000128125 001__ 128125
000128125 005__ 20241125101132.0
000128125 0247_ $$2doi$$a10.1109/TBME.2023.3288701
000128125 0248_ $$2sideral$$a134844
000128125 037__ $$aART-2023-134844
000128125 041__ $$aeng
000128125 100__ $$aBachi, Lorenzo
000128125 245__ $$aECG modeling for simulation of arrhythmias in time-varying conditions
000128125 260__ $$c2023
000128125 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128125 5203_ $$aThe present paper proposes an ECG simulator that advances modeling of arrhythmias and noise by introducing time-varying signal characteristics. The simulator is built around a discrete-time Markov chain model for simulating atrial and ventricular arrhythmias of particular relevance when analyzing atrial fibrillation (AF). Each state is associated with statistical information on episode duration and heartbeat characteristics. Statistical, time-varying modeling of muscle noise, motion artifacts, and the influence of respiration is introduced to increase the complexity of simulated ECGs, making the simulator well suited for data augmentation in machine learning. Modeling of how the PQ and QT intervals depend on heart rate is also introduced. The realism of simulated ECGs is assessed by three experienced doctors, showing that simulated ECGs are difficult to distinguish from real ECGs. Simulator usefulness is illustrated in terms of AF detection performance when either simulated or real ECGs are used to train a neural network for signal quality control. The results show that both types of training lead to similar performance.
000128125 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T39-17R-BSICoS$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-104881RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-105674RB-I00
000128125 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000128125 590__ $$a4.4$$b2023
000128125 592__ $$a1.239$$b2023
000128125 591__ $$aENGINEERING, BIOMEDICAL$$b36 / 123 = 0.293$$c2023$$dQ2$$eT1
000128125 593__ $$aBiomedical Engineering$$c2023$$dQ1
000128125 594__ $$a9.4$$b2023
000128125 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000128125 700__ $$aHalvaei, Hesam
000128125 700__ $$0(orcid)0000-0002-8334-4786$$aPérez, Cristina$$uUniversidad de Zaragoza
000128125 700__ $$0(orcid)0000-0003-0226-4950$$aMartín-Yebra, Alba$$uUniversidad de Zaragoza
000128125 700__ $$aPetrenas, Andrius
000128125 700__ $$aSološenko, Andrius
000128125 700__ $$aJohnson, Linda
000128125 700__ $$aMarozas, Vaidotas
000128125 700__ $$0(orcid)0000-0002-7503-3339$$aMartínez, Juan Pablo$$uUniversidad de Zaragoza
000128125 700__ $$0(orcid)0000-0002-1960-407X$$aPueyo, Esther$$uUniversidad de Zaragoza
000128125 700__ $$aStridh, Martin
000128125 700__ $$0(orcid)0000-0003-3434-9254$$aLaguna, Pablo$$uUniversidad de Zaragoza
000128125 700__ $$aSörnmo, Leif
000128125 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000128125 773__ $$g70, 12 (2023), 3449 - 3460$$pIEEE trans. biomed. eng.$$tIEEE Transactions on Biomedical Engineering$$x0018-9294
000128125 8564_ $$s4682662$$uhttps://zaguan.unizar.es/record/128125/files/texto_completo.pdf$$yPostprint
000128125 8564_ $$s3489955$$uhttps://zaguan.unizar.es/record/128125/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000128125 909CO $$ooai:zaguan.unizar.es:128125$$particulos$$pdriver
000128125 951__ $$a2024-11-22-11:59:25
000128125 980__ $$aARTICLE