000128124 001__ 128124
000128124 005__ 20241125101130.0
000128124 0247_ $$2doi$$a10.1016/j.jpaa.2022.107262
000128124 0248_ $$2sideral$$a132665
000128124 037__ $$aART-2023-132665
000128124 041__ $$aeng
000128124 100__ $$aBlumer, S.
000128124 245__ $$aGroups of p-absolute Galois type that are not absolute Galois groups
000128124 260__ $$c2023
000128124 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128124 5203_ $$aLet p be a prime. We study pro-p groups of p-absolute Galois type, as defined by Lam–Liu–Sharifi–Wake–Wang. We prove that the pro-p completion of the right-angled Artin group associated to a chordal simplicial graph is of p-absolute Galois type, and moreover it satisfies a strong version of the Massey vanishing property. Also, we prove that Demushkin groups are of p-absolute Galois type, and that the free pro-p product — and, under certain conditions, the direct product — of two pro-p groups of p-absolute Galois type satisfying the Massey vanishing property, is again a pro-p group of p-absolute Galois type satisfying the Massey vanishing property. Consequently, there is a plethora of pro-p groups of p-absolute Galois type satisfying the Massey vanishing property that do not occur as absolute Galois groups.
000128124 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000128124 590__ $$a0.7$$b2023
000128124 592__ $$a0.897$$b2023
000128124 591__ $$aMATHEMATICS$$b218 / 490 = 0.445$$c2023$$dQ2$$eT2
000128124 593__ $$aAlgebra and Number Theory$$c2023$$dQ1
000128124 591__ $$aMATHEMATICS, APPLIED$$b237 / 332 = 0.714$$c2023$$dQ3$$eT3
000128124 594__ $$a1.7$$b2023
000128124 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000128124 700__ $$aCassella, A.
000128124 700__ $$aQuadrelli, C.
000128124 773__ $$g227, 4 (2023), 107262 [35 pp.]$$pJ. pure appl. algebra$$tJOURNAL OF PURE AND APPLIED ALGEBRA$$x0022-4049
000128124 8564_ $$s587620$$uhttps://zaguan.unizar.es/record/128124/files/texto_completo.pdf$$yPostprint
000128124 8564_ $$s1600949$$uhttps://zaguan.unizar.es/record/128124/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000128124 909CO $$ooai:zaguan.unizar.es:128124$$particulos$$pdriver
000128124 951__ $$a2024-11-22-11:58:37
000128124 980__ $$aARTICLE