000128102 001__ 128102
000128102 005__ 20241125101201.0
000128102 0247_ $$2doi$$a10.1016/j.energy.2023.128559
000128102 0248_ $$2sideral$$a135262
000128102 037__ $$aART-2023-135262
000128102 041__ $$aeng
000128102 100__ $$0(orcid)0000-0003-4304-6685$$aDíez, Luis I.$$uUniversidad de Zaragoza
000128102 245__ $$aOxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres
000128102 260__ $$c2023
000128102 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128102 5203_ $$aThe combined use of bio-fuels along with CO2 capture techniques is the basis for the so-called negative emissions energy systems. In this paper, oxy-fuel combustion of two torrefied biomasses is experimentally investigated in a lab-scale entrained flow reactor. The torrefied biomasses are fired alone, and co-fired with coal (50%). Two oxygen concentrations (21% and 35%) and four steam concentrations are tested: 0% (dry recycle oxy-combustion), 10% (wet recycle oxy-combustion), 25% and 40% (towards the concept of oxy-steam combustion). The tests are designed to get the same mean residence time for all the fuels and conditions. Burnout degrees are significantly increased (up to 9 and 16 percentage points) when the share of torrefied biomass is raised, with a slightly better behavior of the torrefied pine in comparison to the torrefied agro-biomass. C-fuel conversion to CO2 follows a similar trend to the observed for the burnout degrees. NO formation rates are reduced when oxy-firing torrefied biomass alone in comparison to the blends, with maximum diminutions of 16.9% (torrefied pine) and 8.5% (torrefied agro-biomass). As regards the effect of steam, the best results are found for the 25% H2O atmospheres in most of the cases, yielding maximum conversions along with minimum NO levels.
000128102 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-094488
000128102 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000128102 590__ $$a9.0$$b2023
000128102 592__ $$a2.11$$b2023
000128102 591__ $$aTHERMODYNAMICS$$b3 / 78 = 0.038$$c2023$$dQ1$$eT1
000128102 591__ $$aENERGY & FUELS$$b24 / 171 = 0.14$$c2023$$dQ1$$eT1
000128102 593__ $$aElectrical and Electronic Engineering$$c2023$$dQ1
000128102 593__ $$aEnergy (miscellaneous)$$c2023$$dQ1
000128102 593__ $$aEnergy Engineering and Power Technology$$c2023$$dQ1
000128102 593__ $$aBuilding and Construction$$c2023$$dQ1
000128102 593__ $$aCivil and Structural Engineering$$c2023$$dQ1
000128102 593__ $$aRenewable Energy, Sustainability and the Environment$$c2023$$dQ1
000128102 593__ $$aIndustrial and Manufacturing Engineering$$c2023$$dQ1
000128102 593__ $$aManagement, Monitoring, Policy and Law$$c2023$$dQ1
000128102 593__ $$aMechanical Engineering$$c2023$$dQ1
000128102 593__ $$aModeling and Simulation$$c2023$$dQ1
000128102 593__ $$aPollution$$c2023$$dQ1
000128102 593__ $$aFuel Technology$$c2023$$dQ1
000128102 594__ $$a15.3$$b2023
000128102 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000128102 700__ $$0(orcid)0000-0003-2484-2504$$aGarcía-Mariaca, Alexander$$uUniversidad de Zaragoza
000128102 700__ $$0(orcid)0000-0002-5037-7047$$aCanalís, Paula$$uUniversidad de Zaragoza
000128102 700__ $$0(orcid)0000-0002-6103-7136$$aLlera, Eva$$uUniversidad de Zaragoza
000128102 7102_ $$15004$$2545$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Ingeniería Mecánica
000128102 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000128102 773__ $$g284 (2023), 128559 [11 pp.]$$pEnergy$$tEnergy$$x0360-5442
000128102 8564_ $$s1489323$$uhttps://zaguan.unizar.es/record/128102/files/texto_completo.pdf$$yVersión publicada
000128102 8564_ $$s2598547$$uhttps://zaguan.unizar.es/record/128102/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000128102 909CO $$ooai:zaguan.unizar.es:128102$$particulos$$pdriver
000128102 951__ $$a2024-11-22-12:11:40
000128102 980__ $$aARTICLE