000128144 001__ 128144
000128144 005__ 20241125101157.0
000128144 0247_ $$2doi$$a10.1145/3592429
000128144 0248_ $$2sideral$$a134395
000128144 037__ $$aART-2023-134395
000128144 041__ $$aeng
000128144 100__ $$0(orcid)0000-0001-6880-322X$$aRoyo, Diego$$uUniversidad de Zaragoza
000128144 245__ $$aVirtual mirrors: non-line-of-sight imaging beyond the third bounce
000128144 260__ $$c2023
000128144 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128144 5203_ $$aNon-line-of-sight (NLOS) imaging methods are capable of reconstructing complex scenes that are not visible to an observer using indirect illumination. However, they assume only third-bounce illumination, so they are currently limited to single-corner configurations, and present limited visibility when imaging surfaces at certain orientations. To reason about and tackle these limitations, we make the key observation that planar diffuse surfaces behave specularly at wavelengths used in the computational wave-based NLOS imaging domain. We call such surfaces virtual mirrors. We leverage this observation to expand the capabilities of NLOS imaging using illumination beyond the third bounce, addressing two problems: imaging single-corner objects at limited visibility angles, and imaging objects hidden behind two corners. To image objects at limited visibility angles, we first analyze the reflections of the known illuminated point on surfaces of the scene as an estimator of the position and orientation of objects with limited visibility. We then image those limited visibility objects by computationally building secondary apertures at other surfaces that observe the target object from a direct visibility perspective. Beyond single-corner NLOS imaging, we exploit the specular behavior of virtual mirrors to image objects hidden behind a second corner by imaging the space behind such virtual mirrors, where the mirror image of objects hidden around two corners is formed. No specular surfaces were involved in the making of this paper.
000128144 536__ $$9info:eu-repo/grantAgreement/ES/DGA/LMP30-21$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-105004GB-I00
000128144 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000128144 590__ $$a7.8$$b2023
000128144 592__ $$a7.766$$b2023
000128144 591__ $$aCOMPUTER SCIENCE, SOFTWARE ENGINEERING$$b5 / 132 = 0.038$$c2023$$dQ1$$eT1
000128144 593__ $$aComputer Graphics and Computer-Aided Design$$c2023$$dQ1
000128144 594__ $$a14.3$$b2023
000128144 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000128144 700__ $$aSultan, Talha
000128144 700__ $$0(orcid)0000-0002-8160-7159$$aMuñoz, Adolfo$$uUniversidad de Zaragoza
000128144 700__ $$aMasumnia-Bisheh, Khadijeh
000128144 700__ $$aBrandt, Eric
000128144 700__ $$0(orcid)0000-0002-7503-7022$$aGutierrez, Diego$$uUniversidad de Zaragoza
000128144 700__ $$aVelten, Andreas
000128144 700__ $$0(orcid)0000-0001-9960-8945$$aMarco, Julio$$uUniversidad de Zaragoza
000128144 7102_ $$15007$$2570$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Lenguajes y Sistemas Inf.
000128144 773__ $$g42, 4 (2023), 140 [15 pp.]$$pACM trans. graph.$$tACM TRANSACTIONS ON GRAPHICS$$x0730-0301
000128144 8564_ $$s10339742$$uhttps://zaguan.unizar.es/record/128144/files/texto_completo.pdf$$yPostprint
000128144 8564_ $$s2941949$$uhttps://zaguan.unizar.es/record/128144/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000128144 909CO $$ooai:zaguan.unizar.es:128144$$particulos$$pdriver
000128144 951__ $$a2024-11-22-12:09:58
000128144 980__ $$aARTICLE