000128186 001__ 128186
000128186 005__ 20240319080952.0
000128186 0247_ $$2doi$$a10.1109/JSEN.2021.3129668
000128186 0248_ $$2sideral$$a127400
000128186 037__ $$aART-2022-127400
000128186 041__ $$aeng
000128186 100__ $$aMartinez-Cesteros, J.$$uUniversidad de Zaragoza
000128186 245__ $$aUncertainty Analysis in the Inverse of Equivalent Conductance Method for Dealing with Crosstalk in 2-D Resistive Sensor Arrays
000128186 260__ $$c2022
000128186 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128186 5203_ $$a2-D resistive sensor arrays (RSAs) appear in many applications to measure physical quantities in a surface. However, they suffer from a crosstalk problem when the simplest configuration is used to address a row-column. Thus, the value of a single cell cannot be measured directly. Several hardware solutions have been proposed to solve it totally or partially but all of them make the circuit more complex. In a previous paper we proposed an innovative numerical solution to eliminate crosstalk after a complete scan of the matrix, which is named in this paper as Inverse of Equivalent Conductance Method (IECM). In the current study, we have analyzed the implications of the method for the uncertainty of the calculated cell resistance by first deriving the sensitivity of the solution and then applying uncertainty propagation theory. The theoretical results have been tested in simulated arrays and in a real 6x6 RSA with known values of resistances with good agreement. The uncertainty analysis is able to predict which values are reliable. In general, the lowest resistances of the array are better solved by IECM as expected. In addition, it is also shown that IECM has the potential to be adapted to other hardware configurations that reduce crosstalk, helping to overcome some of its limitations. IEEE
000128186 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T49-20R$$9info:eu-repo/grantAgreement/ES/MCIU/FPU18-04282
000128186 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000128186 590__ $$a4.3$$b2022
000128186 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b15 / 63 = 0.238$$c2022$$dQ1$$eT1
000128186 591__ $$aPHYSICS, APPLIED$$b44 / 160 = 0.275$$c2022$$dQ2$$eT1
000128186 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b91 / 274 = 0.332$$c2022$$dQ2$$eT2
000128186 592__ $$a0.987$$b2022
000128186 593__ $$aInstrumentation$$c2022$$dQ1
000128186 593__ $$aElectrical and Electronic Engineering$$c2022$$dQ1
000128186 594__ $$a7.0$$b2022
000128186 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000128186 700__ $$0(orcid)0000-0001-7671-7540$$aMedrano-Sanchez, C.$$uUniversidad de Zaragoza
000128186 700__ $$0(orcid)0000-0001-7550-6688$$aPlaza-Garcia, I.$$uUniversidad de Zaragoza
000128186 700__ $$0(orcid)0000-0002-1561-0536$$aIgual-Catalan, R.$$uUniversidad de Zaragoza
000128186 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000128186 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000128186 773__ $$g22, 1 (2022)$$pIEEE sens. j.$$tIEEE SENSORS JOURNAL$$x1530-437X
000128186 8564_ $$s1666201$$uhttps://zaguan.unizar.es/record/128186/files/texto_completo.pdf$$yPostprint
000128186 8564_ $$s3409818$$uhttps://zaguan.unizar.es/record/128186/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000128186 909CO $$ooai:zaguan.unizar.es:128186$$particulos$$pdriver
000128186 951__ $$a2024-03-18-13:09:53
000128186 980__ $$aARTICLE