000128107 001__ 128107
000128107 005__ 20231116143758.0
000128107 0247_ $$2doi$$a10.1109/TIE.2020.3037994
000128107 0248_ $$2sideral$$a126142
000128107 037__ $$aART-2021-126142
000128107 041__ $$aeng
000128107 100__ $$0(orcid)0000-0003-4886-9461$$aGuillen Moya, P.$$uUniversidad de Zaragoza
000128107 245__ $$aMains-Synchronized Pulse Density Modulation Strategy Applied to a ZVS Resonant Matrix Inverter
000128107 260__ $$c2021
000128107 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128107 5203_ $$aMulti-output inverters have become a key enabling technology to increase surface flexibility in domestic induction heating appliances. The most commonly used power converter topologies are based on electromechanical relays in order to multiplex the connected loads and obtain a proper heat distribution. This solution, which is used in combination with other modulations such as square waveform, relies on the thermal inertia of the pot as it needs long power-averaging periods to reduce the reiteration of the switching noise. However, it presents a significant limitation in terms of acoustic noise, reliability, and thermal performance. To overcome these limitations, complete solid-state inverters that can be operated at higher frequencies are proposed. This change in the design paradigm of the pulse density modulation strategies leads to improved thermal control in the pot and better user experience, but at the same time increases challenges due to design constraints imposed by electromagnetic compatibility regulations. This article analyzes the possibilities of a new mains-synchronized pulse density modulation applied to a flexible induction cooktop that uses a multiple-output ZVS resonant inverter topology. The feasibility of the control strategies has been tested by means of a prototype featuring 12 2-kW induction heating loads. © 1982-2012 IEEE.
000128107 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000128107 590__ $$a8.162$$b2021
000128107 591__ $$aAUTOMATION & CONTROL SYSTEMS$$b6 / 65 = 0.092$$c2021$$dQ1$$eT1
000128107 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b3 / 64 = 0.047$$c2021$$dQ1$$eT1
000128107 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b28 / 274 = 0.102$$c2021$$dQ1$$eT1
000128107 592__ $$a3.519$$b2021
000128107 593__ $$aControl and Systems Engineering$$c2021$$dQ1
000128107 593__ $$aComputer Science Applications$$c2021$$dQ1
000128107 594__ $$a17.1$$b2021
000128107 655_4 $$ainfo:eu-repo/semantics/conferenceObject$$vinfo:eu-repo/semantics/acceptedVersion
000128107 700__ $$0(orcid)0000-0001-8399-4650$$aSarnago Andía, H.$$uUniversidad de Zaragoza
000128107 700__ $$0(orcid)0000-0002-1284-9007$$aLucía Gil,  O.$$uUniversidad de Zaragoza
000128107 700__ $$0(orcid)0000-0002-9655-5531$$aBurdio Pinilla, J.M.$$uUniversidad de Zaragoza
000128107 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000128107 773__ $$g68, 11 (2021), 10835-10844$$pIEEE trans. ind. electron.$$tIEEE Transactions on Industrial Electronics$$x0278-0046
000128107 8564_ $$s18862338$$uhttps://zaguan.unizar.es/record/128107/files/texto_completo.pdf$$yPostprint
000128107 8564_ $$s2766899$$uhttps://zaguan.unizar.es/record/128107/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000128107 909CO $$ooai:zaguan.unizar.es:128107$$particulos$$pdriver
000128107 951__ $$a2023-11-16-11:51:12
000128107 980__ $$aARTICLE