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Abstract— The present paper proposes an ECG simula-
tor that advances modeling of arrhythmias and noise by
introducing time-varying signal characteristics. The simu-
lator is built around a discrete-time Markov chain model
for simulating atrial and ventricular arrhythmias of partic-
ular relevance when analyzing atrial fibrillation (AF). Each
state is associated with statistical information on episode
duration and heartbeat characteristics. Statistical, time-
varying modeling of muscle noise, motion artifacts, and
the influence of respiration is introduced to increase the
complexity of simulated ECGs, making the simulator well
suited for data augmentation in machine learning. Modeling
of how the PQ and QT intervals depend on heart rate is also
introduced. The realism of simulated ECGs is assessed by
three experienced doctors, showing that simulated ECGs
are difficult to distinguish from real ECGs. Simulator use-
fulness is illustrated in terms of AF detection performance
when either simulated or real ECGs are used to train a
neural network for signal quality control. The results show
that both types of training lead to similar performance.

Index Terms— simulation models, ECG signals, arrhyth-
mias, noise, respiration.

I. INTRODUCTION

S IMULATED ECG signals have since long proven useful
for investigating crucial performance aspects of signal

processing methods under controlled conditions, ranging from
simple test signals to signals with composite characteristics,

Manuscript submitted on June 19, 2023. The work was sup-
ported by the Royal Physiographic Society, Lund, Sweden, CIBERBBN
through Instituto de Salud Carlos III and FEDER (Spain), projects
PID2019104881RB-I00 and PID2019105674RB-I00 funded by Gob-
ierno de Aragón (BSICoS T39-17R), and the Eur. Reg. Development
Fund (01.2.2-LMT-K-718-03-0027) under an agreement with the Re-
search Council of Lithuania (Corresponding author: Lorenzo Bachi).

L. Bachi is with the Institute of Life Sciences, Sant’Anna School of
Advanced Studies, Pisa, Italy.

H. Halvaei, M. Stridh, and L. Sörnmo are with the Department of
Biomedical Engineering, Lund University, Sweden.

C. Pérez, A. Martı́n-Yebra, J.-P. Martı́nez, E. Pueyo, P. Laguna are
with the Biomedical Signal Interpretation & Computational Simulation
Group, Aragón Institute of Engineering Research, Zaragoza University,
Zaragoza, and CIBER-BBN, Spain.
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exemplified by models for simulating maternal and fetal
ECGs [1]–[3], T wave alternans [4], and paroxysmal atrial fib-
rillation (AF) [5]. These simulators have in common that they
are based on mathematical models of relevant physiological
phenomena, while they do not pretend to model biophysical
mechanisms.

An emerging application of simulation is found in training
of classifiers developed for, e.g., ECG-based localization of
atrial flutter substrates [6], photoplethysmogram-based de-
tection of brady- and tachycardia [7], and classification of
T wave alternans in patients with stress disorder [8]. Once
trained, classifier performance may be tested on real signals.
An important incentive for training on simulated data is the
scarcity of huge annotated datasets; however, it remains to be
shown whether the necessary level of simulator sophistication
can be achieved to make training fully sustainable.

In the context of AF analysis, simulated ECGs have been
used to gain insight on how physiological and technical factors
influence detection performance with respect to, e.g., episode
duration, lead selection, and noise level [9], [10]. Depending
on the type of detector, i.e., whether rhythm-only, rhythm
and morphology, or segments of raw samples are explored,
these factors can have considerable influence on performance.
Similar insights are decidedly more difficult to achieve when
using annotated real ECGs. Another application of simulated
ECGs is performance evaluation of methods for f wave ex-
traction [11]–[13].

In several clinical studies, brief episodes of atrial tachy-
cardia (AT) and atrial runs have been associated with increased
risk of stroke beyond incident AF [14], [15]. Modeling of
AT and atrial runs, which so far has not received any at-
tention in the literature, may help uncover weaknesses of
their algorithmic detection. Moreover, ventricular ectopic beats
(VPBs), bigeminy, and trigeminy are of equal interest to model
as they represent important sources of falsely detected AF
episodes. Increased complexity of simulated ECGs should lead
to results closer to real-world performance than those obtained
from simulated ECGs which have been restricted to transitions
between sinus rhythm (SR) and AF.

Noise modeling is an essential part of any simulator aiming
to generate realistic signals which can challenge the perfor-
mance of a method. To account for time-varying spectral char-
acteristics, time-varying autoregressive (AR) models driven by
white, Gaussian noise have been proposed for modeling of
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baseline wander [1] and muscle noise [2]. In those studies,
most model parameters were estimated from the PhysioNet
MIT–BIH Noise Stress Test Database (NSTDB), resulting
either in time-varying filter parameter estimates [1] or fixed
filter parameter estimates made time-varying by letting the
position of related pole pairs vary according to a random walk
model [2]. Concerning motion artifacts, a time-invariant fil-
tered white noise approach was recently proposed for simulat-
ing textile sensor noise, assuming a heavy-tailed, non-Gaussian
probability density function (PDF) of the white noise [16].
In ambulatory monitoring and exercise stress testing, where
motion artifacts can resemble heartbeats, such an approach is
unsuitable as white noise is a stationary process.

The present paper extends considerably the simulation
model for paroxysmal AF proposed in [5] by modeling atrial
and ventricular arrhythmias of particular relevance for AF
analysis (Secs. III and IV). Novel approaches to statistical,
time-varying modeling of muscle noise, motion artifacts, and
the influence of respiration are presented, which serves to
increase the complexity of simulated ECGs, of particular rele-
vance for training machine learning models (Secs. V and VII).
Moreover, the proposed simulator accounts for how PQ and
QT intervals depend on heart rate (Sec. VIII). The realism
of simulated ECGs is assessed by three experienced medical
doctors, and the usefulness of the simulator is illustrated
by evaluating AF detection performance using either real or
simulated ECGs for training (Sec. IX). While simulated ECGs
in [5] were composed of either synthetic or real components,
the present study deals only with synthetic components as real
ones are unsuitable for modeling of time-varying conditions.

The simulator code is freely available at [17].

II. ARRHYTHMIA MODELING FRAMEWORK

Transitioning between episodes of SR, AF, AT, and bi-
and trigeminy (BT) is modeled by a discrete-time Markov
chain, defined so that any of these arrhythmias is followed
by SR, see Fig. 1; see Section XI for a discussion of the
Markov model definition. The transitioning is defined by
probabilities, whereas the duration of episodes are defined by
rhythm-specific probability mass functions (PMFs) expressed
in number of beats. Hence, when simulating an ECG signal,
the total duration of a certain rhythm depends on the transition
probabilities as well as the properties of the PMFs. The
multiple VPB states reflect that an isolated VPB can occur
in SR, AT, and AF, but not in BT; thus, a VPB does not have
to be followed by SR. Unlike a VPB, which is modeled by its
own state, an atrial premature beat (APB) belongs to the AT
state and has a one-beat duration. In certain states, a number
of probabilistic decisions have to be made, e.g., the type of
APB or VPB to occur.

The durations of SR and AF episodes are modeled by their
respective exponential PMFs, combined with a criterion to
exclude episodes with few beats. The modeling of AT, VPBs,
and BT are described below in Secs. III and IV.

The transition probabilities pSR−→AF, pSR−→AT, pSR−→BT,
pSR−→VPB, pAF−→VPB, pAT−→VPB, pAT−→SR, and pAF−→SR are set
to values in the interval [0, 1], whereas pBT−→SR, pVPB−→AT,

SR AFAT

VPB

BT

VPBVPB

Fig. 1. Markov chain modeling of arrhythmias, comprising atrial
tachycardia (AT), bi-/trigeminy (BT), atrial fibrillation (AF), ventricular
premature beat (VPB), and sinus rhythm (SR). Each arrow is associated
with a transition probability.

pVPB−→SR, and pVPB−→AF are all set to 1. Rather than directly
defining the first-mentioned set of transition probabilities, they
can be defined in a more intuitive way by extending the well-
established notion of AF burden BAF, i.e., the percentage of
time spent in AF during the monitored period, to also apply to
the other arrhythmias, i.e., the burdens BAT, BVPB, and BBT.
Using the four burdens in combination with the mean episode
durations, the transition probabilities can be determined, see
Appendix A for details.

III. MODELING OF ATRIAL ARRHYTHMIAS

Two public, annotated databases, the MIT–BIH Arrhyth-
mia Database and the MIT–BIH Supraventricular Arrhythmia
Database [18], were analyzed to determine certain model
characteristics. The former database is annotated with respect
to beat type and rhythm, whereas the latter database makes
no distinction between atrial and nodal supraventricular beats
and therefore both types of beat are jointly analyzed.

A. Atrial premature beats
Rhythm: The RR intervals immediately preceding and fol-

lowing an isolated APB, denoted dRR,p and dRR,f, respectively,
are related to the current RR interval dRR in SR, but modified
by a positive-valued, uniformly distributed parameter β that
depends on the type of APB. Expanding on the model in [5],
the following rules apply to generate dRR,p and dRR,f:

• APB with sinus node reset (APB1): dRR,p = βAPB1,pdRR,
dRR,f = dRR;

• APB with delayed sinus reset (APB2): dRR,p =
βAPB2,pdRR, dRR,f = βAPB2,fdRR;

• APB with compensatory pause (APB3): dRR,p =
βAPB3,pdRR, dRR,f = (2− βAPB3,p)dRR;

• Interpolated APB (APB4): dRR,p = βAPB4,pdRR, dRR,f =
(1− βAPB4,p)dRR; occurs only when dRR > 400 ms,

where βAPB1,p, βAPB2,p, βAPB3,p, and βAPB4,p are all < 1 except
βAPB2,f > 1. Each type of APB is associated with a probability
of occurrence pAPBi, i = 1, 2, 3, 4.

Morphology: The P wave and the QRST complex of an APB
are modeled by Hermite functions (see below for definition)
and Gaussian functions, respectively [5]. Since the depolar-
ization of atrial tissue differs between a sinus beat and an
APB, different sets of parameter values are used to generate
the respective P waves.
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Fig. 2. Histogram of atrial tachycardia episode duration and the fitted
probability mass function pAT(l) (solid line) proportional to e−bATl.

B. Atrial tachycardia

The main types of AT are either focal, multifocal, or
reentrant, of which the first two are subject to modeling
since both are paroxysmal and occur as transitional rhythms
between frequent APBs and AF [19]. Focal AT originates
from a single ectopic focus within the atria and is defined
by a heart rate exceeding 100 beats per minute (BPM), a
regular rhythm, and a non-sinus P-wave morphology that
remains the same throughout an AT episode. Multifocal AT
originates from multiple ectopic foci and is also defined by a
higher than normal heart rate, however, the rhythm is irregular
with varying RR and PR intervals and at least three distinct,
non-sinus P-wave morphologies. Although the model puts
emphasis on focal AT, multifocal AT can, if desired, be easily
modeled using a different set of parameter values.

Figure 2 presents the histogram of AT episode duration
obtained from the two above-mentioned public databases com-
bined, highlighting an inversely proportional relation between
the number of episodes and episode duration l, expressed in
number of beats. This relation is modeled by a PMF pAT(l)
accounting not only for AT episodes (l ≥ 3), but also for
isolated APB (l = 1) and atrial couplets (ACs, l = 2):

pAT(l) =


pAPB, l = 1;

pAC, l = 2;

aATe
−bATl, l = 3, . . . , 50;

0, otherwise.

(1)

Based on the two databases, the maximum episode duration
is set to 50 beats. The constant aAT ensures that pAT(l) sums
to 1, and the decay bAT is estimated using least squares (LS)
fitting of pAT(l), l = 3, 4, . . . , 50, to the histogram in Fig. 2.

The RR intervals immediately preceding and following an
episode are given by dRR,p = βAT,pdRR and dRR,f = βAT,fdRR,
whereas the RR intervals within an episode are given by

dRR,i = βATdRR +∆dRR,i, i = 1, . . . , l. (2)

The parameters βAT,p, βAT,f, βAT, and ∆dRR,i are modeled by
uniform PDFs whose limits are determined from the public
databases. The uniform PDF of βAT is based on the ratio
between the average of the three RR intervals immediately
preceding AT and the average of the RR intervals within an
AT episode. Whenever dRR,i in (2) is shorter than 300 ms,
another ∆dRR,i is generated until dRR,i exceeds 300 ms.

IV. MODELING OF VENTRICULAR ARRHYTHMIAS

A. Ventricular premature beats
Rhythm: A VPB is a single-beat arrhythmia and therefore

not associated with a PMF. The two RR intervals immediately
preceding and following a VPB, i.e., dRR,p and dRR,f, are based
on the current RR interval dRR, generated as follows:

• VPB with compensatory pause (VPB1): dRR,p =
βVPB1,pdRR, dRR,f = (2− βVPB1,p)dRR;

• VPB with noncompensatory pause and sinus node reset
(VPB2): dRR,p = βVPB2,pdRR, dRR,f = dRR;

• Interpolated VPB (VPB3): dRR,p = βVPB3,pdRR, dRR,f =
(1− βVPB3,p)dRR; occurs only when dRR > 400 ms,

where βVPB1,p, βVPB2,p, and βVPB3,p are all <1 and uniformly
distributed over an interval determined by established medical
knowledge. Each type of VPB is associated with a probability
of occurrence pVPBi, i = 1, 2, 3. . In AF and AT, VPB2 can
only occur.

Morphology: The QRS complex and the T wave of a VPB
are modeled by their respective linear combinations of the
orthonormal Hermite functions φj(t) [20]–[22], defined by

x(t; τ, σ) =

J−1∑
j=0

cj(τ, σ)φj(σ(t− τ)), (3)

where
φj(t) = Hj(t)(2

jj!
√
π)−1/2e−t2/2, (4)

J is the number of functions, and cj(τ, σ), σ, and τ denote
amplitude, width, and position, respectively. The Hermite
polynomials are recursively given by Hj(t) = 2tHj−1(t) −
2(j − 1)Hj−2(t), j > 2, with H0(t) = 1 and H1(t) = 2t.
Due to orthonormality, only two 2-dimensional optimization
problems need to be solved when fitting the Hermite functions
to data, one for the QRS complex and another for the T-wave,
whereas a 2J-dimensional problem when fitting Gaussian
functions as done in, e.g., [1], [23], [24].

The segmentation of a VPB into QRS complex and T wave
may introduce a jump at the boundary, especially for sloping
ST segments. However, the jump may be reduced by adding
a logistic function to the model [25],

s(t; cs, σs, τs) =
cs

1 + e−σs(t−τs)
, (5)

where cs, σs, and τs denote amplitude, steepness, and position,
respectively.

To fit the Hermite and the logistic functions to a real 12-
lead VPB, the model parameters in (3) and (5) are estimated
using an efficient LS-based, iterative method described in
Appendix B. Then, the simulated X, Y, Z leads are obtained
by applying regression transformation to the simulated 12-lead
VPB [26]. Thus, this approach differs from the one in [5]
where the simulated 12-lead beat was obtained by applying
the Dower transformation to the simulated X, Y, and Z leads.

B. Bigeminy and trigeminy
Modeling of VPBs facilitates modeling of bigeminy, i.e.,

every second beat is a VPB, and trigeminy, i.e., every third
beat is a VPB. Markov chain modeling of transitions between
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Fig. 3. Histogram of bi- and trigeminy episode duration and the fitted
probability mass function pBT(l) (solid line) proportional to e−bBTl.

SR and BT is similar to that of SR and AT, except that a
transition from SR to BT is accompanied by a decision on
whether bigeminy or trigeminy should occur. The probability
of bigeminy to occur relative to trigeminy, denoted pB, is deter-
mined from the MIT–BIH Arrhythmia Database (MITADB);
thus, the probability of trigeminy is (1− pB).

This database was also used to compute the histogram of
BT episode duration, i.e., the durations of bi- and trigeminy
episodes combined into one histogram, see Fig. 3. Similar to
the AT histogram in Fig. 2, the BT histogram highlights an
inversely proportional relation between the number of episodes
and episode duration l, modeled by the following PMF:

pBT(l) =

{
aBTe

−bBTl, l = 4, . . . , 80;

0, otherwise.
(6)

From the database, the default minimum and maximum
episode duration were found to be 4 and 80, respectively, and
the LS estimate of the decay bBT was determined. The constant
aBT ensures that pBT(l) sums to 1.

When a transition from SR to BT occurs, the episode
duration is sampled from the PMF in (6). For bigeminy, sinus
beats and VPBs are placed one after the other, whereas, in
trigeminy, a VPB follows every other two sinus beats. In both
bi- and trigeminy, the RR intervals immediately preceding and
following a VPB are changed by βBT,p and βBT,f, respectively,
whereas, in trigeminy, the RR interval between the two sinus
beats is based on the current RR interval dRR. The uniform
distributions of βBT,p and βBT,f were determined by statistical
analysis of bi- and trigeminy episodes in MITADB.

V. MODELING OF TIME-VARYING NOISE

The modeling of muscle noise and motion artifacts, com-
monly observed in ambulatory monitoring and exercise stress
testing, is paid special attention. The filtered white noise
approach, mentioned in the introduction, serves as the starting
point, but altered in several respects to account for prominent
characteristics such as a time-varying level of muscle noise and
a random occurrence pattern and randomly changing shape of
QRS-like motion artifacts. Hence, the noise added to the noise-
free ECG is assumed to consist of muscle noise xMN(n) and
motion artifacts xMA(n); concerning the modeling of baseline
wander, see Section XI. It should be noted that each lead is
corrupted by individual noise realizations, and, consequently,
no interlead correlation is introduced in the simulated ECG.

A. Muscle noise
Muscle noise xMN(n) is modeled as a nonstationary AR(p)

process, defined by the following difference equation:

xMN(n) = a1,nxMN(n− 1) + · · ·+ ap,nxMN(n− p) + w(n),
(7)

where w(n) is white, Gaussian noise with time-varying vari-
ance σ2

w(n) and p is the model order. The time-varying
parameters a1,n, . . . , ap,n are estimated using a two-step pro-
cedure. Firstly, the parameters of a stationary AR(p) model,
i.e., a1, . . . , ap, are estimated using amplitude-normalized,
PQRST-cancelled ECGs recorded during exercise stress test-
ing [27]. Amplitude normalization, accomplished by means of
the envelope of the cancelled signal, is motivated by the large
variation in noise level. Since the spectral content of muscle
noise is confined to frequencies well below 100 Hz, parameter
estimation is performed on signals sampled at a rate of 200 Hz
to ensure a low-order AR model, taken to be p = 4. Hence,
the sampling rate of the model output needs to be increased to
the rate of the simulated ECG (1000 Hz). Secondly, the poles
related to â1, . . . , âp are made time-varying using a simple
random walk model [2].

While the spectral properties of muscle noise do not vary
much over time, the noise level itself can vary considerably—
two characteristics illustrated by Fig. 4. The following first-
order model of how the standard deviation σw(n) of w(n) in
(7) varies over time is proposed:

xσw
(n+ 1) = νxσw

(n) + vσw
(n), (8)

σw(n) = max(σw,min,mσw
(n) + xσw

(n)), (9)

where vσw
(n) is white, Gaussian noise with variance σ2

v ; thus,
the variance σ2

x of xσw
(n) is σ2

x = σ2
v/(1 − ν2). The initial

value xσw
(0) is set to 0 and the filter parameter ν is con-

strained to [0, 1]. The standard deviation σw(n) is composed
of mσw(n), defining the mean noise level of the simulated
ECG, and xσw

(n), defining its variation. While a constant
mean noise level is used as default, i.e., mσw

(n) ≡ mσw
,

other definitions are certainly possible, e.g., to let mσw
(n)

gradually increase over time to mimic the noise profile of an
exercise stress test. The half-wave rectifier in (9) is introduced
to ensure that σw(n) exceeds a certain minimum level σw,min.

B. Motion artifacts
The starting point for modeling motion artifacts is a train

of sparsely, randomly occurring spikes of different amplitudes
defined by a Bernoulli–Gaussian process, i.e., the spike train,
denoted y(n), is the product of a binary-valued Bernoulli
process b(n) and white, Gaussian noise z(n) with a uniformly
distributed variance σ2

z [28]. The PMF of b(n) is defined by

p(b(n)) =

{
pb, b(n) = 1;
1− pb, b(n) = 0,

(10)

where the probability pb is uniformly distributed. To mimic
the shape of motion artifacts, y(n) is fed to a filter whose
impulse response changes from spike to spike in a random
fashion. The impulse response associated with the k:th spike,
denoted hk(n;θk), is defined by an exponentially increasing
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Fig. 4. Typical examples of (a) time-varying muscle noise (the enve-
lope is displayed in red), and (b) several superimposed muscle noise
power spectra (logarithmic scale) displayed up to 100 Hz, computed in
successive 1-min intervals. The analyzed signals were recorded during
exercise stress testing [27].

part, lasting up to sample Kk, followed by an exponentially
decreasing part lasting up to the filter length L− 1,

hk(n;θk) =

{
α−n
1,k , n = 0, . . . ,Kk − 1;

α−Kk

1,k αn−Kk

2,k , n = Kk, . . . , L− 1,
(11)

where θk =
[
α1,k, α2,k,Kk

]
with 0 ≪ α1,k, α2,k < 1 and

0 ≪ Kk ≪ L−1. The parameters Kk, α1,k, and α2,k change
from spike to spike according to uniform PDFs.

To make the output of hk(n;θk), denoted u(n), smoother
and more realistic-looking, u(n) is bandpass filtered using a
linear filter with infinite impulse response, yielding

xMA(n) = b1,nxMA(n− 1) + · · ·+ bq,nxMA(n− q) + u(n),
(12)

where b1,n, . . . , bp,n are chosen so that the cutoff frequencies
of the filter are positioned at about 10 and 80 Hz and q set
to 4. Similar to (7), the poles of b1,n, . . . , bq,n vary over time
according to the above-mentioned random walk model.

Motion artifacts observed in recordings made during hand-
held AF screening are typically broader in time and more
pronounced than those observed in ambulatory monitoring and
exercise stress testing modeled by (12). A simple approach to
modeling the former type of artifacts is to integrate the output
in (12), resulting in the following difference equation:

xMA(n) = xMA(n− 1) + b1,n∆xMA(n− 1) + · · ·
+ bq,n∆xMA(n− q) + u(n), (13)

∆xMA(n) = xMA(n)− xMA(n− 1). (14)

The model in (13) is identical to the one in (12), except that
xMA(n) is replaced by ∆xMA(n) due to the integration.

VI. ARRHYTHMIA AND NOISE MODELING: EXAMPLES

Arrhythmia modeling is illustrated by Fig. 5, displaying
episode patterns with SR, AT, and AF, and Fig. 6, displaying
low-noise ECGs with VPB, APB, AT, AF, and BT.

0 100 200 300 400 500 600
SR

AT

AF (a)

0 100 200 300 400 500 600
Time (s)

SR

AT

AF (b)

Fig. 5. Simulated episode patterns consisting of sinus rhythm (SR),
atrial tachycardia (AT), and atrial fibrillation (AF), generated using ar-
rhythmia burdens BAT = 0.05 and BAF = 0.5, and mean episode
durations eAT = 5 beats and either (a) eAF = 50 beats or (b) eAF =
300 beats; see Appendix A for parameter definitions.

(a)

(b)

(c)

(d)

(e)

0.
5m

V

0.2s

Fig. 6. Simulated 10-s, low-noise ECGs in leads II (top) and V1

(bottom). (a) Interpolated ventricular premature beat (VPB) and atrial
premature beat in sinus rhythm, (b) atrial tachycardia, (c) VPBs in atrial
fibrillation, (d) ventricular bigeminy, and (e) ventricular trigeminy. The
displayed leads are the same as those of the MIT-BIH Arrhythmia and
Supraventricular Arrhythmia Databases.

Noise modeling is illustrated in Fig. 7 by simulated, single-
lead ECGs paired with similar-looking real ECGs extracted
from recordings made during exercise stress testing, ambula-
tory monitoring, and handheld AF screening.

VII. MODELING THE INFLUENCE OF TIME-VARYING
RESPIRATION

Respiration is manifested in the ECG by relatively periodic
changes in the electrical axis of the heart as well as changes
in heart rate. Since the respiratory frequency depends on
the degree of physical effort, the assumption of a fixed
respiratory frequency in [5] is generalized to become time-
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(a)

(b)

(c)

0.2s 0.
5m

V

Fig. 7. Single-lead, 10-s simulated ECGs (top) and similar-looking real
ECGs (bottom) with (a) muscle noise, (b) motion artifacts, common in
ambulatory monitoring and exercise stress testing, with muscle noise
added, and (c) motion artifacts common in handheld AF screening. The
simulated ECGs are generated using (7), (12), and (13), respectively.
The ECGs in (c) are highpass filtered to facilitate presentation.

varying. Changes in heart rate due to respiration are modeled
by a time-varying respiratory component of the heart rate
variability (HRV) power spectrum. While changes in heart rate
are present in SR only, changes in the electrical axis, modeled
by rotation of the VCG loop, are present also in arrhythmia.

The starting point is the respiratory interval tachogram, i.e.,
a series of successive respiration intervals Tr,0, Tr,1, . . ., which
can be transformed to a time-varying respiratory frequency
Fr(t) through the use of the inverse interval function [29].

A. Morphology influenced by time-varying respiration
The simulated, noise-free VCG signal uVCG(t) is trans-

formed by rotation, defined by the product of three planar
rotations around each of the X, Y, and Z axes,

x(t) = QX(t)QY(t)QZ(t)uVCG(t), (15)

where uVCG(t) is a 3× 1 vector and the rotation matrices

QX(t) =

 1 0 0
0 cosφX(t) sinφX(t)
0 − sinφX(t) cosφX(t)

 , (16)

QY(t) =

 cosφY(t) 0 sinφY(t)
0 1 0

− sinφY(t) 0 cosφY(t)

 , (17)

QZ(t) =

 cosφZ(t) sinφZ(t) 0
− sinφZ(t) cosφZ(t) 0

0 0 1

 , (18)

are defined by the angular signals φX(t), φY(t), and φZ(t).
Introducing a template respiratory cycle ψ(t), the angular

variation is assumed to be proportional to the amount of air
in the lungs, modeled as the product of two logistic functions
accounting for inspiration and expiration [30], [31],

ψ(t; δin, δex) =
1

1 + e−γin(t−δin)

1

1 + eγex(t−δex)
, (19)

where γin and γex define the steepness of inspiration and
expiration, respectively, and δin and δex are positive-valued and
uniformly distributed, defining the approximate duration of
inspiration and expiration, respectively. The angular variation
in each of the leads o ∈ {X,Y,Z} is modeled by

φo(t) = ξo

∞∑
p=0

αo,pψ

(
t−

∑p
q=0 Tr,q

sp
; δin,p, δex,p

)
, (20)

where ξo > 0 is the maximum variation (expressed in degrees),
αo,p is a uniformly distributed amplitude, Tr is the duration of
the template respiratory cycle, and sp = Tr,p/Tr is a scaling
factor ensuring that the p:th cycle has the duration Tr,p.

B. Sinus rhythm influenced by time-varying respiration
The HRV power spectrum is assumed to be composed of a

Gaussian, related to baroreflex regulation (“LF component”),
and another Gaussian, related to parasympathetic stimulation
(“HF component”) [24], see also [5]. For Ω ≥ 0, the time-
varying power spectrum is defined by

SRR(t,Ω) =
PLF(t)√
2πσ2

LF

e
− (Ω−2πFLF)

2

2σ2
LF +

PHF(t)√
2πσ2

HF

e
− (Ω−2πFr(t))2

2σ2
HF ,

(21)
and, due to symmetry, SRR(t,Ω) = SRR(t,−Ω). The powers
PLF(t) and PHF(t) and the center frequency of the HF compo-
nent, set to the respiratory frequency Fr(t), are time-varying,
whereas the widths σ2

LF and σ2
HF and the center frequency FLF

are time-invariant.
An RR interval signal dRR(t), whose properties are de-

scribed by (21), is generated by linear filtering of white noise
vRR(t) so that the LF component is the output of the time-
invariant filter hLF(t) and the HF component is the output of
the time-varying filter hHF(t;Fr(t)),

dRR(t) =
(√

PLF(t)hLF(t) +
√
PHF(t)hHF(t;Fr(t))

)
∗ vRR(t)

+mRR(t). (22)

The function mRR(t) is the time-varying mean RR interval.
Recalling that the power spectrum of filtered white noise, with
variance σ2

v,RR is given by SRR(t,Ω) = |H(t,Ω)|2σ2
v,RR, the

frequency response H(t,Ω) is identified as the square root
of a Gaussian in (21), which after use of the inverse Fourier
transform results in the following two impulse responses:

hLF(t) =
4

√
32

π5

√
σLF

1 + 2σ2
LFt

2
cos(2πFLFt), (23)

hHF(t;Fr(t)) =
4

√
32

π5

√
σHF

1 + 2σ2
HFt

2
cos(2πFr(t)t). (24)

The discrete-time implementation is accomplished by sam-
pling each impulse response symmetrically around t = 0
until its envelope falls below 5% of its peak value; the same
sampling rate as that of dRR(t) and Fr(t) is used. Since the
filters hLF(t) and hHF(t;Fr(t)) are noncausal, each filter needs
to be shifted by half its length to become causal.

For a linearly increasing Fr(t) and a linearly decreasing
mRR(t), the angular function φX(t) and the RR interval signal
dRR(t) are illustrated in Figs. 8(a) and (b), respectively. The
resulting simulated ECG is illustrated in Fig. 8(c).
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Fig. 8. Time-varying respiratory frequency, linearly increasing from 0.2 to 0.5 Hz in a 60-s interval, influencing (a) the angular function φX(t)
(radians), partially describing the variation in the electrical axis, (b) the variation in RR intervals, visible at the end of the RR interval signal dRR(t)
(expressed in seconds), and (c) the simulated ECG in lead X. The noise level is gradually increasing to mimic an exercise stress test.

VIII. MODELING THE INFLUENCE OF HEART RATE ON
THE PQ AND QT INTERVALS

The proposed model accounts for the dependence of PQ
and QT intervals on heart rate, both crucial to deal with when
simulating ECGs in time-varying conditions.

A. PQ–RR dependence
To account for the fact that the PQ interval depends on

heart rate at higher heart rates, a simple nonlinear, memoryless
model is introduced. The model builds on the physiological
finding that the PR interval depends on heart rate at higher
heart rates, while otherwise independent [32]. However, since
the QR duration does not change significantly at higher heart
rates [33], the dependence of the PQ interval dPQ(dRR(k))
on the preceding RR interval dRR(k) of the k:th beat can be
modeled by the following expression:

dPQ(dRR(k)) ={
dPQ0

+ κPQ(dRR(k)− dRR,cp), dRR(k) < dRR,cp;

dPQ0
, dRR(k) ≥ dRR,cp,

(25)

where dPQ0
is the baseline PQ interval observed at lower heart

rates, κPQ is the slope of the linear dependence, and dRR,cp
is the change point for the dependence. Thus, assuming that
P wave duration is independent of heart rate, P wave onset is
positioned dPQ(dRR(k)) seconds before QRS onset.

The parameters dPQ0
, κPQ, and dRR,cp can be estimated by

analyzing the dependence between PQ and RR intervals in
subjects performing exercise stress testing. Then, the range of
RR intervals is divided into BRR bins of equal width, and the
median of the PQ intervals contained in each bin is computed,
resulting in dmed(b) ≡ dPQ(dRR(b)), b = 1, . . . , BRR. The bin
corresponding to the change point is estimated by minimizing
the following LS error function with respect to b0:

ε(b0) =

b0∑
b=1

w(b)(dmed(b)− dPQ0
− κPQ(dRR(b)− dRR,cp))

2

+

BRR∑
b=b0+1

w(b)(dmed(b)− dPQ0
)2, (26)

thus yielding d̂RR,cp = dRR(b̂0). The weights w(b) are taken
as the number of subjects contributing to the b-th bin.
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Fig. 9. (a) The median of the PQ intervals contained in each RR interval
bin (red curve). The fitted function (black curve) is given by the estimates
d̂PQ0

= 152 ms, κ̂PQ = 0.358, and d̂RR,cp = 520 ms; d̂RR,cp
is indicated by a vertical dotted line. (b) Simulated ECG with PQ–RR
dependence modeled at low and high heart rates, and (c) simulated
ECG without modeling of PQ–RR dependence, causing the P waves to
be incorrectly hidden in the T-waves at a high heart rate.

The estimation procedure is illustrated by analyzing ECGs
recorded from healthy subjects performing exercise stress
testing [34]. Following spatial periodic component analysis
to improve the signal quality, the PQ interval was determined
using wavelet-based delineation of P wave onset and QRS on-
set [35]. Figure 9(a) shows the median of all PQ intervals in
each of the RR interval bins to which the function in (25)
is fitted. Figures 9(b) and (c) show simulated ECGs with
and without inclusion of PQ–RR dependence, respectively.
Without PQ–RR dependence, P waves occur too far away from
the QRS complex at high heart rates, thus not reflecting normal
electrophysiological behavior.

B. QT–RR adaptation
The lack of QT–RR adaptation was the main concern raised

by the expert medical doctors when assessing the realism of
simulated ECGs in [5]. This issue is addressed by introducing
an input–output model accounting for QT interval adaptation
to RR interval changes [36]; the adaptation is composed of
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a fast, initial phase extending a few RR intervals and a slow
phase lasting for several minutes [37].

Since the model operates on a sample-to-sample basis, the
RR intervals dRR(k) and the QT intervals dQT(k) are both
evenly resampled at a rate of 4 Hz, resulting in xRR(n) and
xQT(n), respectively. The input–output relation between the
preceding RR intervals and the QT interval is defined by a
finite impulse response filter, whose output is denoted xRR(n),
followed by a memoryless nonlinear function. The impulse
response h(n) is a truncated exponential,

h(n) =
(1− αQT)

(1− αN
QT)

αn
QT, n = 0, . . . , N − 1, (27)

whose length N corresponds to 300 s based on physiological
considerations. The exponential decay αQT (0 < αQT < 1) is
related to the time constant τ through αQT = e−

1
τ , where τ is

set to 25 s [38]. Based on the results in [36], the model output
xQT(n) is taken to be inversely proportional to xRR(n),

xQT(n) = 0.49− 0.09

xRR(n)
. (28)

The QT interval of the k:th beat is then modified by
resampling the T wave while maintaining the QRS duration
so that the QT interval becomes equal to that indicated by the
model, where dQT(k) is taken from the corresponding xQT(n).
The model for QT–RR adaptation has proven useful not only
in SR [36] but also in AF [39].

IX. VALIDATION OF THE SIMULATION MODEL

Unless specified in the following, the simulated ECGs are
generated using the default parameter values listed in [?].

A. Signal realism assessed by medical doctors

The realism of the simulated ECGs was assessed using a
dataset consisting of 100 15-s simulated, single-lead ECGs and
another dataset consisting of 100 15-s real, single-lead ECGs
recorded during either ambulatory monitoring, exercise stress
testing and AF screening using a handheld device. Different
lead positions were included. The datasets were approximately
matched with regard to occurrence of arrhythmia and noise
level. The datasets were presented blindly to three medical
doctors with extensive experience in ECG interpretation, who
were asked to identify the simulated ECGs.

B. Quality control and training using simulated ECGs

Simulator usefulness is illustrated by a signal quality control
problem of identifying transient noise, abundant in AF screen-
ing, with the aim to reduce the number of falsely detected
beats. The problem was addressed using a convolutional neural
network (CNN) [40] to exclude false beat detections from
the RR interval series before performing rhythm-based AF
detection [41]. Training of the CNN was based on a subset of
30-s ECGs of the StrokeStop I screening database [42], where
detected events outputted by a QRS detector was manually
annotated as true or false. A disjoint subset of the StrokeStop I
database was then used for testing, manually annotated by

experts to confirm AF in the presence of noise, artifacts, and
other non-AF arrhythmias.

Exactly the same problem is addressed here, except that
simulated ECGs are used instead for training. The training
set consists of true and false beat detections, produced using
(13) with two different settings of pb and σ2

z , defining the
Bernoulli–Gaussian process, so that either low or high levels
of motion artifacts result. The low level is given by uniform
PDFs of pb and σ2

z defined by the intervals [0.001, 0.01] and
[0.01, 0.05], respectively, and the high level by uniform PDFs
defined by [0.1, 0.5] and [0.05, 0.1], respectively. The overall
muscle noise level mσw

is assigned a uniform PDF defined by
[10, 50] µV and σv = 0. While true beat detections are known
from the simulation of the noise-free ECG, false detections
are determined using a QRS detector: a detected event is
deemed false whenever its occurrence time deviates more than
250 ms from that of a true beat detection. In total, 33,453 true
detections and 10,498 false detections are obtained, i.e., about
the same sizes as those used for training and validation in [40].
The simulated ECGs are composed of different combinations
of SR, AT, AF, and bi- and trigeminy.

The CNN, trained on simulated ECGs, is tested on the
above-mentioned, disjoint subset of the StrokeStop I database,
using sensitivity (Se), false positive rate (FPR), and positive
predictive value (PPV) to describe AF detection performance.

C. AF detection and training using simulated/real ECGs
Another illustration of simulator usefulness is provided

by addressing AF detection using a CNN either trained on
simulated ECGs and tested on real ECGs, or vice versa. Thus,
the approach taken here to AF detection differs from the one
in Section IX-B which involves classical threshold testing. The
data sets described in Section IX-A were employed for training
and testing, though slightly modified to ensure that the same
number of AF and non-AF records were included.

AF detection was based on a GoogleNet CNN fed with RGB
scalograms, obtained by computing the continuous wavelet
transform of the baseline-corrected and amplitude-normalized
ECG. Since the training sets were small, they were augmented
by randomly shifting each ECG 15 times in the range of 1 to
5 s. Moreover, the training sets were split by the ratio of 70:30,
where 30% were used for validation.

Depending on the rhythm which dominated the 15-s record,
each ECG was annotated as either AF or non-AF. Similar to
Sec. IX-B, the detector output was compared to the annotations
on a record basis.

X. RESULTS

A. Signal realism assessed by medical doctors
The outcome of the assessment is presented in Table I.

Ideally, from a simulation standpoint, the right column should
be 100 to indicate that all ECGs, whether real or simulated,
are assessed as realistic. The results in Table I show that the
simulated ECGs exhibit considerable realism since the average
number assessed as realistic (79 out 100) is about the same as
that of real ECGs (84 out of 100). The assessment of doctor #2
deviates from those of the other two doctors as more simulated
ECGs are assessed as unrealistic.



SUBMITTED TO IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2023 9

TABLE I
OUTCOME OF REALISM ASSESSMENT BASED ON REAL AND SIMULATED

ECGS. THE BOLDFACE NUMBER IS THE AVERAGE OF THE NUMBERS

WITHIN PARENTHESIS PRODUCED BY THREE MEDICAL DOCTORS.

Assessed as realistic

100 real ECGs 84 (91/80/81)

100 simulated ECGs 79 (90/63/84)

TABLE II
QUALITY CONTROL AND RELATED AF DETECTION PERFORMANCE,

EXPRESSED IN TERMS OF SENSITIVITY (SE), FALSE POSITIVE RATE

(FPR), AND POSITIVE PREDICTIVE VALUE (PPV).

Se (%) FPR (%) PPV (%)

CNN-based quality control
trained on simulated ECGs 98.5 68.9 5.8

CNN-based quality control
trained on real ECGs [40] 99.0 65.0 6.2

No quality control [40] 99.0 87.5 4.6

B. Quality control and training using simulated ECGs

Table II presents AF detection performance when either
real or simulated ECGs are used for training of the CNN for
quality control. Using simulated ECGs, a slight decrease in
the sensitivity results (0.5%), while FPR increases by 3.9%.
Nonetheless, compared to the performance obtained without
quality control, the improvement is still substantial.

C. AF detection and training using simulated/real ECGs

Table III shows that the CNN-based AF detector performs
equally when simulated and real ECGs are used for training,
although real ECGs yield a modest increase in FPR and PPV;
the resulting performance is further discussed below.

XI. DISCUSSION

Simulation models have gone through a renaissance in re-
cent years thanks to the introduction of generative adversarial
network (GAN) models in machine learning. Such models can
generate ECGs indistinguishable from real ones—an achieve-
ment which has proven useful for improving classification
and denoising performance [43], [44]. When the aim is to
understand how algorithmic performance is influenced by
various factors such as the influence of f-waves on ECG-
derived respiration [45] or the influence of different lead
transformations on the delineation of the QT interval in the
presence of AF [39], the proposed simulator offers intuitive

TABLE III
AF DETECTION PERFORMANCE IN TERMS OF SE, FPR, AND PPV.

Se (%) FPR (%) PPV (%)

CNN-based AF detection
trained on simulated ECGs 62.0 20.0 75.6

CNN-based AF detection
trained on real ECGs 62.7 16.3 80.0

control of such factors through mathematical modeling, while
no such control is offered by current GAN models.

An important incentive for pursuing the present study is
the simulation of ECGs exhibiting a higher degree of com-
plexity/variability than those of the simulator in [5]. This is
achieved by modeling arrhythmias other than SR and AF and
by introducing time-varying signal and noise characteristics.
In doing so, the simulated ECGs are expected to have a broad
applicability in the realm of ECG analysis, especially when
robust detection and estimation methods are to be designed.
While the higher degree of detail advances the realism of sim-
ulated ECGs mimicking those observed during AF screening
and monitoring, the achieved degree is likely insufficient to
simulate ECGs observed during drug evaluation, calling for
modeling of additional physiological factors.

The proposed modeling framework, building on a discrete-
time Markov chain, is easily expanded to include other ar-
rhythmias than those considered. The Markov chain is defined
so that any arrhythmia must be followed by SR, representing
a means to hold down the number of transition probabilities
to be set. This particular definition facilitates the modeling of
RR intervals inside an AT episode as they can be related to
RR intervals in SR. Even if this definition influences to some
extent the realism of the simulated ECGs, the evaluation of
algorithmic performance is likely not much influenced by the
transitions to SR, nor should be classifier training. However, if
SR-transitioning is unacceptable, transition probabilities from
one arrhythmia to another can be introduced. The Markov
chain model is well-suited to handle switching between differ-
ent rhythms with fixed burdens, whereas switching in the pres-
ence of gradually changing burdens calls for a more advanced
Markov model with time-varying transition probabilities [46].

Noise represents an essential component of any ECG sim-
ulator. Noise recordings may be obtained from real ECGs
that result from placing electrodes on the limbs in positions
where only noise is visible; the most well-known collection
of such noise recordings is the NSTDB. Another approach
is to subtract the cardiac activity from real ECGs using an
average [27] or median [47] beat, possibly in combination
with a technique to reduce the influence of QRS-related
residuals [27]. Ideally, these two approaches produce realistic
noise, however, the electrodes may not necessarily be placed
at positions where the cardiac activity is absent (in fact,
residual activity can be observed in some of the motion artifact
recordings of the NSTDB), nor does the average/median beat
offer sufficient cancellation of the cardiac activity when, e.g.,
ectopic beats occur or the influence of respiration is large [11].
Another disadvantage is the half-hour duration of the noise
recordings, with implications on simulation uniqueness. On the
other hand, the proposed statistical noise model can generate
recordings of any length and offers control of time-varying
noise characteristics such as the power spectrum of muscle
noise and the shape/intensity of motion artifacts.

Of the three main types of noise, i.e., baseline wander,
muscle noise, and motion artifacts, the first-mentioned is the
least critical to model and therefore not considered in the
present study. Filtered-noise models of baseline wander range
from linear, time-invariant, lowpass filtering [48] to time-
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varying AR modeling [1], [2]; in both these cases, the input
noise to the linear system is white and Gaussian

The starting point of ECG simulation in [5] was the leads X,
Y, and Z to which noise was added, then transformed by the
Dower matrix to obtain the 12-lead ECG. Using the two-lead
NSTDB, lead Z was derived from leads X and Y by means of
a memoryless, nonlinear transformation. When evaluating per-
formance, e.g., that of multi-lead principal component analysis
for f wave extraction [11], the results may be misleading due to
the artificially introduced interlead correlation. Using instead
the proposed noise model, not only is spatially uncorrelated
noise easily generated, but so can partially correlated noise,
e.g., motion artifacts occurring at the same time in different
leads but with shapes that differ between leads thanks to the
stochastic impulse response in (11); use of the latter case
requires a minor modification of the noise model.

Several simulator parameters have been assigned default
values derived from the thoroughly annotated MITADB,
which, despite its limited size, is commonly used for research
in ECG analysis. As a result, the simulator attempts to capture
the physiological variability of MITADB. In addition, the
simulator features models developed using other databases as
well as established medical knowledge.

The question ‘Does the simulation model generate realistic
ECGs?’ is not easily answered due to the difficulty to define
a ground truth to which the simulated ECGs can be assessed.
One answer is to let experienced medical doctors assess the
realism of simulated ECGs. While the significance of such an
assessment should not be exaggerated, it nonetheless provides
an indication of whether essential features are captured by
the simulated ECGs. Indeed, Table I shows that the doctors
had difficulties to distinguish simulated from real ECGs as the
number of simulated ECGs assessed as realistic does not differ
that much from the number of real ECGs assessed as realistic.
The main reason simulated ECGs are assessed as unrealistic is
due to that certain VPBs had too long coupling intervals and
too low QRS amplitudes—issues which are easily addressed
using other model parameter values, possibly in combination
with non-uniform PDFs of the βVPB-parameters. The number
of simulated ECGs assessed as unrealistic due to noise and
artifacts was about the same as the corresponding one of
real ECGs, and, therefore, it may be concluded that the noise
models are realistic.

Table II demonstrates the potential of using simulated ECGs
to train a CNN so that false detections can be excluded before
AF detection takes place: the performance is essentially the
same irrespective of whether real or simulated ECGs are used
for training. The slight difference may be attributed to the
noise/artifact models and a too limited variability in beat
morphology. Indeed, screening for AF is a scenario where
sparse, imbalanced data is typically encountered, exemplified
by a study where 278 out of 80,149 ECGs were interpreted as
AF [42]. To address this dramatic imbalance when training a
CNN, the AF data set can be augmented with simulated ECGs
with similar characteristics with respect to, e.g., AF burden,
APB and VPB occurrence, and noise.

The poor AF detection performance presented in Table III
is largely explained by the facts that training and testing

is performed on different data sets, small data sets contain
varying leads, and considerable signal complexity due to the
presence of various non-AF arrhythmias. However, these re-
sults should be viewed in light of the survey recently presented
in [10] which shows that a large number of studies reporting
near-perfect AF detection performance make use of the same
database for training and testing and include the same patient
in both the training and the test sets. Concerning simulator
usefulness, the results in Table III which show that training
using real ECGs does not offer much better performance than
does training using simulated ECGs suggest that the simulated
ECGs are realistic.

XII. CONCLUSIONS

The proposed ECG simulator advances the modeling of ar-
rhythmias and noise/artifacts by introducing time-varying sig-
nal characteristics with the aim to increase signal complexity.
The three-part validation suggests that the simulated ECGs are
realistic and therefore of use for the evaluation of algorithmic
performance in various applications. Such applications include
data augmentation of incomplete databases and benchmarking
of algorithms, e.g., for arrhythmia detection, noise detection,
ECG-derived respiration, and QT–RR adaptation.
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APPENDIX A. TRANSITION PROBABILITIES OF THE
MARKOV CHAIN MODEL

The transition probabilities of the Markov chain model
in Sec. II can alternatively be defined in terms of rhythm
burden and mean episode duration, applying to each of the
arrhythmias in the set G = {AT,AF,BT,VPB}. The rhythm
burden Bg is defined as the ratio of the expected arrhythmia
duration Tg and the total duration T of the simulated ECG,

Bg =
Tg
T
, g ∈ G. (29)

The mean episode duration eg , expressed in number of beats,
is determined from the PMFs pg(l), except for a VPB which
is a single-beat arrhythmia and therefore eVPB = 1. Moreover,
the average RR interval d̄RR,g , expressed in seconds, is needed
which, depending on arrhythmia, is determined by the models
in Sec. VII-B and [5], except for the average RR interval
d̄RR,VPB,g of a VPB occurring in g ∈ {SR,AT,AF} which
is determined by the RR interval preceding the VPB.

Although SR is not an arrhythmia, its presence is, in the
name of conformity, also associated with a ”burden”, given by

BSR =
nSR eSR d̄RR,SR

T
, (30)

where nSR is the number of SR episodes and eSR is the mean of
the exponentially distributed SR episode duration (expressed
in beats). By definition, the rhythm burdens sum to one,

BSR +BAT +BAF +BBT +BVPB = 1. (31)
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The BT burden, unlinked to a VPB state, is given by

BBT =
nSR pSR→BT eBT d̄RR,BT

T
, (32)

where pSR→BT is the transition probability between SR and
BT. Similar to (30), the AT and AF burdens are given by

BAT =
nAT eAT d̄RR,AT

T
, (33)

BAF =
nAF eAF d̄RR,AF

T
, (34)

where nAT and nAF are the number of AT and AF episodes,
respectively. The burden of the VPB states is split between the
SR, AT, and AF states, proportionally to BSR, BAT and BAF:

BVPB = BVPB,SR +BVPB,AT +BVPB,AF, (35)

BVPB,g =
ng pg→VPB d̄RR,VPB,g

T
, g ∈ {SR,AT,AF}, (36)

where d̄RR,VPB,g depends on βVPB,p and βVPB,f introduced in
Sec. IV-A. Before the transition probabilities can be deter-
mined, nSR, nAT, nAF, and dSR need to be determined, whereas
T , eg , and d̄RR,g for g ∈ {SR,AT,AF} are assumed to be
known. The probabilities pBT→SR, pVPB→SR, pVPB→AT, and
pVPB→AF are always set to 1.

The number of AT and AF episodes can be related to the
other variables by realizing that the number of transitions
to either the AT states or the AF states is the sum of the
transitions from the SR state and the respective VPB states:

nAT = nSR pSR→AT + nAT pAT→VPB, (37)
nAF = nSR pSR→AF + nAF pAF→VPB. (38)

The number of SR episodes is determined by the insight that
the transition probabilities from SR to any of the arrhythmias
in G must sum to one,

pSR→VPB + pSR→AT + pSR→AF + pSR→BT = 1. (39)

Using the above equations, nSR is found to be

nSR =
BATd̄RR,VPB,ATT −BVPB,ATeATd̄RR,ATT

d̄RR,VPB,ATeATd̄RR,AT
+

BBTT

eBTd̄RR,BT
+

BAFd̄RR,VPB,AFT −BVPB,AFeAFd̄RR,AFT

d̄RR,VPB,AFeAFd̄RR,AF
+

BVPB,SRT

d̄RR,VPB,SRd̄RR,SR
.

(40)

Due to the minus sign in the numerator of the first and third
addends, BVPB,AT and BVPB,AF need to be constrained by a
threshold that depends on BAT and BAF, respectively, to avoid
a negative nSR. The mean SR episode duration is given by

eSR = max

(
TBSR

nSRd̄RR,SR
, 1

)
. (41)

The desired transition probabilities are determined from (32),
(33), (34), (36), (37), and (38) together with that both
pAT→SR + pAT→VPB and pAF→SR + pAF→VPB are equal to 1.

APPENDIX B. FITTING HERMITE FUNCTIONS

Estimation of the Hermite function parameters τ and σ is
easily accomplished by the grid search minimization proposed
below. By including the logistic function in the model, a five-
dimensional minimization problem arises which here is solved
by an iterative, LS-based, two-step estimation procedure where
estimation of the Hermite parameters is followed by estimation
of the logistic parameters cs, τs, and σs, then repeated until
a stopping criterion is met. Although the procedure is subop-
timal, it has been found to converge to parameter estimates
which provide an excellent fit.

0. The isolectric segment of each beat is set to zero by
subtracting the amplitude just before Q wave onset. The
procedure is initiated by ĉs,0 = 0 and i = 1.

1. Let yi(t) be the “jump-corrected” observed signal x(t),

yi(t) = x(t)− s(t; ĉs,i−1, τ̂s,i−1, σ̂s,i−1). (42)

Then, τ and σ are estimated using the LS criterion

[τ̂i, σ̂i] = argmin
τ,σ

∣∣∣∣∣∣yi(t)−
J−1∑
j=0

cj,i(τ, σ)φj (t− τ, σ)

∣∣∣∣∣∣
2

,

(43)
where the amplitudes cj,i (τ, σ) are easily determined
thanks to orthonormality,

cj,i (τ, σ) =

∫ +∞

−∞
yi(t)φj(t− τ, σ)dt. (44)

2. The parameters defining the logistic function are esti-
mated by minimizing the LS criterion

[ĉs,i, τ̂s,i, σ̂s,i] = arg min
cs,τs,σs

|ei(t)− s(t; cs, τs, σs,)|2 ,
(45)

where ei(t) = x(t) −
∑

j cj,i (τ̂ , σ̂)φj (t− τ̂ , σ̂). To
ensure that the QRS-to-T transition at time tp is smooth,
ĉ(QRS)
s,i and ĉ(T)

s,i must have the same value, accomplished
by the following modification:

ĉ(w)
s,i =

s(tp; ĉ
(QRS)
s,i , τ̂ (QRS)

s,i , σ̂(QRS)
s,i ) + s(tp; ĉ

(T)
s,i, τ̂

(T)
s,i , σ̂

(T)
s,i)

2s(tp; 1, τ̂
(w)
s,i , σ̂

(w)
s,i )

,

(46)

where w ∈ {QRS,T}. Using the resulting estimates, the
fitted function is given by

x̂(t) =

J−1∑
j=0

cj,i(τ̂i, σ̂i)φj (t− τ̂i, σ̂i)−ĉs,is(σ̂s,i(t−τ̂s,i)).

(47)
yielding the LS error εi = |x(t)− x̂(t)|2.

3. The iterations are stopped when εi drops below a certain
threshold (typically already after one or two iterations),
no longer improves after a certain number of iterations,
or when ĉ(QRS)

s,i and ĉ(T)
s,i have opposite signs. If none of

these criteria is fulfilled, i = i+ 1, step 1 is repeated.
The estimates ĉ0 = c0(σ̂, τ̂), . . . , ĉJ−1 = cJ−1(σ̂, τ̂), σ̂, τ̂ , ĉs,
σ̂s, and τ̂s are saved in a library of synthesized VPBs.

For the 987 low-noise 12-lead VPBs extracted from the
INCART database [18] and saved in the library, J = 6
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functions were fitted to the QRS and J = 4 functions to the
T wave of each lead, resulting in an average fitting error of
5.4% irrespective of whether the logistic function was used or
not. Thus, VPBs can be modeled by Hermite functions alone.
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[38] C. Pérez et al., “Characterization of impaired ventricular repolarization
by quantification of QT delayed response to heart rate changes in stress
test,” in Proc. Comput. Cardiol., vol. 47, 2020, pp. 1–4.

[39] A. Martı́n-Yebra, L. Sörnmo, and P. Laguna, “QT interval adaptation to
heart rate changes in atrial fibrillation as a predictor of sudden cardiac
death,” IEEE Trans. Biomed. Eng., vol. 69, pp. 3109–3118, 2022.

[40] H. Halvaei et al., “Identification of transient noise to reduce false
detections in screening for atrial fibrillation,” Front. Physiol., vol. 12, p.
672875, 2021.
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