000128196 001__ 128196
000128196 005__ 20241125101141.0
000128196 0247_ $$2doi$$a10.1016/j.ifset.2023.103478
000128196 0248_ $$2sideral$$a135358
000128196 037__ $$aART-2023-135358
000128196 041__ $$aeng
000128196 100__ $$0(orcid)0000-0003-4744-8649$$aDelso, Carlota$$uUniversidad de Zaragoza
000128196 245__ $$aDefining winery processing conditions for the decontamination of must and wine spoilage microbiota by Pulsed Electric Fields (PEF)
000128196 260__ $$c2023
000128196 5060_ $$aAccess copy available to the general public$$fUnrestricted
000128196 5203_ $$aThis study investigated the PEF-resistance of Saccharomyces bayanus, Brettanomyces bruxellensis, Lactobacillus plantarum, and Oenococus oeni in must or wine under continuous PEF processing. Results showed the capacity of PEF to achieve 3.0-log10-cycles (CFU/mL) of inactivation of all the microorganisms under moderate conditions (< 155 kJ/kg). Developed tertiary models accurately predicted the effect of PEF parameters on microbial inactivation, and Monte Carlo simulation considered the variability of factors and the maximum assumable microbial load in the final treated product. Results showed that PEF-treatments at 15 kV/cm and 129 or 153 kJ/kg would ensure the adequate decontamination (< 10 CFU/mL) of spoilage microorganism in must or wine, respectively. Industrial relevance: PEF technology has been shown to achieve adequate levels of microbial inactivation (3-log10) in must and wine under industrial applicable processing parameters, making it a suitable alternative to SO2 or sterilizing filtration for microbial control in winemaking. Reductions of 3-log10 CFU/mL of must and wine microbiota were found by continuous flow PEF-processing at 15 to 25 kV/cm and 175 to 148 kJ/kg, parameters applicable at industrial scale at 1 ton/h.
000128196 536__ $$9info:eu-repo/grantAgreement/ES/DGA/A03-23R$$9info:eu-repo/grantAgreement/EC/H2020/801586/EU/International Doctoral Programme for Talent Attraction to the Campus of International Excellence of the Ebro Valley/IberusTalent$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 801586-IberusTalent
000128196 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000128196 590__ $$a6.3$$b2023
000128196 592__ $$a1.384$$b2023
000128196 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b17 / 173 = 0.098$$c2023$$dQ1$$eT1
000128196 593__ $$aChemistry (miscellaneous)$$c2023$$dQ1
000128196 593__ $$aIndustrial and Manufacturing Engineering$$c2023$$dQ1
000128196 593__ $$aFood Science$$c2023$$dQ1
000128196 594__ $$a12.0$$b2023
000128196 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000128196 700__ $$0(orcid)0000-0002-9016-1064$$aOspina, Sebastián$$uUniversidad de Zaragoza
000128196 700__ $$aBerzosa, Alejandro$$uUniversidad de Zaragoza
000128196 700__ $$0(orcid)0000-0003-3957-9091$$aRaso, Javier$$uUniversidad de Zaragoza
000128196 700__ $$0(orcid)0000-0003-2430-858X$$aÁlvarez-Lanzarote, Ignacio$$uUniversidad de Zaragoza
000128196 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000128196 773__ $$g89 (2023), 103478 [12 pp.]$$pInnov. food sci. emerg. technol.$$tINNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES$$x1466-8564
000128196 8564_ $$s2550399$$uhttps://zaguan.unizar.es/record/128196/files/texto_completo.pdf$$yVersión publicada
000128196 8564_ $$s2744467$$uhttps://zaguan.unizar.es/record/128196/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000128196 909CO $$ooai:zaguan.unizar.es:128196$$particulos$$pdriver
000128196 951__ $$a2024-11-22-12:02:48
000128196 980__ $$aARTICLE