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Abstract—In this letter, we present an evolved version of Situa-
tional Graphs, which jointly models in a single optimizable factor
graph (1) a pose graph, as a set of robot keyframes comprising
associated measurements and robot poses, and (2) a 3D scene graph,
as a high-level representation of the environment that encodes
its different geometric elements with semantic attributes and the
relational information between them. Specifically, our S-Graphs+
is a novel four-layered factor graph that includes: (1) A keyframes
layer with robot pose estimates, (2) a walls layer representing wall
surfaces, (3) a rooms layer encompassing sets of wall planes, and
(4) a floors layer gathering the rooms within a given floor level.
The above graph is optimized in real-time to obtain a robust and
accurate estimate of the robot’s pose and its map, simultaneously
constructing and leveraging high-level information of the environ-
ment. To extract this high-level information, we present novel room
and floor segmentation algorithms utilizing the mapped wall planes
and free-space clusters. We tested S-Graphs+ on multiple datasets,
including simulated and real data of indoor environments from
varying construction sites, and on a real public dataset of several
indoor office areas. On average over our datasets, S-Graphs+ out-
performs the accuracy of the second-best method by a margin of
10.67%, while extending the robot situational awareness by a richer
scene model. Moreover, we make the software available as a docker
file.

Index Terms—SLAM, localization, mapping.
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I. INTRODUCTION

ROBOTS require a deep understanding of the situation for
their autonomous and intelligent operations [1]. Works

like [2], [3], [4], [5] generate 3D scene graphs modeling the
environment with high-level semantic abstractions (such as
chairs, tables, or walls) and their relationships (such as a set
of walls forming a room or a corridor). While providing a
rich understanding of the scene, they typically rely on separate
SLAM methods, such as [6], [7], [8], that previously estimate the
robot’s pose and its map using metric/semantic representations
without exploiting this hierarchical high-level information of the
environment. Methods like [5] do optimize the full 3D scene
graphs but only after detection of appropriate loop closures.
Thus, in general, 3D scene graphs are not tightly and contin-
uously optimized in a factor graph.

Our previous work S-Graphs [9] proposed for the first time a
tight coupling of geometric LiDAR SLAM with 3D scene graphs
in a single optimizable factor graph, demonstrating state-of-the-
art metrics. However, it came with multiple limitations that we
overcome in this work with our new S-Graphs+, with updated
front-end and back-end relying on 3D LiDAR measurements.

Our new front-end (Section IV) contributes over S-Graphs
with (1) a novel room segmentation algorithm using free-space
clusters and wall planes, providing higher detection recall and
removing most heuristics of the S-Graphs counterpart; (2) an ad-
ditional floor segmentation algorithm extracting the floor centers
using all the currently extracted wall planes.

The new back-end (Section V) consists of an improved
real-time optimizable factor graph composed of four layers. A
keyframes layer constraining a sub-set of robot poses at specific
distance-time intervals. A walls layer constraining of the wall
plane parameters and linked to the keyframes using pose-plane
constraints. Both the layers are analogous to S-Graphs. A rooms
layer modeling detected rooms to their corresponding wall
planes constraining them in a single tightly coupled factor,
rather than loosely coupled factors in S-Graphs. A floors layer,
denoting the current floor level in the graph and constraining the
rooms at that level, not present in S-Graphs. See Fig. 1 for an
illustrative example of an S-Graph+ of a real building.

Our main contributions are, therefore, summarized as:
� A novel real-time factor graph organized in four hierarchi-

cal layers and a specifically novel room-to-wall factor.
� A real-time extraction of high-level information, specifi-

cally novel room and floor segmentation algorithms.
� A thorough experimental evaluation in different simulated

and real construction/office environments as well as soft-
ware release for the research community.
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Fig. 1. S-Graph+ built using a legged robot (circled in black) as it navigates a
real construction site consisting of four adjacent houses. (a) 3D view of the four-
layered hierarchical optimizable graph. The zoomed-in image shows a partial
view of the free-space clusters utilized for room segmentation. (b) Top view of
the graph.

II. RELATED WORKS

A. SLAM and Scene Graphs

The literature on LiDAR SLAM is huge, and there are sev-
eral well-known geometric approaches like LOAM [6] and its
variants [7], [10], [11], and also semantic ones like LeGO-
LOAM [8], SegMap [12], SUMA++ [13] that provide robust
and accurate localization and 3D maps of the environments.
While geometric SLAM lacks meaning in the representation of
the environments, causing failures in aliased environments and
limitations for high-level tasks or human-robot interaction, its
semantic SLAM counterparts lack in most occasions geometric
accuracy and robustness, due to wrong matches between the
semantic elements and the limited relational constraints between
them.

Scene graphs, on the other hand, model scenes as structured
representations, specifically in the form of a graph comprising
objects, their attributes, and the inter-relationships among them.
This high-level representation has the potential to boost several
relevant challenges in SLAM, such as map compacity or under-
standing. Focusing on 3D scene graphs for understanding, the
pioneering work [2] creates an offline semi-autonomous frame-
work using object detections from RGB images, generating a
multi-layered hierarchical representation of the environment and
its components, divided mainly into layers of camera, objects,
rooms, and building. [14] presents a framework for generating
a 3D scene graph using a sequence of images to verify its
applicability to visual questioning and answering and to task
planning. 3D SSG (Semantic Scene Graph) [15] presents a
learning method based on PointNet and Graph Convolutions
Networks (GCN) to semi-automatically generate graphs for 3D
scenes. SceneGraphFusion [4] on the other hand, generates a
real-time incremental 3D scene graph using RGB-D sequences,

accurately handling partial and missed semantic data. 3D DSG
(Dynamic Scene Graph) [3] extend the 3D scene graph concept
to environments with static parts and dynamic agents in an offline
manner, while Hydra [5], presents research in the direction of
real-time 3D scene graph generation as well as its optimization
using loop closure constraints. Though promising in terms of
scene representation and higher-level understanding, a major
drawback of these models is that they do not tightly couple the
estimate of the scene graph with the SLAM state, in order to
simultaneously optimize them. They thus in general generate a
scene graph and a SLAM graph in an independent manner. Our
previous work S-Graphs [9] bridged this gap showcasing the
potential of tightly coupling SLAM graphs and scene graphs.
However, for several reasons, it was limited to simple structured
environments. Our current work S-Graphs+ overcomes these
limitations generating a four-layered hierarchical optimizable
graph while simultaneously representing the environment as a
3D scene graph, able to provide an excellent performance even
in complex environments.

B. Room Segmentation

For a robot to understand structured indoor environments, it
is necessary to first understand their basic components, such as
walls, and their composition into higher-level structures such
as rooms. Hence, room identification and segmentation is one
of the critical tasks in S-Graphs+. In the literature, different
room segmentation techniques are presented over pre-generated
maps using 2D LiDARs [16], [17], [18]. Their performance is,
however, degraded in presence of clutter. While [19] presents
a room segmentation approach based on pre-generated 2D oc-
cupancy maps in cluttered indoor environments, it still lacks
real-time capabilities. Methods such as [20], [21], [22] perform
segmentation of indoor spaces into meaningful rooms, although
they require a pre-generated 3D map of the environment and
cannot segment it in real-time. Authors in [5] present a real-time
room segmentation approach to classifying different places into
rooms but compared to our approach they do not utilize the walls
in the environment to efficiently represent the rooms. Given the
current state-of-the-art for room segmentation, there was a need
to develop a room segmentation algorithm utilizing wall entities
while capable of running in real-time as the robot explores
its environment, to simultaneously incorporate this high-level
information into the optimizable S-Graphs+.

III. OVERVIEW

The architecture of S-Graphs+ is illustrated in Fig. 2. Its
pipeline can be divided into six modules, and its estimates
are referred to four frames: the LiDAR frame Lt, the robot
frame Rt, the odometry frame O, and the map frame M . Lt

and Rt are rigidly attached to the robot and depend on the
time instant t, while O and M are fixed. The first module
receives the 3D LiDAR point cloud in frame Lt, which is
pre-filtered and downsampled. The second module estimates the
robot odometry in frame O either from LiDAR measurements
or the robot encoders. S-Graphs+ is agnostic to the source of
odometry, thus it can utilize odometry estimated either from
sensor measurements like 3D LiDAR or directly generated from
encoders of the robotic platforms. Four additional front-end
modules generate the four-layered topological graph modeling
the understanding of the environment, namely: 1) The plane
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Fig. 2. S-Graphs+ overview. Our inputs are the 3D LiDAR measurements and
robot odometry, which are pre-filtered and processed in the front-end to extract
wall planes, rooms, floor, and loop closures. Note the four-layered S-Graph+,
whose parameters are jointly optimized in the back-end.

segmentation module, segmenting and initializing wall planes
in the map frame M using the point clouds at each keyframe.
2) The room segmentation module, generating first free-space
clusters from the robot poses and 3D LiDAR measurements, and
then using such clusters along with the mapped planes to detect
room centers in frame M . 3) The floor segmentation module,
utilizes the information of all the walls in the map to extract
the center of the current floor level in frame M . 4) Finally, the
loop closure module as in [9], which utilizes a scan-matching
algorithm to recognize revisited places and correct the drift.

We define the global state as:

s =
[
MxR1

, . . . , MxRT
, Mπ1, . . . ,

MπP ,

Mρ1, . . . ,
MρS ,

Mκ1, . . . ,
MκK ,

Mξ1, . . . ,
MξF ,

MxO

]�
, (1)

where MxRt
∈ SE(3), t ∈ {1, . . . , T} are the robot poses at

T selected keyframes, Mπi ∈ R3, i ∈ {1, . . . , P} are the plane
parameters of the P wall planes in the scene, Mρj ∈ R2, j ∈
{1, . . . , S} contains the parameters of theS four-wall rooms and
Mκk ∈ R2, k ∈ {1, . . . ,K} the parameters of the K two-wall
rooms, Mξf ∈ R2, f ∈ {1, . . . F} are the F floors levels, and
MxO models the drift between the odometry frame O and the
map frame M .

IV. FRONT-END

A. Wall Extraction

We use sequential RANSAC to detect and initialize wall
planes. In S-Graphs+, we extract the wall planes from the 3D
pointcloud snapshot for a newly registered keyframe, as opposed
to our previous work [9] which extracted wall planes from a
continuous stream of 3D pointcloud measurements. This results
in efficient detection and mapping of all the wall planes at each
keyframe level. Each wall plane extracted at time t, Ltπ, is
referred to the LiDAR frame Lt, we need to convert it to its
Closest Point (CP) representation [9], and then to the map frame
Mπ using the estimated robot pose at time t. The wall plane
normals with their Mnx or Mny components greater than the
Mnz component are classified as vertical planes. Furthermore,
normals where Mnx is greater than Mny are classified asx-plane
normals, and otherwise they are classified as y-plane normals.
Finally, planes whose normals’ bigger component is Mnz are

Fig. 3. Free space clustering and rooms segmentation, obtained from the
estimated wall planes surrounding each cluster. Pink colored squares represent
a four-wall room, while yellow and green colored squares represent two-wall
rooms in x and y directions respectively. Nodes colored in black are those that
are closest to walls and vote for splitting the graph.

classified as horizontal planes or ground surfaces. After initial-
izing each plane in the global map, correspondences are searched
for every subsequent plane observation. Data association is per-
formed using the Mahalanobis distance between each mapped
plane and the newly extracted ones.

B. Room Segmentation

In this work, we present a novel room segmentation strategy
capable of segmenting different room configurations in a struc-
tured indoor environment improving the room extraction strat-
egy proposed in [9] which only utilized plane-based heuristics
to detect potential room candidates. Proposed room segmenta-
tion consists of two steps, Free-Space Clustering and Room
Extraction, and the output are the parameters of four-wall and
two-wall rooms.

Free-Space Clustering: Our free-space clustering algorithm
divides the free-space graph of a scene into several clusters
that should correspond to the rooms of that scene. Given a set
of robot poses and a Euclidean Signed Distance Field (ESDF)
representation [23] for these poses, we generate a sparse con-
nected graph G of free spaces using [24]. The drift MxO esti-
mated after the optimization step in the Back-End (Section V)
is utilized to update the ESDF map also updating the graph
G. We only maintain an ESDF map and the graph G up to a
certain radius tr around the robot, clearing the map beyond the
radius.

Given the graph G, we cluster it into different free-space re-
gions as follows. We create a filtered graph Gf removing the ver-
ticesvd whose distance to obstacles is less than a given threshold
tλ. We also remove from Gf all the edges ed that are connected
to the node set vd. We then run the connected components
method [25] on Gf to divide it into several connected sub-graphs
Gfi , i ∈ {1, . . . , N}. In order to re-connect the deleted vertices
vd and their edges ed to the filtered sub-graphs Gfi , we check
within the entire graph G, each edge edi

that connects vertex
vfi of a filtered sub-graph Gfi to the deleted vertex vdi

, thus
inserting vertex vdi

within Gfi . Using this technique we can
obtain disconnected free-space clusters belonging to different
rooms, as vertices close to room openings have distances closer
to walls (obstacles) and thus vote for disconnecting the graph.
Algorithm 1 and Fig. 3 give further details on this free-space
clustering.
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Algorithm 1: Free-Space Clustering.

Room Extraction: Room extraction uses the free-space clus-
ters Gfi and the wall planes from a keyframe at time t to
detect different room configurations. Wall planes are repre-
sented in the map frame as MΠ = [Mπi, . . . ,

Mπj ], where
each plane Mπi = [Mn,Md] is defined by its normal Mn =
[Mnx,

Mny,
Mnz] and distance Md to the origin. All extracted

wall planes are first categorized as x-direction planes MΠx, for
which their highest normal component is nx, and y-direction
planes MΠy for which the highest normal dimension is ny .
MΠx plane are further classified as MΠxa

, with nx > 0, and
MΠxb

with nx < 0. Analogously MΠya
and MΠyb

represent
y-planes with positive and negative ny respectively.

Given each sub-category of the wall planes, our room extrac-
tion method first checks the L2 norm between the 3D points of
each plane and the vertices of each cluster Gfi , to find the set of
walls lying closer to each specific cluster.

Four-Wall Rooms: For a given cluster Gfi , if the room
extraction module finds a set of four wall planes MΠs =
[Mπxa1

,Mπxb1
,Mπya1

,Mπyb2
] close to the cluster vertices,

it is considered as a four-wall room candidate and further
tests are carried out. First, the widths wx and wy of MΠx =
{Mπxa1

,Mπxb1
} and MΠy = {Mπya1

,Mπyb1
} should be

greater than a given threshold tw, where:

wx =
[|Mdxa1

| · Mnxa1
− |Mdxb1

| · Mnxb1

]
wy =

[|Mdya1
| · Mnya1

− |Mdyb1
| · Mnyb1

]
(2)

Mdxa1
and Mdxb1

are the plane distances to the origin and
Mnxa1

and Mnxb1
are the normals of x-planes. Similarly,

Mdya1
, Mdyb1 , Mnya1

and Mnyb1
are the distances and nor-

mals for y-planes. For (2) to hold true, |Mdxa1
| > |Mdxb1

| and
|Mdya1

| > |Mdyb1
|. All plane normals are converted to point

away from the map M frame as:

Mn =

{−1 · Mn ifMd > 0
Mn otherwise

(3)

If the above test is successful, the 3D points in each wall
are checked to be enclosed within the two apposed walls. For
example, in-plane points belonging to Mπxa1

are checked to lie
within the points of Mπya1

and Mπyb1
. Given a room candidate

with a planar set MΠs consisting of four walls, we first calculate
the room center as follows:

Mrxi
=

1

2

[|Mdxa1
| · Mnxa1

− |Mdxb1
| · Mnxb1

]

+ |Mdxb1
| · Mnxb1

Mryi
=

1

2

[|Mdya1
| · Mnya1

− |Mdyb1
| · Mnyb1

]

+ |Mdyb1
| · Mnyb1

Mρi =
Mrxi

+ Mryi
(4)

Equation (4) holds true when |dx1
| > |dx2

|. Again, all planes
are converted to point away from the origin M using (3).

Data association for the room node follows two steps. First,
theL2 norm between the positions of the mapped rooms with the
newly detected ones is calculated. Second, the shortlisted rooms
using the first step undergo id checks at each wall plane and
cases with id mismatch further undergo Mahalanobis distance
check. This process allows for the identification and merging of
duplicate wall planes (id mismatch) for a given room, arising
from inaccuracies in the wall plane matching step (Section IV-A)
as the room and its respective wall plane matching thresholds can
be safely tuned to be larger than the single wall plane matching
threshold.

Two-Wall Rooms: The room extraction method is sometimes
able to find only two walls that surround a free-space cluster
Gfi . These two-wall rooms can be rooms with some undetected
walls or corridor-like structures. If a wall plane set MΠs =
[Mπxa1

,Mπxb1
] contains two x-planes then it is a two-wall

room in x direction. Analogously, two-wall rooms in the y
direction are composed of opposed y-planes. Walls forming
two-wall rooms undergo the same checks as four-wall rooms,
shown in (3) and (2). Given the fact that two-wall rooms contain
information in either x or y direction, the corresponding center
Mci of the cluster Gfi is also utilized to compute the two-wall
room center as follows:

Mrxi
=

1

2

[|Mdxa1
| · Mnxa1

− |Mdxb1
| · Mnxb1

]

+ |Mdxb1
| · Mnxb1

Mκxi
= Mrxi

+
[
Mci − [ Mci · M r̂xi

] · ˆMrxi

]
(5)

where Mκxi
is the two-wall room center in x direction, M r̂xi

=
Mrxi

/‖Mrxi
‖, and Mci is the cluster center obtained from the
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endpoints of the cluster Gfi as:

Mcxi
=

1

2

[
Mpx1

− Mpx2

]
+ Mpx2

Mcyi
=

1

2

[
Mpy1

− Mpy2

]
+ Mpy2

Mci =
[
Mcxi

,Mcyi

]
(6)

where Mpx1
to Mpy2

are the cluster endpoints. Two-wall room
center in y direction can be calculated analogously.

Data association of two-wall rooms follows a similar concept
as four-wall rooms. In the case of a two-wall room in the x
direction, we first compute the L2 norm along the x-axis of the
two-wall room center followed by the id check of individual
wall planes. Cases with id mismatch further undergo L2 norm
check of the planar points between the detected and the mapped
wall planes.

Detected four and two-wall rooms are optimized along with
their corresponding wall planes in the back-end explained in
Section V.

C. Floor Segmentation

The floor segmentation module extracts the widest wall planes
within the current explored floor level by the robot which can
then be used to calculate the center of the current floor level.
Our floor segmentation utilizes the information from all mapped
walls to create a sub-category of wall planes as described in
the room segmentation (Section IV-B) as, MΠst where t =
{1, . . . , T}. After receiving a complete plane set it computes
the widths wx between all x-direction planes and similarly wy

for y-direction planes using (2). The wall plane set with the
largest wx and wy is the chosen candidate for the current floor
level. These planar pairs in both x and y direction undergo
an additional dot product check between their corresponding
normal orientations, |nxa1

· nxb1
| < tn and |nya1

· nyb1
| < tn,

to remove wall planes originating outside the building structure.
The floor segmentation computes the floor center node using
the obtained wall plane candidates following (4). Whenever the
robot ascends or descends to a different floor level, the newly
mapped wall planes are incorporated with the new floor, and the
current floor center is computed only using the wall planes at
that floor.

V. BACK-END

The back-end is responsible for creating and optimizing the
four-layered S-Graphs+ summing the individual cost functions
of each layer, explained in detail as follows.

Keyframes: This layer creates a factor node MxRt
∈ SE(3)

with the robot keyframe pose at time t in the map frame M .
The pose nodes are constrained by pairwise odometry readings
between consecutive poses as in [9].

Walls: This layer creates the planar factor nodes for the wall
planes extracted by the wall segmentation (Section IV-A). The
planar nodes are factored as Mπ = [Mφ,Mθ,Md], where Mφ
and Mθ stand for the azimuth and elevation of the plane in frame
M . The planar nodes are constrained with their corresponding
keyframes using pose-plane constraints as in [9]. The room
segmentation module utilizes mapped walls at current keyframe
kt (Section IV-B) to identify different room candidates, whereas
mapped walls from all the mapped keyframesk = {k1, . . . , kT }

are utilized by the floor segmentation module (Section IV-C) to
identify the center of the floor level.

Rooms: The rooms layer receives the extracted room can-
didates and their corresponding wall planes from the room
segmentation module (Section IV-B) to create appropriate con-
straints between them.

Four-Wall Rooms: We propose a novel edge formulation that
minimizes in a single cost function the room node (generated
from its center) and its four mapped wall planes, as opposed
to [9] which comprised of individual cost functions for room
and the wall planes. The proposed cost function can be written
as:

cρ

(
Mρ,

[
Mπxai

,Mπxbi
,Mπyai

,Mπybi

])

=

T,S∑
t=1,i=1

‖M ρ̂i − f(M π̃xai
,M π̃xbi

,M π̃yai
,M π̃ybi

)‖2Λρ̃i,t

(7)

Where M ρ̂i is the estimated four-wall room center obtained
from Section IV-B and f(M π̃xai

,M π̃xbi
,M π̃yai

,M π̃ybi
) is the

function mapping the four wall planes estimated to a four-wall
room center using (4). Compared to [9] which only included
scalar values d in the room center computation, (4) now includes
both the normal direction n and distance d. The goal of this cost
function is to maintain the structural consistency between the
four planes forming the room.

Two-Wall Rooms: We propose a similar improved cost func-
tion to minimize room nodes and their two corresponding wall
planes as follows:

cκ
(
Mκi,

[
Mπxa1

,Mπxb1
,Mci

])

=

T,K∑
t=1,i=1

‖M κ̂i − f
(
M π̃xa1

,M π̃xb1
,Mci

) ‖2Λκ̃i,t
(8)

Mci is the cluster center, which is kept constant during the
optimization, andM κ̂i is the estimated two-wall room center inx
direction obtained from Section IV-B. f(M π̃xa1

,M π̃xb1
,Mci)

maps the two wall planes along with its cluster center to a room
center using (5). When comparing with [9], (5) now includes
both orientation n, distance d, and the cluster center. The cost
function to minimize two-wall rooms in y direction follows (8)
for wall planes (Mπyaj

,Mπybj
) and cluster center Mcj . Dupli-

cate wall plane nodes identified during the four-wall or two-wall
room segmentation are constrained by a factor minimizing the
difference between their respective parameters.

Floors: The floor node consists of the center of the
current floor level calculated from the floor segmentation
(Section IV-C). We add a cost function between the floor node
and all the mapped four-wall rooms at that floor level as follows:

cξ
(
Mξi,

Mρi

)
=

T,F,S∑
t=1,i=1,j=1

‖M δ̂ξi,ρj
− f

(
Mξi,

Mρj

) ‖2Λξ̃i,t

(9)

where M δ̂ξi,ρj
stands for the relative distance between the floor

i with center ξi and the four-wall room j with center ρj , and
f(Mξi,

Mρj) maps the relative distance between the centers
of floor node and four-wall room node. Two-wall room nodes
are constrained with the floor node using the same (9). While
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the robot navigates in the surroundings and discovers new wall
planes, the estimate of the floor node might change due to the
insertion of such planes into the map. If the current floor center
calculated from the new wall planes gets updated beyond a
threshold tf , the estimate of the floor node is updated in the
graph accordingly along with the relative distances between the
floors and all the rooms.

VI. EXPERIMENTAL RESULTS

A. Methodology

S-Graphs+ is built on top of its baseline S-Graphs [9] and
is validated over several construction sites and office spaces in
both simulated and real-world scenarios, comparing it against
several state-of-the-art LiDAR SLAM frameworks and its base-
line. We utilize VLP-16 LiDAR data in all the datasets. To
validate the presented novelty, we ablate S-Graphs+ into S-
Graphs+ w. OR comprising older room detection algorithm
from S-Graphs but newly proposed room-to-wall plane factors
(Section V) and S-Graphs+ w. OF with older factors from
S-Graphs but the newly proposed room detection algorithm
(Section IV-B). We do not ablate the proposed floor layer, as
currently the floor level (Section IV-C) is mostly used to add
semantic meaning to the map, without significantly improving
the accuracy. Furthermore, we compare the room detection of
S-Graphs+ against the heuristics-based one in S-Graphs, report-
ing the precision and recall of the four-walled and two-walled
room detections in the real-world scenarios, for which we have
the ground truth number of rooms defined in the architectural
plans.

In all the experiments, no fine-tuning of the mentioned thresh-
olds was required and the same prior empirically selected thresh-
olds sufficed for all. The ESDF map (Section IV-B) resolution
depends on the LiDAR resolution, which in our case is computed
as 0.18 m vertically and 0.03 m horizontally, while the map
clearing threshold tr is kept to 10 m, while tλ and tw are
kept to 0.8 m and 0.5 m respectively. The plane matching
threshold (Section IV-A) is kept to 0.35 m while the room
matching threshold (Section IV-B) is 1 m. The dot product
threshold tn between the wall planes (Section IV-C) is kept
to 0.9.

Simulated Data: We conduct a total of five simulated experi-
ments. CF1 and CF2, are generated from the 3D meshes of two
floors of actual architectural plans, while SE1, SE2, and SE3, are
performed in additional simulated environments resembling typ-
ical indoor environments with different room configurations. We
report the ATE against the provided ground truth. Due to absence
of odometry from robot encoders, in all simulated experiments
the odometry is estimated only from LiDAR measurements. For
a fair validation, S-Graphs+ is run using two different odometry
inputs, specifically VGICP [26] and FLOAM [7].

In-House Dataset: In all our in-house data we utilize the robot
encoders for estimating the odometry. The first two experiments,
C1F1 and C1F2, are performed on two floors of a construction
site consisting of a single house. Additionally, C2F0, C2F1,
and C2F2 consist of three floors of an ongoing construction
site combining four individual houses. C3F1, and C3F2 are two
combined houses, while C4F0 is a basement area with different
storage rooms. To validate the accuracy of each method in all the
real experiments we report the RMSE of the estimated 3D maps
against the actual 3D map generated from the architectural plan

TABLE I
ABSOLUTE TRAJECTORY ERROR (ATE) [M], OF S-GRAPH+ AND RELEVANT

BASELINES ON SIMULATED DATA

TABLE II
POINT CLOUD RMSE [M] FOR OUR IN-HOUSE REAL SEQUENCES

except for experiment C4F0, for which we provide qualitative
results due to the absence of a ground truth plan.

TIERS LiDARs dataset: We also validate S-Graphs+ on the
public TIERS dataset [27], recorded by a moving platform in
a variety of scenarios. Experiments T6 to T8 are done in a
single small room in which the platform does several passes
at increasing speeds. Experiments T10 and T11 are performed
in a larger indoor hallway with longer trajectories. We report the
ATE against the provided ground truth. Due to the absence of
encoder readings in this dataset, each baseline method uses its
own LiDAR-based odometry. As in the simulated datasets, we
validate S-Graphs+ with VGICP and FLOAM odometry.

B. Results and Discussion

Simulated Data: Table I showcases the ATE for the simulated
experiments. S-Graphs+ w. OR results in an average improve-
ment in accuracy of 5.44% over S-Graphs, while S-Graphs+
w. OF shows an average decrease in accuracy of 3.03% over
S-Graphs. However, the full S-Graphs+ with both the new room
detector and newly proposed factors shows an improved average
accuracy of 13.37% over the baseline. It can also be seen in
Table I S-Graphs+ is run using two different odometry meth-
ods, VGICP and FLOAM, and that it improves the respective
odometries by 51.88% and 106.5%.

In-House Dataset: Table II presents the point cloud RMSE.
As it can be observed in the table, S-Graphs+ outperforms the
second-best baseline by a margin of 5.93%. S-Graphs+ w. OR
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Fig. 4. Maps by S-Graphs+ and baselines, in-house seq. C4F0.

Fig. 5. S-Graphs+ and S-Graphs maps, in-house seq. C2F0.

Fig. 6. Precision and recall for S-Graphs+ (blue) and S-Graphs (red) on six
different scenes of our in-house dataset.

and S-Graphs+ w. OF individually outperform its baseline by
2.74% and 4.03% respectively. For experiment C4F0, Fig. 4
shows a top view of the final maps estimated by S-Graphs+ and
three other baselines. Observe the higher degree of accuracy
and cleaner map elements in the S-Graphs+ case, the latest in-
dicating a better alignment for different robot passes. Similarly,
observe the precise map generated by S-Graphs+ in Fig. 5 for
experiment C2F0 when comparing with S-Graphs. Fig. 1, shows
the entire four-layered S-Graphs+ for C2F2 along with its map
accuracy.

Fig. 6 presents the precision/recall of the room detection in
S-Graphs+ and the one in S-Graphs. Note how the precision is
slightly higher for S-Graphs+ and, more importantly, the recall is
substantially higher for S-Graphs+. In particular, the difference
is notable for scenarios with complex layouts such as C2F1
which also improves the final map accuracy (Table II). The latest
is one of the main strengths of S-Graphs+: Extracting a higher
number of rooms adds a higher number of constraints leading
to more accurate estimates and a better representation.

Additionally, Table III provides a comprehensive overview
of the computation time required by each module within S-
Graphs+. Plane segmentation runtime can vary depending on

TABLE III
COMPUTATION TIME [MS] OF S-GRAPHS+ ALONG THE TOTAL LENGTH OF THE

SEQUENCE [S] FOR IN-HOUSE DATASET

TABLE IV
ABSOLUTE TRAJECTORY ERROR (ATE) [M], OF S-GRAPHS+ AND RELEVANT

BASELINES ON THE TIERS DATASET [27]

the area of the wall planes (wall planes with a larger area have a
higher number of points, increasing the computation time). The
runtime of room segmentation can vary given the number of
mapped wall planes in the environment at a given time instant
around the robot, while floor segmentation runtime can vary
given the current mapped wall planes in the environment (higher
number of mapped wall planes increases the computation time).
The back-end computation time increases with the length of the
experiment, as the graph size typically increases with time, but
even with sequence lengths of approximately 17 mins (C2F2),
all the modules of S-Graphs+ are able to maintain real-time
performance.

TIERS LiDARs dataset: Table IV presents the ATE for all
baseline methods and our S-Graphs+ in the indoor sequences of
the public TIERS dataset [27]. On an average S-Graphs+ with
FLOAM odometry gives the best results in all the experiments,
improving by 43.2% over FLOAM. Individually S-Graphs+ w.
OR and S-Graphs+ w. OF improve the average accuracy by
13.36% and 8.32% over S-Graphs, while S-Graphs+ shows av-
erage improved accuracy by 14.59% over the second-best base-
line. Note that all methods perform similarly for small scenes,
but differ as scenes become larger. S-Graphs+ presents signif-
icant error reductions for large environments. The strength of
our hierarchical representation is particularly evident in scenar-
ios like T11, in which S-Graphs+ utilizing FLOAM odometry
increases the FLOAM accuracy by 165.8% (Table IV and Fig. 7).
Observe also in Fig. 7 the good performance of S-Graphs+ in
non-Manhattan worlds.
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Fig. 7. Map estimated by S-Graphs+ on TIERS sequence T11.

VII. CONCLUSION

In this work, we present S-Graphs+, a novel four-layered
hierarchical factor graph composed of: A keyframes layer con-
straining a sub-set of robot poses at specific distance-time inter-
vals. A walls layer constraining the wall plane parameters and
linking it to the keyframes. A rooms layer modeling detected
rooms to their corresponding wall planes and a floors layer,
denoting the current floor level in the graph and constraining
the rooms at that level. To extract this high-level information
we also propose a novel room segmentation algorithm using
free-space clusters and wall planes and a floor segmentation
algorithm extracting the floor centers using all the currently
extracted wall planes. We demonstrate an average improvement
in the accuracy of 10.67% against the second-best method on
our simulated and real experiments covering different indoor
environments. In future work, we plan to exploit the hierarchical
structure of the graph for efficient and faster optimization and
validate it over buildings with several floors as well as enhance
the reasoning over the graph for improving the detection of
different relationship constraints between its semantic elements.
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