arbitrary local density potential function.
Using the same arguments as in the case of real scalar fields
we get that energy conservation requires the vanishing of

φ̇�φ0 þ φ�0φ̇ ¼ 0: ð6Þ

After the change of variables

ψ1 ¼
�

φ0 þ φ̇

φ�0 þ φ̇�

�
ψ2 ¼

�
φ0 − φ̇

φ�0 − φ̇�

�
;

the vanishing condition becomes

jψ1j2 − jψ2j2 ¼ 4ðφ�0φ̇þ φ̇�φ0Þ:

If we restrict ourselves to boundary conditions which are
translation invariant along the boundary, then the most
general solution satisfies

����
�

φ0 þ φ̇

φ�0 þ φ̇�

�����2 ¼
����
�

φ0 − φ̇

φ�0 − φ̇�

�����2 ð7Þ

and is given by

�
φ0 þ φ̇

φ�0 þ φ̇�

�
¼ U

�
φ0 − φ̇

φ�0 − φ̇�

�
; ð8Þ

1In dimensions higher than 2 there are some technical
difficulties concerning the regularity of boundary values [18].
In this paper we will restrict ourselves to cases of regular
boundary conditions.
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where U is an arbitrary 2 × 2 unitary matrix. Conjugation
of Eq. (8) leads to

�
φ�0 þ φ̇�

φ0 þ φ̇

�
¼ U�

�
φ�0 − φ̇�

φ0 − φ̇

�
; σ1ψ1 ¼ U�σ1ψ2;

ψ1 ¼ σ1U�σ1ψ2:

This implies that the unitary matrixU has to satisfy an extra
condition

U ¼ σ1U�σ1: ð9Þ

The meaning of this restriction is that the unitary matrix
U has to belong also to the Oð1; 1Þ rotation group, because
from (9) it follows that U leaves the (1, 1) metric

σ1 ¼
�
0 1

1 0

�

invariant, i.e.

U⊥σ1U ¼ σ1:

Thus, the set of homogeneous local boundary conditions
is given by the one-dimensional subgroup of unitary
matrices G ¼ Oð1; 1Þ ∩ Uð2Þ2 which has two disjoint
components G ¼ Gþ ∪ G− whose matrices only differ
by the sign of their determinant detU ¼ �1. The compo-
nent Gþ contains all the matrices of the form

UþðaÞ ¼ eiaσ3 a ∈ ½0; 2πÞ; ð10Þ

that are continuously connected with the identity, whereas
the other component G− is given by all the matrices

U−ðbÞ ¼ σ1eibσ3 b ∈ ½0; 2πÞ; ð11Þ

which cannot be continuously connected with the identity.
The general solution of the first type (10) is

φ0 ¼ −i cot
a
2
φ̇;

whereas

Reðφ̇þ φ0Þ þ Reðφ̇ − φ0Þ cos b ¼ Imðφ̇ − φ0Þ sin b
Imðφ̇þ φ0Þ − Imðφ̇ − φ0Þ cos b ¼ Reðφ̇ − φ0Þ sin b

is the general solution of the second type (11).
Let us consider some particular cases of physical

interest.

(i) UD ¼ I: Static boundary conditions. This is a
boundary condition of the first type with a ¼ 0

φ̇ ¼ 0:

(ii) UN ¼ −I: Neumann boundary conditions. This is a
boundary condition of the first type with a ¼ π

φ0 ¼ 0:

(iii) Uc ¼ �iσ3: Chiral boundary conditions. These are
boundary conditions of the first type with a ¼ � π

2

φ0 ¼∓ iφ̇:

(iv) Ut ¼ �σ1: Twisted boundary conditions. These are
boundary conditions of the second type with b ¼ 0
or b ¼ π

Imφ0 ¼ 0 Reφ̇ ¼ 0

Reφ0 ¼ 0 Imφ̇ ¼ 0:

(v) Utc ¼ �σ2: Twisted chiral boundary conditions.
These are boundary conditions of the second type
with b ¼ π

2
or b ¼ 3π

2

Reφ0 ¼ ∓Imφ0 Imφ̇ ¼ �Reφ̇:

A. Charged scalar fields two parallel plates

Let us consider a complex scalar field confined between
two parallel plates Ω ¼ fðx1; x2; x3Þj − L ≤ x3 ≤ Lg. In
this case homogeneous local boundary conditions which
preserve energy must satisfy that

φ�0
1 φ̇1 þ φ̇�

1φ
0
1 − φ�0

2 φ̇2 − φ̇�
2φ

0
2 ¼ 0; ð12Þ

where φ1ðx1; x2Þ ¼ ϕðx1; x2;−LÞ and φ2ðx1; x2Þ ¼
ϕðx1; x2; LÞ. Written in terms of the following vectors

H1 ¼

0
BBB@

φ̇1 þ φ0
1

φ̇2 − φ0
2

φ̇�
1 þ φ�0

1

φ̇�
2 − φ�0

2

1
CCCAH2 ¼

0
BBB@

φ̇1 − φ0
1

φ̇2 þ φ0
2

φ̇�
1 − φ�0

1

φ̇�
2 þ φ�0

2

1
CCCA

the restriction (12) reads

jH1j2 − jH2j2 ¼ 4ðφ̇�
1φ

0
1 þ φ�0

1 φ̇1 − φ̇�
2φ

0
2 − φ�0

2 φ̇2Þ ¼ 0:

This means that any solution has to be of the form

H1 ¼ UH2 ð13Þ

with U an unitary matrix of Uð4Þ. There is another
requirement that this solution must satisfy. Indeed, if we
conjugate (13) we get2This is one of three maximal compact subgroups ofUð2Þ [21].
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H�
1 ¼ U�H�

2

that implies

H1 ¼
�

0 I2
I2 0

�
U�

�
0 I2
I2 0

�
H2;

which implies a further restriction on the unitary matrix

U ¼
�

0 I2
I2 0

�
U�

�
0 I2
I2 0

�
: ð14Þ

The meaning of this restriction is that the unitary matrix U
has to belong also to the Oð2; 2Þ rotation group, because
from (14) it follows that U leaves the (2, 2) metric

�
0 I2
I2 0

�

invariant, i.e.

U⊥
�

0 I2
I2 0

�
U ¼

�
0 I2
I2 0

�
:

Thus, the general solution of the homogeneous local
boundary conditions is given by the six-dimensional sub-
group of unitary matrices G ¼ Oð2; 2Þ ∩ Uð4Þ which has
two disjoint components G ¼ Oð2; 2Þ ∩ Uð4Þ ¼ Gþ ∪ G−
distinguished by the sign of the determinant detU ¼ �1, i.e.
the component Gþ contains all the matrices of the form

Uþða;b;cÞ

¼ exp i

0
BBB@

a1 b1 þ ib2 0 c1 þ ic2
b1 − ib2 a2 −c1 − ic2 0

0 −c1 þ ic2 −a1 −b1 þ ib2
c1 − ic2 0 −b1 − ib2 −a2

1
CCCA

ð15Þ

with a;b; c ∈ R6, that are continuously connected with the
identity. The other component is given by thematrices of the
form

U−ða;b;cÞ ¼
1

2

0
BBB@

1 1 −1 1

1 1 1 −1
−1 1 1 1

1 −1 1 1

1
CCCAUþða;b;cÞ ð16Þ

that are disconnected from Gþ. In summary, the homotopy
group of G is π0ðGÞ ¼ Z2.
This group contains the solutions of the type considered

in the previous case for each of the plane boundaries. But
the fact that there are two boundaries gives rise to other

remarkable boundary conditions like periodic boundary
conditions.
Particular cases of interest are the following:
(i) UN¼I4:Neumannboundaryconditions, i.e.Neumann

boundary conditions for both walls φ0
1¼φ0

2¼0.
(ii) UD ¼ −I4: Static boundary conditions, i.e. static

boundary conditions for both walls φ̇1 ¼ φ̇2 ¼ 0.
(iii) Up ¼ ðσ1

0
0
σ1
Þ∶ Periodic boundary conditions con-

necting the two walls φ̇1 ¼ φ̇2, φ0
1 ¼ φ0

2, and
(iv) Uap ¼ ð−σ1

0
0

−σ1Þ: Antiperiodic boundary conditions
connecting the two walls in a different manner
φ̇1 ¼ −φ̇2, φ0

1 ¼ −φ0
2.

IV. COMPATIBILITY BETWEEN ENERGY
AND CHARGE CONSERVATIONS

In the case of complex fields there is another conserved
quantity, the electric charge. The charge conservation law
provides another condition to be preserved by boundary
conditions [19]. In principle the families of boundary
conditions which preserve charge and energy are different.
However, in the case of charged scalar fields both families
of boundary conditions are compatible. This very relevant
property is a consequence of the compatibility of gauge
transformations and space-time translations. Indeed, the
actions of the Uð1Þ group of gauge transformations

GðαÞϕ ¼ eiαϕ ð17Þ

and the group of translations T4

T4ϕðxÞ ¼ ϕðx − aÞ ð18Þ

do commute. Moreover, a consequence of that property is
that the Poisson bracket of the charge density3

ρ ¼ i
2
ðϕ�ϕ̇ − ϕϕ̇�Þ ¼ i

2
ðϕ�Π� − ΠϕÞ

and the energy density

E ¼ 1

2
ðϕ̇� þ∇ϕ�∇ϕÞ þ 1

2
m2ϕ2 þ VðϕÞ;

¼ 1

2
ðΠΠ� þ∇ϕ�∇ϕÞ þ 1

2
m2ϕ2 þ VðϕÞ ð20Þ

vanishes, i.e.

fρ; Eg ¼ 0:

3Π and Π� are the canonical momenta

Π ¼ ∂L

∂ϕ̇
¼ ϕ̇� Π� ¼ ∂L

∂ϕ̇� ¼ ϕ̇: ð19Þ
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The conservation of electric charge is given by the con-
tinuity equation

∂tρþ ∂
iji ¼ 0;

where

j ¼ i
2
ðϕ�∇ϕ − ð∇ϕ�ÞϕÞ:

In other words, charge conservation requires the vanishing
of the electric current flux through the boundary [19]

−
Z
Ω
ρ̇ d3x ¼

Z
Ω
∂
iji d3x ¼

Z
∂Ω

j dσ

¼ i
2

Z
∂Ω

ðφ�∇φ − ð∇φ�ÞφÞdσ

which in the right half space case reduces toZ
Ω
ρ̇ d3x ¼ i

2

ZZ
ðφ�φ0 − φ�0φÞdx1dx2:

Thus, homogeneous local boundary conditions must satisfy

φ�φ0 − φ�0φ ¼ 0; ð21Þ

and the most general boundary condition that satisfies this
constraint (21) is given by [14]

φþ iφ0 ¼ Ucðφ − iφ0Þ ð22Þ

in terms of an arbitrary unitary matrix Uc of L2ðR2Þ.4 Now
if ϕ is a monochromatic field

ϕ ¼ eiωtχðx1; x2Þ;

then we have that

ϕ̇ ¼ iωϕ ϕ̇� ¼ −iωϕ�:

Thus, for monochromatic fields the vanishing condition
associated to the conservation of energy (6) implies the
conservation of charge (4)

φ̇�φ0 þ φ�0φ̇ ¼ −iωðφ�φ0 − φφ�0Þ ¼ 0;

and viceversa, the conservation of charge implies the
conservation of energy.
However, the fact that U is independent of ω does not

guarantee that boundary conditions which preserve the

energy also preserve the electric charge for multifrequency
fields (22). Only boundary conditions of the type

U ¼
�
Uc 0

0 U�
c

�
;

where Uc has all eigenvalues �1 define boundary con-
ditions that preserve energy and electric charge simulta-
neously. This type of boundary conditions includes
Dirichlet, Neumann, or periodic boundary conditions [22].
The application to gauge fields is straightforward as we

shall see below. However, the methods based on energy
conservation fail when applied to gravitation and other
higher spin gauge fields fields [23].

V. YANG-MILLS THEORY

Let us now consider the interesting and nontrivial case
of Yang-Mills gauge theories. The Lagrangian density is
given by

L ¼ −
1

16π
trFμνFμν; ð23Þ

where Fμν ¼ ∂μAν − ∂νAμ − ½Aμ; Aν�, Aμ being the gauge
fields Aμ ¼ Aa

μTa and Ta the generators of the Lie algebra.
The symmetric energy-momentum tensor has the form

Tμν ¼
1

4π
tr

�
1

2
ηνβFμαFαβ þ 1

2
ημβFναFαβ þ 1

4
ημνFαβFαβ

�
:

ð24Þ

Applying the translation symmetry as we did for the scalar
case we have the following conservation energy law

∂
μTμ0 ¼ ∂tE þ ∂

iPi ¼ 0; ð25Þ

for the energy density

E ¼ 1

8π
trðE2 þ B2Þ

and the non-Abelian Poynting vector

P ¼ 1

4π
trðE ×BÞ;

where Ei ¼ F0i and Bi ¼ − 1
2
ϵijkFjk are the chromoelectric

and chromomagnetic fields for the non-Abelian case. Thus,
for any bounded domain Ω with regular boundary ∂Ω we
have

d
dt

EΩ ¼
Z
Ω
∂tE d3x ¼ −

Z
Ω
∂iPi d3x ¼ −

Z
∂Ω

niPi dσ∂Ω;

4There is a technical subtlety associated to the fact that in
higher dimension the boundary values φ of the fields ϕ are
singular which can be solved with a slight modification of the
theory [18].
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where n ¼ ni is the normal vector to the boundary sur-
face ∂Ω.

A. Gauge fields in half space

As in the scalar theory, we consider the half-space
Ω ¼ fx ¼ ðx1; x2; x3Þjx3 ≥ 0g that has a boundary ∂Ω ¼
fx ¼ ðx1; x2; 0Þg. The conservation of energy is given in
this case by

d
dt

EΩ ¼
ZZ

T30 dx1dx2 ¼
ZZ

trðB2E1 − B1E2Þdx1dx2;

Restricting ourselves to homogeneous local boundary
conditions that are invariant under translation along ∂Ω,
the requirement of energy conservation leads to

trðB2E1 − B1E2Þ ¼ 0: ð26Þ

In terms of the following auxiliary vectors

H ¼
�
E1 þ iE2 þ iðB1 þ iB2Þ
E1 − iE2 − iðB1 − iB2Þ

�

G ¼
�
E1 − iE2 þ iðB1 − iB2Þ
E1 þ iE2 − iðB1 þ iB2Þ

�
; ð27Þ

the condition (26) reads

trðjHj2 − jGj2Þ ¼ −8trðE1B2 − E2B1Þ;
where we use that the trace of the product is commutative.
Thus, for homogeneous local boundary conditions the most
general solution satisfying that

jHj2 ¼ jGj2

is

H ¼ Ub ⊗ UcG; ð28Þ
where Ub is an unitary 2 × 2 matrix acting on the C2

chromoelectromagnetic vector fieldsG andUc is an unitary
matrix that acts on the color component of the fields. Since
Fμν is covariant under gauge transformations Φ,
Fμν → Φ−1FμνΦ, E, and B are always gauge covariant,
but not gauge invariant and therefore the most general
solution of (28) is not gauge invariant

Φ−1HΦ ¼ Φ−1Ub ⊗ UcGΦ ≠ Ub ⊗ UcΦ−1GΦ: ð29Þ

However, all physically consistent boundary conditions
must be gauge invariant. This implies that the only
physically possible boundary conditions are those where
Uc is an element of the center of the gauge group, i.e.
Uc ∈ ZðGÞ. In such a case the transformation (29) can be
rewritten as

Φ−1HΦ ¼ Ub ⊗ UcΦ−1GΦ;

and the corresponding boundary conditions of gauge fields
are gauge invariant. In the case where the gauge group is
SUðNÞ we have that the center of the group has the form

ZðSUðNÞÞ ¼ fe2πin
N IN ;n ¼ 0; 1…; N − 1g:

Using this expression we can write the boundary condition
(28) as

H ¼ e
2πin
N Ub ⊗ ING: ð30Þ

This extra phase that the color adds can be reabsorbed into
Ub since it does not affect the condition of being unitary.
Thus, we can rewrite (30) as

H ¼ U ⊗ ING;

where U ¼ e
2πin
N Ub is an unitary 2 × 2 matrix. If we

conjugate this relation we have

σ1H ¼ U� ⊗ INσ1G;

and we get that the unitary 2 × 2 matrix has to satisfy the
extra condition

U ¼ σ1U�σ1:

Thus, we get the same type of matrices as for the charged
scalar field in half space with the two disjoint components
(10) and (11). In the first case (10) the local boundary
conditions are given by

�
E2

B2

�
¼ tan

a
2

�
E1

B1

�
; ð31Þ

whereas in the second case (11) they are

�
B1

B2

�
¼ − tan

b
2

�
E1

E2

�
: ð32Þ

Some interesting particular cases are
(i) Uþð0Þ ¼ I ⇒ E2 ¼ B2 ¼ 0.
(ii) UþðπÞ ¼ −I ⇒ E1 ¼ B1 ¼ 0.
(iii) Uþð� π

2
Þ ¼ �iσ3 ⇒ E2 ¼ �E1 and B2 ¼ �B1.

(iv) U−ð0Þ ¼ σ1 ⇒ B1 ¼ B2 ¼ 0.
(v) U−ðπÞ ¼ −σ1 ⇒ E1 ¼ E2 ¼ 0.
(vi) U−ð� π

2
Þ ¼ �σ2 ⇒ B1 ¼ ∓E1 and B2 ¼ ∓E2.

B. Boundary conditions for the Yang-Mills potentials

The above boundary conditions can be formulated in
terms of chromoelectromagnetic potentials.
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In the case U− (32) we have the boundary conditions

∂2A3−A0
2− ½A2;A3� ¼− tan

b
2
ðȦ1−∂1A0− ½A0;A1�Þ; ð33Þ

∂1A3−A0
1− ½A1;A3� ¼ tan

b
2
ðȦ2−∂2A0− ½A0;A2�Þ; ð34Þ

in terms of Aμ, where

Ȧ ¼ ∂tAj∂Ω ð35Þ

and

A0 ¼ ∂3Aj∂Ω: ð36Þ

The above boundary conditions (33) and (34) can
also be rewritten using the covariant derivative DμAν ¼
∂μAν − ½Aμ; Aν�,

D2A3 − A0
2 ¼ tan

b
2
ðD0A1 −D1A0 − ½A0; A1�Þ;

D1A3 − A0
1 ¼ − tan

b
2
ðD0A2 −D2A0 − ½A0; A2�Þ:

Choosing as gauge fixing condition

A0 ¼ 0; ∂1A1 þ ∂2A2 þ A0
3 ¼ 0;

we can rewrite the conditions as

0
B@

A0
1

A0
2

A0
3

1
CA ¼ M

0
B@

A1

A2

A3

1
CA;

where

M ¼

0
B@

0 tan b
2
D0 D1

− tan b
2
D0 0 D2

−D1 −D2 0

1
CA ð37Þ

is a self-adjoint differential operator that is gauge covariant
and relates the normal derivatives of the gauge fields with
the very gauge fields in that gauge. The expression (37) is
reminiscent of the one obtained for scalar fields where the
matrix M is related to the family of unitary matrices by
means of a Cayley transform [14].
In the case of the family of solutions (31) given by Uþ

we have

Ȧ2 − ∂2A0 − ½A0; A2� ¼ tan
a
2
ðȦ1 − ∂1A0 − ½A0; A1�Þ;

∂2A3 − A0
2 − ½A2; A3� ¼ − tan

a
2
ð∂1A3 − A0

1 − ½A1; A3�Þ;

that can be rewritten using the covariant derivatives

D0A2 − ∂2A0 ¼ tan
a
2
ðD0A1 − ∂1A0Þ;

∂2A3 −D3A2 ¼ − tan
a
2
ðD1A3 − A0

1Þ:

Choosing a different gauge fixing condition

A1 ¼ 0; ∂tA0 þ ∂2A2 þ ∂3A3 ¼ 0;

these boundary conditions reduce to

∂2

0
B@

A0

A2

A3

1
CA ¼

0
B@

tan a
2
D1 D0 0

−D0 0 −D3

0 D3 − tan a
2
D1

1
CA
0
B@

A0

A2

A3

1
CA

in terms of the self-adjoint differential operator that is
gauge covariant.

VI. INTERACTING THEORIES OF MATTER
AND GAUGE FIELDS

In previous sections we have considered scalar and
gauge field theories separately. But in the Standard
Model they appear interacting one with each other. The
analysis of boundary conditions that preserve energy in that
case can be carried out along the same lines.
Let us consider the case of scalar fields interacting with

SUðNÞ gauge fields

L ¼ 1

2
ðDμϕ; DμϕÞ − 1

2
m2kϕk2 − Vðkϕk2Þ

−
1

16π
trFμνFμν; ð38Þ

where ϕ is a scalar field supporting an irreducible unitary
n-dimensional representation ρn of SUðNÞ, Dμϕ ¼ ∂μϕþeρnðAÞϕ and its covariant derivative (,) denotes the product
of the scalar fields associated to the unitary representation
ρn, and V is any arbitrary local potential function.
The current associated to the conservation of energy is

the linear momentum whose components are

T0i ¼
1

2
ðD0ϕ; DiϕÞ þ

1

2
ðDiϕ; D0ϕÞ þ

1

4π
trEjFji: ð39Þ

The vanishing of the total linear momentum flux across the
boundary of the field domain guarantees the conservation
of the energy inside such a domain. In the case of a half
space with an homogeneous boundary there are a large
number of boundary conditions which satisfy this require-
ment, but we will only consider those where the flux of the
two independent components of the current vanish sepa-
rately, i.e. the fluxes of the gauge fields and the ϕ fields

ENERGY PRESERVING BOUNDARY CONDITIONS IN FIELD … PHYS. REV. D 108, 045008 (2023)

045008-7



both vanish. In such a case the boundary conditions are
given by

H ¼ Ub ⊗ UcG; ð40Þ

where H and G are the gauge covariant generalization of
the auxiliary fields defined by (27) and

�
D3φþD0φ

D3φ
� þD0φ

�

�
¼ Ũb ⊗ Ũc

�
D3φ −D0φ

D3φ
� −D0φ

�

�
; ð41Þ

where Ub ∈ Uð2Þ and Ũb ∈ Uð2Þ are two 2 × 2 unitary
matrices and Uc ∈ UðNÞ, Ũc ∈ UðnÞ are two unitary
matrices associated to the gauge group representations
involved in the theory. As we have shown in Sec. V gauge
covariance requires that the last two matrices must belong
to the center of their unitary groups, i.e.Uc ∈ ZN , Ũc ∈ Zn
because of the irreducible character of the gauge group
representations of matter fields. The corresponding phases
can be absorbed into the matrices Ub; fUb ∈ Uð2Þ. One
might think that some differences should appear when one
considers fields either in the fundamental or the adjoint
representation, but there is none. The reason being that both
theories support irreducible representations of SUðNÞ.

VII. MAXWELL THEORY

The analysis of previous sections include Maxwell
theory of electromagnetic fields since it is a Uð1Þ gauge
theories. In this case the chromoelectromagentic fields
become the standard electromagnetic fields, and covariant
derivatives are replaced by standard derivatives in the self-
adjoint differential operators that appear in the motion
equations.
An interesting case of study is the analysis of the

boundary conditions on the interface between two different
electromagnetic active media. Let us consider a linear,
nondispersive, and isotropic case where D ¼ ϵE and
B ¼ μH, with ϵ the dielectric permittivity and μ the
magnetic permeability of the material, and work on
Gaussian units. In this type of media the electromagnetic
energy density is given by

E ¼ 1

8π
ðE ·Dþ B ·HÞ ð42Þ

and the Poynting vector by

S ¼ c
4π

E ×H; ð43Þ

where we recovered the dependency on the vacuum speed
of light c. The energy conservation law (25) becomes

∂tE þ∇S ¼ 0: ð44Þ

If we consider the case of two different electromagnetic
active media in Ωþ ¼ fx ¼ ðx1; x2; x3Þjx3 ≥ 0g and Ω− ¼
fx ¼ ðx1; x2; x3Þjx3 ≤ 0g which are separated by the
boundary ∂Ω ¼ fx ¼ ðx1; x2; 0Þg, then the condition for
conservation of energy for both media is given by

d
dt

ðEΩþ þ EΩ−
Þ ¼

Z
Ωþ

∂tE d3xþ
Z
Ω−

∂tE d3x

¼
Z
∂Ωþ

S3dx1dx2 −
Z
∂Ω−

S3dx1dx2;

where ∂Ωþ is the boundary at the right side and ∂Ω− is the
boundary at the left side. Inserting the explicit expression of
the Poynting vector for both materials the condition has the
form

c
4πμþ

Z
∂Ωþ

ðEþ
1 B

þ
2 − Eþ

2 B
þ
1 Þdx1dx2

−
c

4πμ−

Z
∂Ω−

ðE−
1B

−
2 − E−

2B
−
1 Þdx1dx2 ¼ 0;

where μ� is the magnetic permeability in each media, and
E� and B� are the electromagnetic field on each side.
Considering only homogeneous boundary conditions that
are invariant under translations along the boundary plane
∂Ω, the energy conservation condition reduces to

1

μþ
ðEþ

1 B
þ
2 − Eþ

2 B
þ
1 Þ −

1

μ−
ðE−

1B
−
2 − E−

2B
−
1 Þ ¼ 0: ð45Þ

We can define two auxiliary vectors

H ¼

0
BBBBBB@

1ffiffiffiffi
μ−

p ðE−
1 þ iE−

2 þ iðB−
1 þ iB−

2 ÞÞ
1ffiffiffiffi
μþ

p ðEþ
1 − iEþ

2 þ iðBþ
1 − iBþ

2 ÞÞ
1ffiffiffiffi
μ−

p ðE−
1 − iE−

2 − iðB−
1 − iB−

2 ÞÞ
1ffiffiffiffi
μþ

p ðEþ
1 þ iEþ

2 − iðBþ
1 þ iBþ

2 ÞÞ

1
CCCCCCA
;

G ¼

0
BBBBBB@

1ffiffiffiffi
μ−

p ðE−
1 − iE−

2 þ iðB−
1 − iB−

2 ÞÞ
1ffiffiffiffi
μþ

p ðEþ
1 þ iEþ

2 þ iðBþ
1 þ iBþ

2 ÞÞ
1ffiffiffiffi
μ−

p ðE−
1 þ iE−

2 − iðB−
1 þ iB−

2 ÞÞ
1ffiffiffiffi
μþ

p ðEþ
1 − iEþ

2 − iðBþ
1 − iBþ

2 ÞÞ

1
CCCCCCA
;

in terms of which the condition reads

jHj2 − jGj2 ¼ 8

μþ
Eþ
1 B

þ
2 −

8

μþ
Eþ
2 B

þ
1 −

8

μ−
E−
1B

−
2

þ 8

μ−
E−
2B

−
1 :
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Thus the general solution of the boundary condition is
given by

H ¼ UG;

where U is a 4 × 4 unitary matrix. Gauge invariance is
automatic since the elements ofUð1Þ are simply a phase eiβ

which can be absorbed in the unitary matrix. Conjugating
this equation leads to

�
0 I

I 0

�
H ¼ U� ⊗ IN

�
0 I

I 0

�
G;

which gives an extra constraint for the unitary matrix

U ¼
�
0 I

I 0

�
U�

�
0 I

I 0

�
:

Thus, we get the same 4 × 4 unitary matrix as for the scalar
charged fields for the two parallel plates, which are given
by the two disjoint components (15) and (16). Let see some
examples of this boundary conditions:

(i) Uþð0; 0; 0; π2 ; 0;− π
2
Þ ¼ ð0I I0Þ. In this case the boun-

dary magnetic fields vanish in both sides Bþ
1 ¼

Bþ
2 ¼ B−

1 ¼ B−
2 ¼ 0.

(ii) Uþð0; 0; 0; π2 ; 0; π2Þ ¼ −ð0I I0Þ. In this case the boun-
dary electric fields vanish in both sides Eþ

1 ¼ Eþ
2 ¼

E−
1 ¼ E−

2 ¼ 0.
(iii) Uþðπ2 ; π2 ;∓ π

2
; 0; 0; 0Þ ¼ �ðσ1

0
0
σ1
Þ. In this case

Eþ
1 ¼ �αE−

1 , Eþ
2 ¼ �αE−

2 , Bþ
1 ¼ �αB−

1 and
Bþ
2 ¼ �αB−

1 , which leads to periodic/antiperiodic

boundary conditions with a jump given by α ¼
ffiffiffiffi
μþ
μ−

q
.

These boundary conditions include those obtained in the
case of one simple wall, like in the first and second case,
where simply the Poynting vector is zero at each side of the
boundary so there is no flux of energy through the
materials. The new phenomena due to the two different
materials occurs in the boundary conditions where the
fluxes of energy from each side are not zero. The constraint
of energy conservation induces in this case a jump in the
values of the electromagnetic fields related to the different
magnetic permeabilities of the materials. This can be seen
in the periodic and antiperiodic boundary conditions
showed above, where instead of just getting the same
values at the sides of the boundary there is a jump on them
across the boundary.

VIII. CONCLUSIONS

We have developed a consistent theory of boundary
conditions for relativistic field theories based on the

conservation of fundamental quantities: charge and energy.
These are the two generic conservation laws of nature.
Boundary conditions which preserve charge are quite well
known [14–19], whereas those that preserve the energy
have not been explored so deeply. We have analyzed in this
paper the theory of boundary conditions from this per-
spective. We found infinite families of energy preserving
boundary conditions in scalar, electromagnetic and non-
Abelian gauge theories. In some cases the boundary
conditions preserve both charge and energy. In the
Maxwell and Yang-Mills theory the boundary conditions
are also gauge invariant. We also have shown how this
method can be used to describe boundaries between
different material media applying the conservation of
energy.
Spinor fields have not been considered in this paper but

the extension of the analysis to this case is straightforward.
However, the generalization for gravitation and higher spin
fields is not so simple. In the gravitational case the
difficulty resides on the fact that the vanishing condition
required to define the appropriate boundary conditions is
automatically satisfied by any solution of classical equation
of motion. In this case a generalization of the application of
the above conservation laws is required.
Another avenue worthwhile to explore is the extension of

this analysis for regularizations of field theories on the
lattice. This is very interesting for numerical approaches
both for the classical dynamics of interacting field theories
and for the analysis of nonperturbative effects in the
corresponding quantum theories.
One of the interesting boundary effects associated to the

boundary conditions is the dependence of the nonpertur-
bative Casimir energy in 2þ 1 gauge theories on the
boundary conditions [24,25]. The exponential decay of
the Casimir energy with the distance between two parallel
plates is dependent on the boundary conditions and points
out to a new mass parameter much lower than the glueball
mass, opening the door to new interpretations of the
confinement mechanism.
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