000128109 001__ 128109 000128109 005__ 20240319080953.0 000128109 0247_ $$2doi$$a10.1017/jfm.2022.412 000128109 0248_ $$2sideral$$a129919 000128109 037__ $$aART-2022-129919 000128109 041__ $$aeng 000128109 100__ $$0(orcid)0000-0002-9361-4794$$aDe Corato, Marco$$uUniversidad de Zaragoza 000128109 245__ $$aRetraction of thin films coated by insoluble surfactants 000128109 260__ $$c2022 000128109 5060_ $$aAccess copy available to the general public$$fUnrestricted 000128109 5203_ $$aWe investigate the retraction of a circular thin film coated with insoluble surfactants, which is punctured at its centre. We assume that the surface pressure of the liquid-gas interface is related to the number density of surfactants through a linear equation of state, which is characterized by a single parameter: the Gibbs dilation modulus. To solve the governing equations and track the deformation of the domain, we use the finite element method with an arbitrary Lagrangian-Eulerian approach where the film surface is sharp. Our simulations show that the surface elasticity introduced by the surfactants slows down the retraction and introduces oscillations at early times. In agreement with previous experiments and theoretical analysis, we find that the presence of surfactants introduces perturbations of the film thickness over progressively larger distances as the surface elasticity increases. The surface perturbations travel faster than the retracting edge of the film at a speed proportional to the Gibbs modulus. For large values of the Gibbs modulus, the interface behaviour approaches that of an incompressible two-dimensional solid. Our analysis sheds light on the effect of insoluble surfactants on the opening of a circular hole in a thin film and can be extended to investigate the onset of surface cracks and fractures. © 2022 Authors 000128109 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/ICJ2018-035270-I$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113033GB-I00 000128109 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000128109 590__ $$a3.7$$b2022 000128109 591__ $$aPHYSICS, FLUIDS & PLASMAS$$b6 / 34 = 0.176$$c2022$$dQ1$$eT1 000128109 591__ $$aMECHANICS$$b37 / 137 = 0.27$$c2022$$dQ2$$eT1 000128109 592__ $$a1.409$$b2022 000128109 593__ $$aApplied Mathematics$$c2022$$dQ1 000128109 593__ $$aMechanics of Materials$$c2022$$dQ1 000128109 593__ $$aMechanical Engineering$$c2022$$dQ1 000128109 593__ $$aCondensed Matter Physics$$c2022$$dQ1 000128109 594__ $$a6.5$$b2022 000128109 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000128109 700__ $$aTammaro, Daniele 000128109 700__ $$aMaffettone, Pier Luca 000128109 700__ $$0(orcid)0000-0001-6205-5160$$aFueyo, Norberto$$uUniversidad de Zaragoza 000128109 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos 000128109 773__ $$g942 (2022), [24 pp.]$$pJ. fluid mech.$$tJOURNAL OF FLUID MECHANICS$$x0022-1120 000128109 8564_ $$s2991874$$uhttps://zaguan.unizar.es/record/128109/files/texto_completo.pdf$$yVersión publicada 000128109 8564_ $$s1908903$$uhttps://zaguan.unizar.es/record/128109/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000128109 909CO $$ooai:zaguan.unizar.es:128109$$particulos$$pdriver 000128109 951__ $$a2024-03-18-13:15:42 000128109 980__ $$aARTICLE