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Deep Learning for Chaos Detection

In this article we study how a chaos detection problem can be solved using Deep Learn-

ing techniques. We consider two classical test examples: the Logistic map as a discrete

dynamical system, and the Lorenz system as a continuous dynamical system. We train

three types of Artificial Neural Networks (Multi-Layer Perceptron, Convolutional Neural

Network and Long Short-Term Memory cell) to classify time series from the mentioned

systems into regular or chaotic. This approach allows us to study biparametric and tri-

parametric regions in the Lorenz system due to their low computational cost compared to

traditional techniques.

Keywords: chaos detection, Deep Learning, Lyapunov Exponents, Logistic map, Lorenz

system

AMS codes: 34D08, 37M10, 68T07.
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Deep Learning for Chaos Detection

Deep Learning techniques have recently been introduced in the area of Dynamical Systems.

These new tools can speed up studies and permit us to go deeper into simulations. Of all

the problems in which these methodologies can help us, we focus on the problem of detect-

ing chaos, showing how Deep Learning allows, in a fast way, to handle large amounts of

data, such as 2D and 3D parametric phase space studies, and therefore they can be powerful

techniques in global analysis.

I. INTRODUCTION1

One of the main topics in Dynamical Systems is the detection of chaotic regions in the parame-2

ter space. The classical technique to detect chaos is the use of the Lyapunov Exponents (LEs)1,2,4.3

Recently, some authors have applied Deep Learning (DL) techniques in Dynamical Systems to4

handle different tasks, mainly for forecasting problems7,19, but also for chaos detection3,6,14. Here,5

we are interested in the latter of these tasks.6

In this paper, we choose three common DL architectures (Multi-Layer Perceptron, Convolu-7

tional Neural Network and Long Short-Term Memory cell) for chaos detection in time series from8

a dynamical system. We provide a detailed analysis of the learning process of the networks, and9

we are able to use the trained networks to reproduce 1D, 2D and 3D parametric plots. Remarkably,10

we are able to obtain the behaviour of a dynamical system in regions of the parameter space where11

the DL techniques have not been trained. Moreover, as far as we know, this is the first time in the12

literature that a dense 3D parametric plot of a continuous dynamical system, such as the Lorenz13

system, is represented.14

This paper is organized as follows. In Section II we describe the chosen DL networks giving15

a brief introduction of each of them. In Sections III and IV we perform the chaos detection task16

in the Logistic map and the Lorenz system, respectively. We give a detailed description of the17

datasets and network architectures, and comment on the obtained results. In Subsection IV E we18

present 2D and 3D parametric diagrams of the Lorenz system computed with the trained networks.19

Finally, we draw some conclusions in Section V.20

All the DL experiments in this paper have been performed using PyTorch17. The code was21

executed on a Linux box with dual Xeon ES2697 with 128Gb of DDR4-2133 memory with a22

RTX2080Ti GPU.23
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II. INTRODUCTION TO THE DEEP LEARNING ARCHITECTURES USED TO24

DETECT CHAOS25

Deep Learning9,11 is the branch of Machine Learning that uses Deep Artificial Neural Net-26

works to learn from data with several levels of abstraction. Artificial Neural Networks (ANNs) are27

formed by artificial neurons (loosely inspired by their biological counterparts) organized in layers.28

Of all the DL architectures found in the literature, the Multi-Layer Perceptron (MLP) is the29

simplest one and it is widely used for this reason. Convolutional Neural Networks (CNNs) and30

Long Short-Term Memory networks (LSTMs) have been previously used to analyse time series31

data3,6,14, as in our chaos detection experiments. We have tested these three well-known ANN32

architectures to detect chaos.33

For the MLP, we start with a similar architecture to that used in Ref. 3. For the CNN and LSTM,34

we use a not very complicated structure and we do not perform hyperparameter optimization. A35

more detailed study of the network architectures may improve our results and it is part of our36

future research.37

Remark II.1. Although our mathematical problem is called chaos detection, from the point of38

view of DL it is a binary classification task instead of a detection task: our networks classify39

the input vectors (time series corresponding to an orbit of a dynamical system) into two disjoint40

categories (regular vs chaotic).41

Multi-Layer Perceptron. One of the fundamental Deep Learning architectures is the Multi-

Layer Perceptron9. It operates by taking a linear combination of the inputs in each layer, followed

by a non-linear activation function. In Figure 1A we have an example of an MLP whose output y

is given by

y =W [3]A (W [2]A (W [1]x+b[1])+b[2])+b[3],

where x is the input, W [l] is the matrix of weights of the connections between layer l−1 and layer42

l (layers are enumerated from 0 to 3 from left to right), b[l] represents the bias vector of layer l,43

and A is a non-linear activation function such as the Rectified Linear Unit ReLU(x) = max(0,x),44

the sigmoid σ(x) = (1+ e−x)−1 or the hyperbolic tangent tanh(x) = 2σ(2x)−1.45

Convolutional Neural Network. Convolutional Neural Networks were originally developed46

for image recognition tasks13, and are organized into convolutional and pooling layers to capture47

features and reduce dimensions, respectively. One of the key features of CNNs is that they share48
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Networks.pdf

Figure 1. Simple graphic representations of the architectures of (A) an MLP with two hidden layers, (B) a

1D CNN with three channels in the represented convolutional layers, and (C) a generic LSTM cell.

weights across multiple neurons5 for more efficient processing. They handle different input for-49

mats such as vectors, matrices, or 3D tensors, depending on the type of convolution used. In this50

paper, the input data is in vector form, and therefore we focus on the use of 1D CNNs, as depicted51

in Figure 1B.52

To exemplify how a CNN works, we show how to compute the value of the shaded neuron in

the second layer of the network in Figure 1B, which is given by

x[1]0,0 = A

(
b[1]0 +

1

∑
j=0

2

∑
k=0

w[1]
j,k,0 x[0]j,k

)
,

where x[l]j,k is the activation of neuron j of channel k at layer l (the first index for the neurons,53

the channels and the layers is 0), W [1]
0 = (w[1]

j,k,0) j=0,1;k=0,2 is the weight matrix, b[1]0 is the bias54

vector, and A is the activation function. We could have more complex CNN architectures10,18 if55

we consider stride, dilation, residual connections, . . .56

Long Short-Term Memory. Recurrent Neural Networks (RNNs) are commonly used for se-57

quential processing since they retain some information from past inputs. Long Short-Term Mem-58

ory cells12 represent a specific type of RNN architecture. Among the distinctive elements of an59

LSTM are the hidden state h and the cell state c, which are the elements keeping information from60

previous steps. Computations performed by such type of memory cells (represented in Figure 1C)61

are62

f (t) = σ

(
W [x]

f x(t)+W [h]
f h(t −1)+b f

)
, g(t) = tanh

(
W [x]

g x(t)+W [h]
g h(t −1)+bg

)
,

i(t) = σ

(
W [x]

i x(t)+W [h]
i h(t −1)+bi

)
, c(t) = f (t)⊗ c(t −1)+ i(t)⊗g(t),

o(t) = σ

(
W [x]

o x(t)+W [h]
o h(t −1)+bo

)
, y(t) = h(t) = o(t)⊗ tanh(c(t)),

(1)

where x(t) is the external input, y(t) is the usual output, W [x,h]
∗ and b∗ represent the matrix of63

weights and the bias term for the external input or the hidden state, ⊗ is the element-wise product,64

and σ and tanh are the activation functions. Roughly speaking, as a consequence of the application65

of the sigmoid activation function in left formulas in (1), f , i and o are deciding which information66

is kept and which is removed in the output and the hidden and cell states.67
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III. TEST EXAMPLE OF DISCRETE DYNAMICAL SYSTEMS: THE LOGISTIC MAP68

The Logistic map16 is a well-studied model that describes the dynamics of animal populations.69

It is given by the equation70

xn+1 = αxn(1− xn), (2)

where xn is the variable in the n-th iteration and α is the bifurcation parameter. Note that since (2)71

is symmetric with respect to x = 0.5, the evolution of the initial condition x0 is exactly the same72

as the one of 1− x0. The Lyapunov Exponent for this map is73

LE = lim
k→+∞

1
k

k−1

∑
n=0

log|α(1−2xn)|, (3)

where log is the natural logarithm.74

A. Dataset75

To prepare the training, test, and validation sets for the Logistic map, we generate multiple raw76

datasets of time series samples, which are subsequently screened. Each raw dataset comprises77

time series with a fixed length of 1000. The initial condition x0 is fixed for all the time series in78

each raw dataset (x0 ∈ {0.5,0.9} for training dataset, x0 = 0.75 for validation, and x0 = 0.8 for79

test), and the bifurcation parameter α takes 12000 equidistant values in the interval [0,4). The80

time series of the raw datasets are the last 1000 time steps obtained applying the iterative formula81

(2) for 12000 time steps. The LE of each sample is approximated applying formula (3) with the82

last 11000 time steps of the time series (the first 1000 time steps are considered as transient time).83

From the union of the raw datasets with x0 = 0.5 and x0 = 0.9, we obtain the training dataset. In84

particular, we split the joint dataset into regular and chaotic samples (chaotic if the approximated85

LE is greater than 0.1, to reduce the transient behaviour as done in several studies; and regular86

otherwise), obtaining 21791 regular and 2209 chaotic time series. We delete the samples that are87

similar (we consider that two samples are similar if their distance in infinity norm is less than88

10−4) to avoid repeated time series. In this process, the number of chaotic samples is not reduced,89

but the number of regular samples decreases to 6402. After shuffling these datasets (to have time90

series from different space regions in the subsequent selection), we choose 2000 chaotic and 200091

regular samples for the training set.92
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Validation dataset is obtained from raw dataset with x0 = 0.75 (it contains 10896 regular and93

1104 chaotic samples). The training, test and validation datasets have to be pairwise disjoint.94

So, we drop any validation sample similar in the previous sense to a training sample. After this95

process, we have 1268 regular and 1104 chaotic time series. We build the validation dataset with96

1000 regular and 1000 chaotic samples randomly taken.97

For test dataset we use raw dataset with x0 = 0.8 (it has 10896 regular and 1104 chaotic time98

series). After data selection, the number of chaotic samples does not change, but the number of99

regular ones decreases to 5705. After shuffling, we build the test dataset with 1000 regular and100

1000 chaotic samples.101

To perform a supervised DL training as the one that concerns us, we need the network inputs102

(that we have already created) and the expected labels, i.e., whether the inputs are regular or103

chaotic. We label a times series with a 0 if it is regular and with 1 if it is chaotic. To input the104

data into the networks, we split each dataset into different batches. The batch sizes of the training,105

validation and test sets are 128, 100 and 100, respectively (in the case of the training set, the last106

incomplete batch is deleted).107

B. Multi-Layer Perceptron108

Our architecture is inspired by the one in Ref. 3, with some changes as the overfitting technique109

(instead of dropout, we perform early stopping and L2-regularization). It has 5 layers: an input110

layer with 1000 neurons (the length of the input), three hidden layers with 500 neurons each one,111

and an output layer with 2 neurons (regular vs chaotic). The ReLU activation function is applied112

in the hidden layers, and the softmax function in the output layer. This network is trained for 2000113

epochs, saving the first model with the lowest value of the loss function for the validation dataset114

(early stopping technique). Here we use the Cross-Entropy Loss with weight decay 10−5 for the115

L2-penalty, optimized with the Stochastic Gradient Descent with learning rate 10−3.116

C. Convolutional Neural Network117

Our CNN architecture has two 1D convolutional layers with 5 and 10 channels, kernel size 10118

and 5, dilation equal to 2 and 4, respectively; and stride 1 for both. Each convolutional layer adds119

a bias term and applies the ReLU activation function. We use zero-padding and cropping to ensure120
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that the length of the output sequence remains the same as the input since the stride is equal to one.121

A global average pooling layer is applied after the last convolutional layer. A binary classification122

layer with 2 neurons is stacked at the end. A bias term is added and the softmax activation function123

is applied. The CNN is trained for 2000 epochs using the early stopping technique. The loss124

function is the Cross-Entropy Loss with weight decay 10−5 for the L2-regularization. For this125

architecture, the optimizer is Adam with learning rate 0.008.126

D. Long Short-Term Memory127

Our LSTM architecture consists of 2 stacked layers followed by a linear layer with two output128

neurons for classification. Both LSTM layers are unidirectional, their states have dimension 4 and129

bias terms are considered. The input of the linear layer is the last hidden state of both LSTM cells.130

The network is trained for 2000 epochs with early stopping. The loss function and the optimizer131

are the same as the ones used for the CNN in Subsection III C.132

E. Results133

The accuracy is the measure used to determine the performance of all the networks. It is

computed with the following formula

Accuracy (%) =
TR +TC

TR +TC +FR +FC
·100,

where TR and TC represent the number of regular and chaotic samples, respectively, that the net-

work has classified correctly; FR and FC are the number of chaotic and regular samples, respec-

tively, that have been wrongly classified. To assure that the network has learnt correctly, that is,

the percentage of correct classifications of both classes is balanced, the following magnitudes are

computed

Accuracy Regular (%) =
TR

TR +FC
·100 and Accuracy Chaotic (%) =

TC

TC +FR
·100.

Remark III.1. The performance results of the networks indicated in this subsection and Subsec-134

tions IV C-IV D are the mean and the standard deviation of the binary classification of 10 trained135

networks randomly initialized by PyTorch (the graphic results correspond to a unique network).136

The experiments in Subsection IV E are carried out using one of the trained networks.137
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MLP CNN LSTM

Loss Accuracy (%) Loss Accuracy (%) Loss Accuracy (%)

Training 0.026±0.001 99.302±0.161 0.018±0.007 99.383±0.335 0.059±0.020 97.979±0.584

Validation 0.107±0.003 96.775±0.068 0.037±0.004 98.925±0.203 0.104±0.048 96.605±1.337

Test 0.046±0.002 97.865±0.098 0.018±0.004 99.410±0.239 0.045±0.013 98.565±0.279

Table I. Loss and accuracy (%) of training, validation and test datasets for the Logistic map test problem.

Results in this and similar tables or figures are given as mean±standard deviation for 10 different trials (see

Remark III.1).

We show in Table I the loss and accuracy of training, validation and test datasets for the three138

ANNs (MLP, CNN and LSTM). Notice that for all the networks, the training and test losses are139

quite small, so we can consider that the ANNs have been able to learn from data correctly. If we140

compare the results for the test data, we can see that our CNN seems to give better results than141

the other two networks. For completion, we can compute the accuracy in the regular and chaotic142

samples of test set, obtaining the results in Table II. As we can see, the percentages of regular and143

chaotic samples are quite similar (and always close to 100%), so our ANNs have learnt correctly144

the main features of both types of dynamical regimes.145

MLP CNN LSTM

Regular 99.860±0.049 99.710±0.094 99.030±0.827

Chaotic 95.870±0.200 99.110±0.509 98.100±0.775

Table II. Accuracy (%) of regular and chaotic samples in the test set for the Logistic map test problem.

We can also analyse the evolution of the loss and accuracy of the training and validation datasets146

along the 2000 epochs to study the learning process of the networks. To exemplify it, we choose147

one of the trained MLPs (for all the trained networks, a similar situation occurs). In Figure 2 we148

have drawn the evolution of the loss and accuracy of training (blue) and validation (red) datasets149

along 2000 epochs. Notice that from epoch 1000 (approximately), the loss and the accuracy of the150

training dataset do not change significantly, so although we can see that the mathematical optimum151

of the loss function for the validation dataset has been obtained at epoch 1770 (best epoch, see152

green line in Figure 2), we could say that the computational optimum has been achieved in epoch153

1000 approximately (see purple line in Figure 2). We can conclude that we could train the network154
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for less number of epochs and the obtained minimum of the loss function would be similar and155

still acceptable (moreover, the training time would be less).156

loss_acc_MLP_lm.pdf

Figure 2. Evolution along 2000 epochs of the loss (left panel) and the accuracy (right panel) in training

(blue) and validation (red) datasets for one MLP trained in the Logistic map test problem. Green line

corresponds to the best epoch (1770) and purple line to the recommended epoch (1000).

Once we have successfully trained our networks, we carry out the chaos detection task in one157

parametric line of the Logistic map: we fix x0 = 0.6 (we cannot take x0 ∈{0.1,0.2,0.25,0.5,0.75,0.8,0.9}158

as these are the values used to create the datasets and their symmetric cases with respect to x= 0.5),159

we take 12000 values of α ∈ [0,4), and we use each network to detect the behaviour of the system.160

In Figure 3 we have a table with the accuracy of the networks for each dynamical regime. We161

have also drawn the approximated LEs in red (that have been computed with a classical technique162

as explained in Subsection III A) and in the three colour bars we have the results given by the163

networks. Light colours are used for regular regimes, and dark ones, for chaotic behaviour. Blue164

is the colour chosen for the MLP, pink for the CNN, and green for the LSTM. As we can see in the165

aforementioned table, all the networks are able to perform the chaos detection task: the accuracy166

is close to 100% for all the architectures and dynamical regimes. Furthermore, in the three colour167

bars we can see that all the networks are able to detect quite well the boundaries between both168

dynamical regimes (see the first dotted line from left to right), and they have detected the regular169

windows in the chaotic region (see the remaining dotted lines in the image).170

In Figure 4 we have a histogram with the percentage of correctly classified time series in the171

α-parametric line according to the value of the approximated LE (100% means that all the samples172

whose LE is in the corresponding interval have been correctly detected). Blue bars correspond to173

the MLP, pink ones to the CNN, and green ones to the LSTM network. Notice that when the LE174

is far from 0, the three networks perform the task perfectly. Otherwise, the percentage of correct175

detections is lower but still larger than 90%, with the MLP giving the worst results.176

It is interesting to analyse some correct and incorrect classifications of the DL networks (see177

yellow points in Figure 3). In case I of Figure 5 we show a periodic orbit (regular behaviour)178

10



Deep Learning for Chaos Detection

Line_LM.pdf

Figure 3. Chaos detection task with the MLP, the CNN and the LSTM in an α-parametric line (x0 = 0.6) of

the Logistic map test problem. From top to bottom, three colour bars with the results (light for regular, dark

for chaotic) of the trained networks (MLP in blue, CNN in pink and LSTM in green), approximated LEs,

and table with the accuracy of regular and chaotic samples for the three types of architectures. In yellow, α

values of the orbits in Figure 5.

histo1.pdf

Figure 4. Histogram of the percentage of correct detections according to the value of the approximated LE

(blue for the MLP, pink for the CNN, and green for the LSTM) for the α-parametric line with x0 = 0.6 (see

Figure 3) of the Logistic map test problem.

time series that all the networks have been able to classify correctly. The sample of case II is also179

regular, but in this case, it is misclassified by all the models. In case III, the orbit is chaotic and only180

the CNN detects it correctly. Finally, in case IV, the sample is chaotic too and all the networks181

classify it correctly. Case II illustrates a periodic orbit with many oscillations, being extremely182

difficult to recognise as it has a similar behaviour to some chaotic samples in the dataset. Case III183

illustrates another common dynamical situation, a chaotic behaviour but where the chaos is weak,184

that is, the “irregularity” is small, being quite similar to a periodic orbit, and so, the DL techniques185

can also be wrong. Note that these two cases with wrong detections are also complicated cases for186

standard techniques. In these cases expert researchers would use their background to classify the187

behaviour. In any case, these boundary cases are just a small percentage of the tests, most of the188

data is correctly classified as regular or chaotic.189
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Orbitas1a.pdf

Figure 5. Some orbits of the Logistic map, its true dynamical behaviour and the success or error of the clas-

sification made by the different networks. For a correct visualization, only the first 200 steps of the Logistic

map have been drawn. In all cases x0 = 0.6, and (I) α = 3.43233323097229, (II) α = 3.6559998989105225,

(III) α = 3.856666549414062 and (IV) α = 3.999666690826416 (see yellow points in Figure 3).

IV. TEST EXAMPLE OF CONTINUOUS DYNAMICAL SYSTEMS: THE LORENZ190

SYSTEM191

The Lorenz system15 is a very simple model representing cellular convection. It is given by the

system of equations 
ẋ = σ(y− x),

ẏ = −xz+ rx− y,

ż = xy−bz,

where x, y and z are the variables, σ is the Prandtl number, r is the relative Rayleigh number, and b192

is a positive constant. The Lyapunov Exponents of a continuous dynamical system are computed193

with the algorithm in Ref. 20.194

A. Dataset195

As in the case of the Logistic map, we create several raw datasets (with time series of the Lorenz196

system), and then we screen them to obtain the three sets needed to train, validate and test the net-197

works. Each raw dataset satisfies that the length of the time series is 1000 (in Subsection IV D we198

justify our choice), and the initial condition is fixed to (x0,y0,z0) = (1,1,1) (the initial value used199

by other authors3 in this chaos detection task). Bifurcation parameter σ is fixed to the classical200

value 10, the relative Rayleigh number r moves equidistantly in the interval (0,300] to obtain 5999201

values, and the positive constant b is fixed along all the samples of each raw dataset (b ∈ {2,8/3}202

to build the training dataset, b = 2.4 for validation, and b = 2.8 for test). A transient interval is203

performed until time t = 100000 with time step 0.01 using DOPRI5 (Runge-Kutta integrator of204

order 5); the LEs are computed using 10001 more unit times with time step 0.001 and the same205
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integrator; the time series that we use as input in the DL architectures are built with 1 out of every206

100 of the last 100000 computed points.207

From the union of raw datasets with b = 2 and b = 8/3 we obtain the training set. In particular,208

we split the joint dataset into regular and chaotic samples taking 0.01 as threshold (chaotic if the209

first approximated LE is bigger than 0.01, and regular otherwise), obtaining 4091 regular and 7907210

chaotic time series. To ensure variability, we delete all but one similar samples (that is, samples at211

distance less than 10−4 in the infinity norm). From the resulting set with 4054 regular and 7907212

chaotic samples, we randomly choose 3900 samples of each dynamical class as training dataset.213

To build the validation dataset, we consider the raw dataset with b = 2.4, with 2278 regular and214

3721 chaotic samples. From it, we remove all samples similar (in the previous sense) to any of215

the training set (2259 regular and 3721 chaotic samples remain) and we choose 1000 of each216

class as validation dataset. Finally, from the 2902 regular and 3097 chaotic samples forming the217

raw dataset with b = 2.8, we remove all similar samples to any from the previous sets. From218

the resulting set (with 2884 regular and 3097 chaotic samples) we select 1000 from each class to219

create the test set.220

As with the Logistic map, regular samples are labelled with 0, and chaotic ones with 1. The221

batch sizes of the training, validation and test sets are 128, 100 and 100, respectively (the last222

incomplete batch of the training set is deleted). In the case of the Lorenz system, we normalize223

each coordinate independently, linearly mapping its range to the interval [0,1]. If a coordinate is224

constant, we assign to it a random number uniformly sampled from [0,1].225

B. Multi-Layer Perceptron, Convolutional Neural Network and Long Short-Term226

Memory227

The only change in the architecture of the MLP that we have considered for the Lorenz system228

case with respect to the one used for the Logistic map is the number of neurons in each layer229

(except in the output one): 3000 neurons in the input layer (take into account that we still consider230

the length of each sample equal to 1000, but Lorenz system has dimension 3, so the flattened time231

series has length 3000) and 1500 on each hidden layer.232

As in the case of the MLP, the CNN used for the Lorenz system is similar to the one used for233

the Logistic map. The number of channels in the convolutional layers has changed: 15 for the first234

one and 30 for the second. Moreover, the input layer has now 3 channels instead of 1 (one for each235
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MLP CNN LSTM

Loss Accuracy (%) Loss Accuracy (%) Loss Accuracy (%)

Training 0.072±0.002 98.844±0.074 0.046±0.011 98.194±0.464 0.045±0.006 98.125±0.271

Validation 0.194±0.002 94.125±0.189 0.063±0.006 97.720±0.205 0.042±0.005 98.120±0.200

Test 0.179±0.002 93.350±0.613 0.085±0.071 97.575±0.990 0.051±0.030 97.870±1.326

Table III. Loss and accuracy (%) of training, validation and test datasets for the Lorenz system test problem.

variable of the system).236

In the case of the LSTM, we use the same Deep Learning architecture described for the Logistic237

map, but now the dimension of the states is 24. Again, we have to take into account the structure of238

the input because now we work with a three dimensional dynamical system, so the external input239

of the LSTM is of size 3 instead of 1 (at each time step).240

C. Results241

In Table III we show the loss and accuracy of training, validation and test datasets for the MLP,242

the CNN and the LSTM. For all the networks, the training and test losses are quite small, so we243

can consider that they have been able to learn from the data correctly. If we compare the results for244

the test data, we can see that the CNN and the LSTM seem to give better results than the MLP. If245

we compare the CNN and the LSTM, they show similar performance results. For completion, the246

accuracy of the regular and chaotic samples of the test set are shown in Table IV. Notice that the247

percentages of both classes are similar for all the trained ANNs, so we conclude that the networks248

have learnt correctly the main features of both dynamical regimes.249

MLP CNN LSTM

Regular 92.680±0.481 97.710±1.724 97.770±2.759

Chaotic 94.020±0.306 97.440±0.709 97.970±0.438

Table IV. Accuracy (%) of regular and chaotic samples in the test set for the Lorenz system test problem.

Now, we analyse the evolution of the loss and the accuracy of training and validation datasets250

along 2000 epochs to study how this learning process is. In the case of the MLP and the CNN,251

the networks are able to learn with a small number of epochs as the best epoch is usually less252
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than 750. If we visualize such evolution (see Figure 6 for an example of a trained MLP) it seems253

that the network has learnt as much as it can because, after the best epoch, the validation loss254

increases while the training loss decreases (the network suffers overfitting). In the case of the255

LSTM (see Figure 7 for an example of a trained LSTM network), the evolution is more similar to256

that of the Logistic map since acceptable results would be obtained with fewer number of epochs257

(the minimum of the validation dataset would be similar and less computational time would be258

needed). In the figure, the best epoch is 1848, but around epoch 250 the loss has already reached a259

value close to zero and the accuracy is close to 100% (so, 255 is a recommended epoch taking into260

account the little improvement of going up to 1848). Some erratic jumps highlight in this learning261

process. This phenomenon can be explained by the fact that some samples (see for example262

Figure 14I) have a difficult dynamical behaviour (they are in the limit between the regular and263

chaotic dynamics), which causes the networks to have trouble in learning them.264

loss_acc_MLP_ls.pdf

Figure 6. Evolution along 2000 epochs of the loss (left panel) and the accuracy (right panel) in training

(blue) and validation (red) datasets for one MLP trained in the Lorenz system test problem. Green line

corresponds to the best epoch (337).

loss_acc_LSTM_ls.pdf

Figure 7. Evolution along 2000 epochs of the loss (left panel) and the accuracy (right panel) of the training

(blue) and validation (red) datasets for one LSTM trained in the Lorenz system test problem. Green line

corresponds to the best epoch (1848) and purple one to recommended epoch (255).

All the networks have learnt correctly from the data. To show the performance of the three DL265

architectures, we choose an r-parametric line of this continuous dynamical system different from266

the ones used to create train, test and validation sets. In particular, we take σ = 10, b = 2.2 and267

6000 equidistant values of r in the interval [0,300]. In Figure 8 we have a table with the accuracy268
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achieved by each architecture for each dynamical regime (regular and chaotic). Moreover, the first269

approximated LE is represented in red in the middle of the figure. In the three colour bars the270

results given by each network (same code of colours as in Figure 3) are depicted. It can be seen271

that all the networks are able to perform the chaos detection task in the Lorenz system test problem272

(the accuracy is greater than 90% in all cases). In addition, in the colour bars we see that all the273

ANNs can define correctly the boundary between both dynamical regimes in most cases (see first,274

seventh and eighth dotted lines from left to right). However, the networks are not able to detect the275

last boundary (represented with the last dotted line) perfectly (the LSTM gives the best detection),276

but the results are quite acceptable. Notice that the MLP shows, in general, noisier results (see277

region before first dotted line, between seventh and eighth dotted lines, and around last dotted line278

in the blue bar). All the DL architectures can detect most of the regular windows in the chaotic279

regions (see remaining dotted lines).280

Line_LS.pdf

Figure 8. Chaos detection task performed by the MLP, the CNN and the LSTM in the Lorenz system

test problem in an r-parametric line. From top to bottom, three colour bars representing the results (light

for regular, dark for chaotic) of the trained networks (MLP in blue, CNN in pink and LSTM in green),

first approximated LE, and table with the accuracy of regular and chaotic samples for the three types of

architectures.

In Figure 9 we have a histogram that represents the percentage of correctly detected time series281

in the r-parametric line according to the value of the LE (100% means that all the samples whose282

first approximated LE is in the corresponding interval have been correctly classified). Blue, pink283

and green bars correspond to the MLP, the CNN and the LSTM networks respectively. Note that284

when the first LE is far from 0, the CNN and the LSTM networks perform the task perfectly, and285

the MLP fails for negative values. Otherwise, the percentage of correct detections is lower for all286

the networks but still larger than 82% in all the cases. Overall, the MLP shows the worst results,287

and the LSTM gives the best ones in general.288
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histo2.pdf

Figure 9. Histogram of the percentage of correct detections according to the value of the approximated

LE (blue for the MLP, pink for the CNN, and green for the LSTM) for the r-parametric line with σ = 10,

b = 2.2 (see Figure 8) of the Lorenz system test problem.

D. Going Deeper into the Lorenz Dataset. Changing the Length289

To train the networks for chaos detection in the Logistic map and the Lorenz system, we have290

fixed the length of the input time series to 1000 (the same as other authors have considered for291

this task3). The goal of this subsection is to show that this length seems to be a good choice292

for this problem. For example, in the case of the MLP, the length of the input determines the293

number of neurons in the input layer, so if we change it, we have to modify the architecture that294

we have set up in PyTorch. For the LSTM, the length can be variable, that is, we can train the same295

LSTM architecture with different input lengths. For this reason, we consider that it is interesting296

to compare the performance of our LSTM when it is trained with time series of different lengths297

(it tells us how much information is needed by the built LSTM network to learn the task).298

ts_image2_length.pdf

Figure 10. Orbits I (panel A) and V (panel B) of Figure 14 for time series length 500 (left), 1000 (middle),

and 1500 (right) of the Lorenz system test problem.

We perform the experiment (with the LSTM architecture) for length 500 and 1500, comparing299

with the current results for length 1000. To obtain the new datasets we have carried out the same300

integration steps as in the case of length 1000, computing the same number of points, but storing301

the last 500 or 1500. As an example, in Figure 10 orbits I and V of Figure 14 are represented with302

the aforementioned lengths.303

In Table V we have the results for the three different lengths (information of length 1000 corre-304
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Length 500 Length 1000 Length 1500

Loss Accuracy (%) Loss Accuracy (%) Loss Accuracy (%)

Training 0.050±0.005 97.858±0.239 0.045±0.006 98.125±0.271 0.057±0.037 97.703±1.279

Validation 0.049±0.004 97.980±0.222 0.042±0.005 98.120±0.200 0.054±0.028 97.825±0.972

Test 0.054±0.012 97.855±0.652 0.051±0.030 97.870±1.326 0.062±0.031 97.315±1.711

Table V. Loss and accuracy (%) of training, validation and test datasets with different time series length for

the Lorenz system test problem.

sponds to Table III). Even though the change in the mean of the loss and the mean of the accuracy305

is not very considerable, length 1000 gives us the lower mean for the loss and the greatest mean306

for the accuracy in all the datasets. If we focus on the standard deviation, we can see that the case307

of length 1500 is always the one with the highest values. Cases of length 500 and 1000 present308

a similar standard deviation in the training and validation datasets. One possible answer for not309

getting an improvement for length 1500 over length 1000 is the restricted memory capacity of the310

LSTM recursive structures, which could be affected by long observation sequences and result in311

the loss of initial evidence. Note that dynamically both datasets provide similar information as it312

can be seen in Figure 10, unlike the case of using length 500 where the information is not com-313

plete. Therefore, we conclude that length 1000 is a good choice to perform the chaos detection314

task in our problem.315

E. 2D and 3D Parametric Diagrams316

In a dynamical study of a mathematical model it is very interesting to perform 2D and 3D317

parametric analyses. In the case of the Lorenz system, several 2D studies have been presented in318

the literature1,2. Therefore, a challenging problem is to see the behaviour of the DL networks for319

2D, and even 3D, parametric studies.320

Just three r-parametric lines on the biparametric plane (r,b) have been involved in the training321

process of DL networks (see orange and purple lines in panel A of Figure 11). As shown in Sec-322

tion IV C, these trained networks have performed correctly the chaos detection task in a different323

r-parametric line of the aforementioned plane. Now, we show that they are able to generalize to324

the whole biparametric plane (r,b) with accurate results. In particular, biparametric plane (r,b)325

with σ = 10, r ∈ [0,300] and b ∈ [2,3] is studied. It is important to remark that with the data of326
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few lines, DL networks are able to analyse correctly complete biparametric planes.327

p1_def_nueva.pdf

Figure 11. Chaos detection for the Lorenz system in the biparametric plane (r,b) with σ = 10. To obtain

the plot of panel A the first approximated LE is used to determine the regular (black) and chaotic (white)

regions. The r-parametric lines used to create train (b ∈ {2,8/3}) and validation dataset (b = 2.4) are shown

in orange and purple, respectively. Panels B, C and D show the results of the MLP, the CNN and the LSTM

network, respectively. On the left, classification of the networks (again, regular in black and chaotic in

white); on the right, errors committed by the architectures (red for false regulars, blue for false chaotics).

The percentage corresponds to the accuracy of the corresponding DL technique. In panels A1, B1, C1 and

D1, a zoom of the green framed region in the biparametric plane has been represented for each method. The

yellow points correspond to orbits in Figure 14.

The use of DL techniques makes biparametric analysis faster: with the classical technique328

(LEs) we need approximately 25 hours to obtain the biparametric plane of Figure 11A (of 1000×329

1000 points) and with DL (in the same machine) around 30 minutes are necessary to generate it330

(see Table VI for more details). Note that LEs usually take a long time to converge to their correct331

value.332

In Figure 11 we have the study of regular and chaotic behaviour in the biparametric plane (r,b)333

with σ = 10 of the Lorenz system. In panel A, classification is performed according to the first334

approximated LE (white for chaotic and black for regular). On the left side of panels B, C and D335

chaos detection with the DL architectures (MLP, CNN and LSTM, respectively) is depicted (same336

code of colours of panel A). On the right side of such panels we have the errors committed by the337

networks (we have compared with the biparametric plot obtained with LEs in panel A). In particu-338

lar, chaotic samples wrongly classified (false regular, FR) are in red, misclassified regular samples339

(false chaotic, FC) are in blue, and samples detected correctly (true regular, TR, and true chaotic,340

TC) are in white. Moreover, for each technique, we have indicated the accuracy (percentage of341

correct detections) which is always greater than 94% and, as expected, it is bigger for the CNN342

and the LSTM networks.343

As it can be seen in error plots, most of the incorrect detections correspond to the right boundary344
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between chaotic and regular regimes (in the case of the MLP, a lot of noise can also be seen for r345

small where there are FC detections). The FR detections stand out in this right zone for the MLP346

and the LSTM cases, and FC results highlight for the CNN, being the LSTM the network with the347

lower number of errors. This right boundary have to be studied carefully with whatever technique348

used for chaos detection as a dynamical behaviour known as transient chaos8 occurs. In panels A1,349

B1, C1 and D1 a zoom of the green framed region that includes part of this boundary is depicted350

for each technique.351

p2_def_nueva.pdf

Figure 12. In panel A, chaos detection for the Lorenz system in the biparametric plane (r,σ) with b =

8/3. From left to right: results obtained with LEs, detections with the trained LSTM network, and errors

committed by this architecture (same colour code than in Figure 11 is used to represent regular and chaotic

behaviour, and false regular and false chaotic detections). The percentage corresponds to the accuracy of the

LSTM for the chaos detection task. The orange horizontal line shows the samples present in the raw datasets

used to create the training set. In panels A1 and A2, a zoom of the green framed region of the biparametric

plane has been represented using the classical and DL techniques. The yellow point corresponds to an orbit

in Figure 14.

The three DL architectures are able to study the behaviour of the Lorenz system in the bipara-352

metric plane (r,b) where the three r-parametric lines used during training process are included (see353

orange and purple lines in Figure 11A). Now, we show that DL is also able to reconstruct other bi-354

parametric planes of the parameter space. In particular, we compute the biparametric plane (r,σ)355

for b = 8/3, r ∈ [1,350] and σ ∈ [0,60]; the (σ ,b) region for r = 28, σ ∈ [0,40] and b ∈ [0,4]; the356

(σ ,b) plane for r = 500, σ ∈ [0,800] and b ∈ [0,100]. To perform this task we use the LSTM as it357

gives the best results in the plane (r,b) (see Figure 11).358

In panel A of Figure 12 we have, from left to right, the biparametric plane (r,σ) obtained with359

the approximated LEs, the results of the trained LSTM, and the errors committed by this network.360

Same code of colours as in Figure 11 is used. The boundaries between both dynamical regimes are361

well-defined by the LSTM, only the top boundary is noisy (see panel A2 for a zoom of the green362

framed region where it is included, and panel A1 for the corresponding results of LEs) and FC363
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detections stand out. The percentage of correct detections (accuracy) is greater than 97%. Notice364

that in this case, where the chaotic detection is almost perfect, only the samples in the orange365

segment belong to the raw datasets used to create the training set. In panel A of Figure 13, we366

have the study of the biparametric plane (σ ,b) with r = 28. Again, we can see that this network367

is able to define correctly the boundary between both dynamical regimes. It highlights the bottom368

right corner, a regular zone that has been defined as chaotic by the LSTM. In panel A2 of Figure 13,369

that corresponds to the green framed region, it is shown that the trained LSTM performs the task370

with high precision (panel A1 corresponds to LEs). In fact, the percentage of correct detections in371

the whole plane is almost 98%. In this case, only three points are in the raw datasets used to create372

train and validation sets, which shows the high generalization ability of the trained LSTM. In panel373

B of Figure 13 the biparametric analysis (σ ,b) with r = 500 is depicted. As in the other panels, the374

trained LSTM network distinguishes correctly both dynamical regimes, as it can be seen in panel375

B2 which is a zoom of the green framed region (see panel B1 for detection performed with LEs).376

The accuracy of this study is greater than 98%. Most of the errors of the network correspond377

to small values of b. Notice that no point of this parametric region has been used to train (or378

validate) the network. With the results of Figures 12 and 13 we can conclude that DL allows us to379

study regions of the parameter space where training and validation points are almost not present380

(Figure 12A and Figure 13A) or are not present at all (Figure 13B).381

Analogously to what we did in the case of the Logistic map, we analyse in Figure 14 some382

correct and incorrect classifications of DL networks (see yellow dots in Figures 11, 12 and 13).383

In panel I of Figure 14 we show a periodic orbit (regular behaviour) that DL networks have not384

been able to classify adequately. The dynamical explanation is due to the nature of this orbit, it is385

a periodic orbit with a large number of space-expanding loops and a large period. The sample in386

panel II is chaotic and the networks have also failed to classify it properly. Now the explanation is387

due to the kind of chaos of this orbit. The orbit changes slowly in space, being the different loops388

very similar each other (see the 3D plot of the DL data). All the DL techniques fail to identify the389

kind of behaviour of orbits I and II, but there are clear reasons for the fail, and in fact any short time390

methodology would fail on these orbits. Besides, both cases are in the limit between the regular391

and chaotic dynamics with a lot of bifurcations located in that area. In contrast, all networks have392

managed to properly identify the type of behaviour of the orbits in panels III and V, regular and393

chaotic, respectively. As an intermediate situation, we show the regular orbits IV and VI for which394

only LSTM in the first case, and CNN and LSTM in the second have been able to give a correct395
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classification. The complicated points have been selected on the basis of the previous analyses396

performed on the biparametric planes of Figures 11, 12 and 13.397

As a final and challenging task, we study a 3D parametric space region of the Lorenz system398

(allowing the three parameters to change) with the LSTM trained and validated using only three399

r-parametric segments (see orange and purple lines in Figure 11). Note that with the classical400

technique of LEs this kind of analysis would be highly computationally demanding. Taking into401

account the time that we need to compute a 2D diagram with LEs, the expected time for the 3D402

study in this subsection (with 250× 250× 250 points) with this classical technique would be of403

16 days approximately; with DL we need around 12 hours (see Table VI). We also remark that,404

up to the knowledge of the authors, there is no dense 3D analysis in the literature for the Lorenz405

system. In Refs. 1 and 2 the authors studied several 2D planes to reconstruct a 3D figure, but it is406

not a complete dense 3D plot as in the present work. Again, we remark that we use just a very few407

lines of data to train and generate a network able to completely perform a 3D parametric study.408

Therefore, these techniques open a window for dense 3D parametric studies in a reasonable time.409

The 3D study is performed for σ ∈ [0,800], r ∈ [1,500] and b ∈ [0,100], taking 250 values for410

each parameter. In panel A of Figure 15 we have used the detections of the trained LSTM network411

to illustrate a 3D parametric study of the Lorenz system. In particular, for a better representation412

we have drawn the boundary between both dynamical regimes of the obtained dense 3D DL figure,413

and the chaotic results for r = 500. In panels B and C, we have several 2D planes extracted414

from the 3D study (in shaded black we have the boundary between both dynamical regimes). For415

completion, in Figure 16 we show two different views of the boundary between regular and chaotic416

regimes detected by the DL network.417

Notice that the trained LSTM detects perfectly the boundary (represented in detail in Figure 16)418

between both dynamical regimes. In Figure 16 we have used both methodologies, the Lyapunov419

exponents and the LSTM network, and the resulting figures are indistinguishable. The dense 3D420

computation using the Lyapunov exponents has detected 1852204 set of parameters of chaotic421

dynamics, whereas the LSTM network 1855862, being the intersection 1827514 points. The num-422

ber of false positives is 28348 and the number of false negatives is 24690. Moreover, from the423

2D planes in Figure 15 it can be inferred that DL is able to detect the changes between regular424

and chaotic behaviours that are present for small values of parameter b. We conclude that with425

an LSTM trained (and validated) in a small region of the parameter space (σ = 10, r ∈ (0,300],426

b ∈ {2,2.4,8/3}), an accurate dense 3D analysis can be performed.427
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As a complement, we include in the Integral Multimedia (Multimedia view) of the article a428

video where we show the dense 3D parametric study that has allowed analyses in Figure 15, and429

the chaotic boundary represented in Figure 16.430

MLP CNN LSTM

Creation of each raw dataset (CPU with parallel computing) 419 419 419

Data selection of train, validation and test sets (CPU) 882.586 882.586 882.586

Normalization of train, validation and test sets (CPU) 15.833 15.833 15.833

Training (CUDA with PyTorch) 2171.203 2154.514 8601.143

Test (CUDA with PyTorch) 0.158 0.208 0.461

One-parameter line. Create data (CPU with parallel computing) 1.571 1.571 1.571

One-parameter line. Prepare data (CPU) 8.348 9.427 9.474

♣ One-parameter line. Detection (CUDA with PyTorch) 0.012 0.016 0.072

Biparametric plane. Create data (CPU with parallel computing) 307.940 307.940 307.940

Biparametric plane. Prepare data (CPU) 1418.089 1636.286 1623.851

♣ Biparametric plane. Detection (CUDA with PyTorch) 3.729 37.434 17.630

Triparametric analysis. Create data (CPU with parallel computing) − − 14156.416

Triparametric analysis. Prepare data (CPU) − − 28929.904

♣ Triparametric analysis. Detection (CUDA with PyTorch) − − 1139.313

One-parameter line. Classical technique LEs (CPU with parallel computing) 419

Biparametric plane. Classical technique LEs (CPU with parallel computing) 9 ·104

Triparametric analysis. Classical technique LEs (CPU with parallel computing) 1.40213 ·106

Table VI. Approximated time (in seconds) needed for the chaos detection task in the Lorenz system test

problem (from data creation to 1D, 2D and 3D parametric analysis for each DL network). The pure chaos

detection DL process, once the data is ready, is just the Detection(CUDA with PyTorch) time, pointed

with a club symbol. The last three rows correspond to the time used by the classical technique of Lyapunov

Exponents.

To give an idea of the time savings of using DL networks, we show in Table VI the times (in431

seconds) needed during the whole study of the Lorenz system test problem. The first three rows432

correspond to the time used to create train, test and validation datasets, which includes creation433
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of raw datasets, data selection, and normalization. Fourth and fifth rows correspond to training434

and test processes. To obtain the one-parameter line of Figure 8, which contains 6000 different435

values of r, we indicate the time needed to create the data, to prepare it as network input, and to436

be classified by the ANN (sixth, seventh and eighth rows). The whole one-parameter study takes437

less than 12 seconds for all the networks. Notice, that the pure chaos detection DL process (if data438

is given) corresponds to row 8 (club symbol) and is less than one tenth of a second. With classical439

techniques (third-to-last row) needed time is around 7 minutes. In the case of biparametric planes,440

as these of Figures 11, 12 and 13 with 1000× 1000 points, whole process (rows 9 to 11) takes441

approximately 30 minutes for all the networks, with a pure chaos detection (row 11 with club442

symbol) of less than 40 seconds. Time used by classical techniques is given in second-to-last row443

and it is of 25 hours. Finally, the triparametric study of Figures 15 and 16 with 250× 250× 250444

points takes around 12 hours for the LSTM network (see rows 12 to 14). In this case, the pure445

chaos detection process (row 14 with a club symbol) is less than 20 minutes. In the last row of446

the table we have the time needed to perform the triparametric analysis with classical techniques.447

Notice that this analysis with DL takes approximately 12 hours, but we would need more than 16448

days if classical techniques were used.449

V. DISCUSSION AND CONCLUSIONS450

In this paper, three well-known Deep Learning networks (MLP, CNN and LSTM) have been451

built and trained to carry out the chaos detection task in two test problems: the Logistic map452

(discrete dynamical system) and the Lorenz system (continuous dynamical system). Usually, time-453

consuming computational techniques, such as Lyapunov Exponents, are used to detect chaos.454

All the trained networks have given good results, achieving all of them an accuracy greater455

than 90%. Moreover, in all the cases the accuracy of detection of both dynamical regimes (regular456

and chaotic) is balanced. In the case of the Logistic map test problem, the accuracy for the three457

networks is very similar. However, in the case of the Lorenz system, the CNN and the LSTM give458

better results than the MLP. This makes sense since CNNs and LSTM networks take into account459

spatial and temporal information, respectively.460

For the Lorenz system, we have used the trained networks to study the behaviour of an r-461

parametric line and several biparametric planes from different regions of the parameter space. In462

addition, a dense triparametric plot of the Lorenz system has also been obtained using a trained463
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LSTM network. Up to the knowledge of the authors, this had not been achieved previously with464

classical or DL techniques. We highlight that the training process used just a few lines of one-465

parameter data to create a network capable of studying biparametric and even complete tripara-466

metric spaces. This is a remarkable result that shows us the power of DL techniques in dynamical467

systems studies.468

In this article we focus on using short time series as data, but longer sequences will give us more469

complete information, particularly in difficult areas where the LE value is close to zero. To achieve470

better results, in future research we will explore the development of improved architectures that471

are better suited to handle longer sequences or carefully select more challenging training examples472

to reduce error rates. However, it is important to balance this against the computational cost, as473

our current focus has been to keep the computational cost low compared to traditional calculation474

of the LEs.475

We conclude that Deep Learning can be used to analyse the behaviour (regular and chaotic) of476

a dynamical system. Our results show that even dense 3D parametric studies can be carried out in477

a very reasonable time using data from just a small portion of the global phase space. However,478

a deeper study would be necessary to know how far we can go using these techniques in this and479

others dynamical systems tasks.480
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p3_def_nueva.pdf

Figure 13. In panel A, chaos detection for the Lorenz system in the biparametric plane (σ ,b) with r = 28.

In panel B, chaos detection for the Lorenz system in the biparametric plane (σ ,b) with r = 500. From left

to right: results obtained with LEs, detections with the trained LSTM network, and errors committed by

this architecture (same colour code than in Figure 11 is used to represent regular and chaotic behaviour, and

false regular and false chaotic detections). The percentage given in each panel corresponds to the accuracy

of the LSTM for such biparametric plane. The orange and purple points show the samples present in the

raw datasets used to create the training and validation sets. In panels A1, A2, B1 and B2, a zoom of the

green framed region of the biparametric plane has been represented using the classical and DL techniques.

The yellow point corresponds to an orbit in Figure 14.

Orbitas2a.pdf

Figure 14. Some orbits (in grey) of the Lorenz system with its true dynamical behaviour, the corresponding

sample (in red) used by the networks and the correctness or incorrectness of the classification made by them.

In all the cases (x0,y0,x0) = (1,1,1). The values of the parameters are (I) (σ ,r,b) = (10,267.84464,2), (II)

(σ ,r,b) = (10,246.3910675,2.2), (III) (σ ,r,b) = (10,220,2.71), (IV) (σ ,r,b) = (10,208.3006,2.8090),

(V) (σ ,r,b) = (45.3,160,8/3) and (VI) (σ ,r,b) = (31,28,0.8). See yellow points in Figures 11, 12 and 13.

3D_planes.pdf

Figure 15. Representations obtained from the dense triparametric analysis of the Lorenz system performed

with the LSTM network. See Integral Multimedia (Multimedia view) for the dense study. In panel A,

general view of the upper boundary between both dynamical regimes, and chaotic region for r = 500. In

panels B and C, some 2D vertical and horizontal planes in the triparametric space with the chaotic detections

in colour and the external boundary between both dynamical regimes in shaded black. The colors used have

been simply selected for ease of viewing.
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3Dsurface.pdf

Figure 16. Detail of the boundary between regular and chaotic regions from a dense 3D parametric analysis

of the Lorenz system performed with the Lyapunov exponents and with the LSTM network. See Integral

Multimedia (Multimedia view) for an integral view and the dense analysis.
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