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The point-to-set principle of J. Lutz and N. Lutz (2018) has recently enabled the theory 
of computing to be used to answer open questions about fractal geometry in Euclidean 
spaces Rn . These are classical questions, meaning that their statements do not involve 
computation or related aspects of logic.
In this paper we extend the reach of the point-to-set principle from Euclidean spaces 
to arbitrary separable metric spaces X . We first extend two algorithmic dimensions—
computability-theoretic versions of classical Hausdorff and packing dimensions that assign 
dimensions dim(x) and Dim(x) to individual points x ∈ X—to arbitrary separable metric 
spaces and to arbitrary gauge families. Our first two main results then extend the point-
to-set principle to arbitrary separable metric spaces and to a large class of gauge families.
We demonstrate the power of our extended point-to-set principle by using it to prove new 
theorems about classical fractal dimensions in hyperspaces.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

It is rare for the theory of computing to be used to answer open mathematical questions—especially questions in contin-
uous mathematics—whose statements do not involve computation or related aspects of logic.4 The point-to-set principle [28], 
described below, has enabled several recent developments that do exactly this. This principle has been used to obtain 
strengthened lower bounds on the Hausdorff dimensions of generalized Furstenberg sets [32], extend the fractal intersec-
tion formula for Hausdorff dimension from Borel sets to arbitrary sets [31], and prove that Marstrand’s projection theorem 
for Hausdorff dimension holds for any set E whose Hausdorff and packing dimensions coincide, whether or not E is ana-

✩ An earlier version of a portion of this work was presented at the 39th International Symposium on Theoretical Aspects of Computer Science (STACS 
2022).
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lytic [33].5 (See [6,7,29,30] for reviews of these developments.) More recently, the point-to-set principle has been used to 
prove that V = L implies that the maximal thin co-analytic set has Hausdorff dimension 1 [47] and that every s ∈ (0, 1] is 
the Hausdorff dimension of a Hamel basis of the vector space R over the field Q [27]. These applications of the point-to-set 
principle all concern fractal geometry in Euclidean spaces Rn .6

This paper extends the reach of the point-to-set principle beyond Euclidean spaces. To explain this, we first review the 
point-to-set principle to date. (All quantities defined in this intuitive discussion are defined precisely later in the paper.) 
The two best-behaved classical fractal dimensions, Hausdorff dimension and packing dimension, assign to every subset E of 
a Euclidean space Rn dimensions dimH(E) and dimP(E), respectively. When E is a “smooth” set that intuitively has some 
integral dimension between 0 and n, the Hausdorff and packing dimensions agree with this intuition, but more complex 
sets E may have any real-valued dimensions satisfying 0 ≤ dimH(E) ≤ dimP(E) ≤ n. Hausdorff and packing dimensions have 
many applications in information theory, dynamical systems, and other areas of science [2,9,17,42].

Early in this century, algorithmic versions of Hausdorff and packing dimensions were developed to quantify the infor-
mation densities of various types of data. The computational resources allotted to these algorithmic dimensions range from 
finite-state to computable enumerability and beyond, but the point-to-set principle concerns the computably enumerable 
algorithmic dimensions introduced in [1,26].7 These assign to each individual point x in a Euclidean space Rn an algorithmic 
dimension dim(x) and a strong algorithmic dimension Dim(x). The point-to-set principle of [28] is a complete characterization 
of the classical Hausdorff and packing dimensions in terms of oracle relativizations of these very non-classical dimensions 
of individual points. Specifically, the point-to-set principle says that, for every set E in a Euclidean space Rn ,

dimH(E) = min
A⊆N

sup
x∈E

dimA(x) (1.1)

and

dimP(E) = min
A⊆N

sup
x∈E

DimA(x), (1.2)

where the dimensions on the right are relative to the oracle A. The point-to-set principle is so named because it enables 
one to use a lower bound on the relativized algorithmic dimension of a single, judiciously chosen point in a set E to prove 
a lower bound on the classical dimension of the set E .

The classical Hausdorff and packing dimensions work not only in Euclidean spaces, but in arbitrary metric spaces. In 
contrast, nearly all work on algorithmic dimensions to date (the exception being [35]) has been in Euclidean spaces or 
in spaces of infinite sequences over finite alphabets. Our objective here is to significantly reduce this gap by extending the 
theory of algorithmic dimensions, along with the point-to-set principle, to arbitrary separable metric spaces. (A metric space 
X is separable if it has a countable subset D that is dense in the sense that every point in X has points in D arbitrarily close 
to it.)

Our extension to arbitrary separable metric spaces opens the way for algorithmic dimensions to be employed in many 
settings of interest, including hyperspaces of metric spaces, Hilbert cubes, and other Hilbert spaces. One feature of these 
settings is that they are typically infinite-dimensional, so that the ordinary Hausdorff and packing dimensions fail to provide 
useful quantitative information. Hausdorff clearly foresaw this issue, and it was already explicit in his original dimension 
paper [12] that his dimension could be defined via various “lenses” that we now call gauge functions. Such gauge functions 
serve to “rescale” infinite-dimensional metric spaces so that they and their subsets of interest are assigned quantitatively 
useful Hausdorff dimensions. Hence, if our extension of algorithmic dimensions to arbitrary separable metric spaces is to be 
fruitful, it must be accompanied by an extension to a wide variety of gauge functions.

We do indeed extend algorithmic dimensions to a wide variety of gauge functions. In fact, one often uses, as we do 
here, a gauge family ϕ , which is a one-parameter family of gauge functions ϕs for s ∈ (0, ∞). For each separable metric 
space X , each gauge family ϕ , and each set E ⊆ X , the classical ϕ-gauged Hausdorff dimension dimϕ

H(E) and ϕ-gauged packing 
dimension dimϕ

P (E) are thus well-defined. In this paper, for each separable metric space X , each gauge family ϕ , and each 
point x ∈ X , we define the ϕ-gauged algorithmic dimension dimϕ(x) and the ϕ-gauged strong algorithmic dimension Dimϕ(x) of 
the point x. We should mention here that there is a particular gauge family θ that gives the “un-gauged” dimensions in the 
sense that the identities dimθ

H(E) = dimH(E), dimθ
P(E) = dimP(E), dimθ (x) = dim(x), and Dimθ (x) = Dim(x) always hold.

A significant part of the technical content of this paper lies in the above extension of algorithmic dimensions to a wide 
variety of gauge families, and in particular to identifying a “wide variety” that is both mathematically well-behaved and 
general enough for future applications. A key part of this is our attention to gauge families that have precision families, as 
defined in the following section.

5 These very non-classical proofs of new classical theorems have provoked new work in the fractal geometry community. Orponen [41] has very recently 
used a discretized potential-theoretic method of Kaufman [19] and tools of Katz and Tao [18] to give a new, classical proof of the two main theorems 
of [33].

6 Applications of the theory of computing—specifically Kolmogorov complexity—to discrete mathematics are more numerous and are surveyed in [25]. 
Other applications to continuous mathematics, not involving the point-to-set principle, include theorems in descriptive set theory [15,20,39], Riemannian 
moduli space [50], and Banach spaces [21].

7 These have also been called “constructive” dimensions and “effective” dimensions by various authors.
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Our first two main results (Theorems 4.1 and 4.2) extend the point-to-set principle to arbitrary separable metric spaces 
and a wide variety of gauge families, proving that, for every separable metric space X , every gauge family ϕ satisfying mild 
asymptotic constraints, and every set E ⊆ X ,

dimϕ
H(E) = min

A⊆N
sup
x∈E

dimϕ,A(x) (1.3)

and

dimϕ
P (E) = min

A⊆N
sup
x∈E

Dimϕ,A(x). (1.4)

Various nontrivial modifications to both machinery and proofs are necessary in getting from (1.1) and (1.2) to (1.3) and (1.4).
As an illustration of the power of our approach, we investigate the dimensions of hyperspaces. The hyperspace K(X) of a 

metric space X is the set of all nonempty compact subsets of X , equipped with the Hausdorff metric [51]. (For example, the 
“stages” E0, E1, E2, . . . of a self-similar fractal E ⊆Rn converge to E in the hyperspace Rn .) The hyperspace of a separable 
metric space is itself a separable metric space, and the hyperspace is typically infinite-dimensional, even when the underly-
ing metric space is finite-dimensional. One use of gauge families is reducing such infinite dimensions to enable quantitative 
comparisons (see [4] and [10] for a partial classification of gauge functions for X = [0, 1]). For example, McClure [36] de-
fined, for each gauge family ϕ , a jump ϕ̃ (our notation) that is also a gauge family, and he proved [37] for every self-similar
subset E of a separable metric space X ,

dimθ̃
H(K(E)) = dimH(E),

where θ is the above-mentioned “un-gauged” gauge family.
We state a hyperspace dimension theorem for the upper and lower Minkowski (i.e., box-counting) dimensions dimM and 

dimM . This states that, for every separable metric space X , every E ⊆ X , and every gauge family ϕ satisfying a certain 
doubling condition,

dimϕ̃
M(K(E)) = dimϕ

M(E) (1.5)

and

dim
ϕ̃
M(K(E)) = dim

ϕ
M(E). (1.6)

These identities are implicit in the work of McClure [36] (and partial results for the case of E being a compact manifold are 
given in [22]), but we include a proof for the sake of completeness.

Our third main result (Theorem 5.2) says that, for every separable metric space X , every “well-behaved” gauge family ϕ , 
and every compact set E ⊆ X ,

dimϕ̃
P (K(E)) = dim

ϕ̃
M(K(E)). (1.7)

Our proof of this result makes essential use of (1.6) and the point-to-set principle (1.4).
Finally, we use the point-to-set principle (1.4), the identities (1.6) and (1.7), and some additional machinery to prove a 

hyperspace packing dimension theorem (Theorem 5.6), which says that, for every separable metric space X , every well-behaved 
gauge family ϕ , and every analytic (i.e., �1

1, an analog of NP that Sipser famously investigated [44–46]) set E ⊆ X ,

dimϕ̃
P (K(E)) ≥ dimϕ

P (E). (1.8)

It is implicit in [36] that (1.8) holds for all σ -compact sets E .
At the time of this writing it is an open question whether there is an analogous hyperspace dimension theorem for 

Hausdorff dimension.
David Hilbert famously wrote the following [13].

The final test of every new theory is its success in answering preexistent questions that the theory was not specifically 
created to answer.

The theory of algorithmic dimensions passed Hilbert’s final test when the point-to-set principle gave us the results in the 
first paragraph of this introduction. We hope that the machinery developed here will lead to further such successes in the 
wider arena of separable metric spaces.
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2. Gauged classical dimensions

We review the definitions of gauged Hausdorff, packing, and Minkowski dimensions. We refer the reader to [9,34] for a 
complete introduction and motivation.

Let (X, ρ) be a metric space where ρ is the metric. (From now on we will omit ρ when referring to the space (X, ρ).) 
X is separable if there exists a countable set D ⊆ X that is dense in X , meaning that for every x ∈ X and δ > 0, there is a 
d ∈ D such that ρ(x, d) < δ. The diameter of a set E ⊆ X is diam(E) = sup {ρ(x, y) | x, y ∈ E }; notice that the diameter of a 
set can be infinite. A cover of E ⊆ X is a collection U ⊆ P(X) such that E ⊆ ⋃

U∈U U , and a δ-cover of E is a cover U of E
such that diam(U ) ≤ δ for all U ∈ U .

Definition (gauge functions and families). A gauge function is a continuous,8 nondecreasing function from [0, ∞) to [0, ∞) that 
vanishes only at 0 [12,43]. A gauge family is a one-parameter family ϕ = {ϕs | s ∈ (0,∞) } of gauge functions ϕs satisfying

ϕt(δ) = o(ϕs(δ)) as δ → 0+

whenever s < t .

The canonical gauge family is θ = {θs | s ∈ (0,∞) }, defined by θs(δ) = δs . “Un-gauged” or “ordinary” Hausdorff, packing, 
and Minkowski dimensions are special cases of the following definitions, using ϕ = θ .

Some of our gauged dimension results will require the existence of a “precision family” for the gauge family.

Definition (precision family). A precision sequence for a gauge function ϕ is a function α :N → Q+ that vanishes as r → ∞
and satisfies ϕ(α(r)) = O (ϕ(α(r + 1))) as r → ∞. A precision family for a gauge family ϕ = {ϕs | s ∈ (0, ∞)} is a one-
parameter family α = {αs | s ∈ (0, ∞)} of precision sequences satisfying∑

r∈N

ϕt(αs(r))

ϕs(αs(r))
< ∞

whenever s < t .

Observation 2.1. αs(r) = 2−r is a precision family for the canonical gauge family θ .

Definition (gauged Hausdorff measure and dimension). For every metric space X , set E ⊆ X , and gauge function ϕ , the ϕ-
gauged Hausdorff measure of E is

Hϕ(E) = lim
δ→0+ inf

{∑
U∈U

ϕ(diam(U ))

∣∣∣∣∣ U is a countable δ-cover of E

}
.

For every gauge family ϕ = {ϕs | s ∈ (0,∞) }, the ϕ-gauged Hausdorff dimension of E is

dimϕ
H(E) = inf

{
s ∈ (0,∞)

∣∣ Hϕs (E) = 0
}
.

Definition (gauged packing measure and dimension). For every metric space X , set E ⊆ X , and δ ∈ (0, ∞), let Vδ(E) be the set 
of all countable collections of disjoint open balls with centers in E and diameters at most δ. For every gauge function ϕ and 
δ > 0, define the quantity

Pϕ
δ (E) = sup

U∈Vδ(E)

∑
U∈U

ϕ(diam(U )).

Then the ϕ-gauged packing pre-measure of E is

Pϕ
0 (E) = lim

δ→0+ Pϕ
δ (E),

and the ϕ-gauged packing measure of E is

Pϕ(E) = inf

{∑
U∈U

Pϕ
0 (U )

∣∣∣∣∣ U is a countable cover of E

}
.

8 Some authors require only that the function is right-continuous when working with Hausdorff dimension and left-continuous when working with 
packing dimension. Indeed, left continuity is sufficient for our hyperspace packing dimension theorem.
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For every gauge family ϕ = {ϕs | s ∈ (0,∞) }, the ϕ-gauged packing dimension of E is

dimϕ
P (E) = inf

{
s ∈ (0,∞)

∣∣ Pϕs (E) = 0
}
.

Definition (gauged Minkowski dimensions). For every metric space X , E ⊆ X , and δ ∈ (0, ∞), let

N(E, δ) = min

{
|F |

∣∣∣∣∣ F ⊆ X and E ⊆
⋃
x∈F

Bδ(x)

}
,

where Bδ(x) is the open ball of radius δ centered at x. Then for every gauge family ϕ = {ϕs}s∈(0,∞) the ϕ-gauged lower and 
upper Minkowski dimension of E are

dimϕ
M(E) = inf

{
s

∣∣∣∣ lim inf
δ→0+ N(E, δ)ϕs(δ) = 0

}
and

dim
ϕ
M(E) = inf

{
s

∣∣∣∣ lim sup
δ→0+

N(E, δ)ϕs(δ) = 0

}
,

respectively.

Throughout this paper, we make implicit use of the fact that ϕ-gauged lower Minkowski dimension can equivalently be 
characterized as

inf

{
s

∣∣∣∣ lim inf
δ→0+ N(E, δ)ϕs(δ) ≤ 1

}
or

inf

{
s

∣∣∣∣ lim inf
δ→0+ N(E, δ)ϕs(δ) < ∞

}
,

and similarly for upper Minkowski, Hausdorff, and packing dimensions.
When X is separable, it is sometimes useful to require that the balls covering E have centers in the countable dense set 

D . For all E ⊆ X and δ ∈ (0, ∞), let

N̂(E, δ) = min

{
|F |

∣∣∣∣∣ F ⊆ D and E ⊆
⋃
x∈F

Bδ(x)

}
.

Observation 2.2. If X is a separable metric space and ϕ = {ϕs}s∈(0,∞) is a gauge family, then for all E ⊆ X,

1. dimϕ
M(E) = inf

{
s

∣∣∣∣ lim inf
δ→0+ N̂(E, δ)ϕs(δ) = 0

}
.

2. dim
ϕ
M(E) = inf

{
s

∣∣∣∣ lim sup
δ→0+

N̂(E, δ)ϕs(δ) = 0

}
.

Observation 2.3. If X is separable, E ⊆ X, and 0 < δ < δ̂, then N̂(E, ̂δ) ≤ N(E, δ).

Proof. Let F ⊆ X be a witness to N(E, δ). For all x ∈ F , there exists x̂ ∈ D with 0 < ρ(x, ̂x) < δ̂ − δ, so Bδ(x) ⊆ B
δ̂
(x̂). Thus, 

the set F̂ = {
x̂ | x ∈ F

} ⊆ D satisfies

E ⊆
⋃
x∈F

Bδ(x) ⊆
⋃
x̂∈ F̂

B
δ̂
(x̂),

so N̂(E, ̂δ) ≤ | F̂ | = |F | = N(E, δ). �
Proof of Observation 2.2. Since N̂(E, δ) ≥ N(E, δ), it is clear that the left-hand side of each equation is bounded above by 
the right-hand side. We now prove the other direction. Fix s ∈ (0, ∞).

1. Assume that lim infδ→0+ N(E, δ)ϕs(δ) = 0, and let δ0, ε > 0. Then there is some δ < δ0 such that N(E, δ)ϕs(δ) < ε/2. By 
the (right) continuity of ϕs , there exists some δ̂ ∈ (δ, δ0) such that ϕs(δ̂) < 2ϕs(δ). By Observation 2.3, N̂(E, ̂δ) ≤ N(E, δ), 
so we have N̂(E, ̂δ)ϕs(δ̂) < 2N(E, δ)ϕs(δ) < ε.
5
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2. Assume that lim supδ→0+ N(E, δ)ϕs(δ) = 0, and let ε > 0. Then there is some δ0 > 0 such that N(E, δ)ϕs(δ) < ε/2 for all 
δ < δ0. For every δ̂ < δ0, by the (left) continuity of ϕs , there is some δ < δ̂ such that ϕs(δ̂) < 2ϕs(δ). Observation 2.2 tells 
us that N̂(E, ̂δ) ≤ N(E, δ), so we have N̂(E, ̂δ)ϕs(δ̂) < 2N(E, δ)ϕs(δ) < ε. �
The following relationship between upper Minkowski dimension and packing dimension was previously known to hold 

for the canonical gauge family θ , a result that is essentially due to Tricot [49]. Our proof of this gauged generalization, is 
adapted from the presentation by Bishop and Peres [3] of the un-gauged proof.

Lemma 2.4 (generalizing Tricot [49]). Let X be any metric space, E ⊆ X, and ϕ a gauge family.

1. If for all s < t ϕt(2δ) = O (ϕs(δ)) as δ → 0+ , then

dimϕ
P (E) ≥ inf

{
sup
i∈N

dim
ϕ
M(Ei)

∣∣∣∣∣ E ⊆
⋃
i∈N

Ei

}
.

2. If there is a precision family for ϕ , then

dimϕ
P (E) ≤ inf

{
sup
i∈N

dim
ϕ
M(Ei)

∣∣∣∣∣ E ⊆
⋃
i∈N

Ei

}
.

Proof. We follow the presentation by Bishop and Peres [3] of the proof for the canonical gauge family.

1. Fix t > s > 0, and assume there is some constant c > 0 such that ϕt(2δ) < c · ϕs(δ) for all sufficiently small δ. Let 
F ⊆ E be a set with Pϕs

0 (F ) < ∞. It suffices to show that lim supδ→0+ N(F , δ)ϕt(δ) < ∞. To see this, fix δ > 0 and 
let Np(F , δ) denote the maximum number of disjoint open balls of diameter δ with centers in F , and observe that 
Np(F , δ)ϕs(δ) ≤ Pϕs

δ (F ) and N(F , 2δ) ≤ Np(F , δ). It follows that N(F , 2δ)ϕt(2δ)/c < ∞ for all sufficiently small δ, which 
yields the desired bound.

2. Suppose that α = {αs}s∈(0,∞) is a precision family for ϕ , fix t > s > 0, and suppose that F ⊆ E is a set with 
Pϕt

0 (F ) > 0. It suffices to show that lim supδ→0+ N(F , δ)ϕs(δ) > 0, and since Np(F , δ) ≤ N(F , δ), it suffices to show that 
lim supδ→0+ Np(F , δ)ϕs(δ) > 0.

Let γ > 0 be such that for every ε > 0 there is a collection {Bδ j/2(x j)} j∈N of disjoint balls with diameters δ j ≤ ε, 
centers x j ∈ F , and 

∑
j∈N ϕt(δ j) > γ . Fix an ε > 0 and a corresponding collection of balls. Let r0 = max{r ∈N | αs(r) > ε}, 

and for each r ∈N , let nr = |{ j ∈N | αs(r + 1) ≤ δ j < αs(r)}|. Then Np(F , αs(r + 1)) ≥ nr , so

∞∑
r=r0

Np(F ,αs(r + 1))ϕt(αs(r)) ≥
∞∑

r=r0

nrϕt(αs(r))

>
∑
j∈N

ϕt(δ j)

> γ .

For every r ∈N , define

ar = Np(F ,αs(r + 1))ϕs(αs(r + 1)) ≥ Np(F ,αs(r))
ϕs(αs(r))

c
,

where c is the implicit constant in the precision sequence condition for αs . Then

∞∑
r=r0

ar
ϕt(αs(r))

ϕs(αs(r))
≥ 1

c

∞∑
r=r0

Np(F ,αs(r + 1))ϕt(αs(r + 1)) >
γ

c
.

If the sequence {ar}r∈N converged to 0, then the sum would also tend to 0 as r0 → ∞ since α is a precision family. 
This is a contradiction, so we have

lim sup
r→∞

Np(F ,αs(r + 1))ϕs(αs(r + 1)) > 0,

and the claim holds. �
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3. Gauged algorithmic dimensions

In this section we formulate algorithmic dimensions in arbitrary separable metric spaces and with arbitrary gauge fami-
lies.

For the rest of this paper, let X = (X, ρ) be a separable metric space, and fix a function f : {0, 1}∗ → X such that the set 
D = range( f ) is dense in X . The metric space X is computable if there is a computable function g : ({0, 1}∗)2 × Q+ → Q
that approximates ρ on D in the sense that, for all v, w ∈ {0, 1}∗ and δ ∈Q+ ,

|g(v, w, δ) − ρ( f (v), f (w))| ≤ δ. (3.1)

Our results here hold for all separable metric spaces, whether or not they are computable, but our methods make explicit 
use of the function f .

Following standard practice [5,25,40], fix a universal oracle Turing machine U , and define the (plain) Kolmogorov complex-
ity of a string w ∈ {0, 1}∗ relative to an oracle A ⊆N to be

CA(w) = min
{
|π |

∣∣∣π ∈ {0,1}∗ and U A(π) = w
}

,

i.e., the minimum number of bits required to cause U to output w when it has access to the oracle A. The (plain) Kolmogorov 
complexity of w is then C(w) = C∅(w).

We define the (plain) Kolmogorov complexity of a point q ∈ D to be

C(q) = min
{

C(w)
∣∣ w ∈ {0,1}∗ and f (w) = q

}
,

noting that this depends on the enumeration f of D that we have fixed.
The Kolmogorov complexity of a point x ∈ X at precision δ ∈ (0, ∞) is

Cδ(x) = min {C(q) |q ∈ D and ρ(q, x) < δ } .

The algorithmic dimension of a point x ∈ X is

dim(x) = lim inf
δ→0+

Cδ(x)

log(1/δ)
, (3.2)

and the strong algorithmic dimension of x is

Dim(x) = lim sup
δ→0+

Cδ(x)

log(1/δ)
. (3.3)

These two dimensions9 have been extensively investigated in the special cases where X is a Euclidean space Rn or a 
sequence space �ω [5,29].

Having generalized algorithmic dimensions to arbitrary separable metric spaces, we now generalize them to arbitrary 
gauge families.

Let ϕ = {ϕs | s ∈ (0,∞) } be a gauge family. Then, the ϕ-gauged algorithmic dimension of a point x ∈ X is

dimϕ(x) = inf

{
s

∣∣∣∣ lim inf
δ→0+ 2Cδ(x)ϕs(δ) = 0

}
, (3.4)

and the ϕ-gauged strong algorithmic dimension of x is

Dimϕ(x) = inf

{
s

∣∣∣∣ lim sup
δ→0+

2Cδ(x)ϕs(δ) = 0

}
, (3.5)

Gauged algorithmic dimensions dimϕ(x) have been investigated by Staiger [48] in the special case where X is a sequence 
space �ω .

A routine inspection of (3.2)–(3.5) verifies the following.

Observation 3.1. For all x ∈ X, dimθ (x) = dim(x) and Dimθ (x) = Dim(x), where θ is the canonical gauge family given by θs(δ) = δs .

9 The definitions given here differ slightly from the standard formulation in which prefix Kolmogorov complexity is used instead of plain Kolmogorov 
complexity and the precision parameter δ belongs to {2−r | r ∈ N}. The present formulation is equivalent to the standard one for un-gaugued dimensions 
and only differs for gauge functions ϕ in which the convergence of ϕ to 0 as δ → 0+ is very slow.
7
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A specific investigation of algorithmic (or classical) dimensions might call for a particular gauge function or family for one 
of two reasons. First, many gauge functions may assign the same dimension to an object under consideration (because they 
converge to 0 at somewhat similar rates as δ → 0+) but additional considerations may identify one of these as being the 
most precisely tuned to the phenomenon of interest. Finding such a gauge function is called finding the “exact dimension” 
of the object under investigation. This sort of calibration has been studied extensively for classical dimensions [9,43] and by 
Staiger [48] for algorithmic dimension.

The second reason, and the reason of interest to us here, why specific investigations might call for particular gauge 
families is that a given gauge family ϕ may be so completely out of tune with the phenomenon under investigation that the 
ϕ-gauged dimensions of the objects of interest are either all minimum (all 0) or else all maximum (all the same dimension 
as the space X itself). In such a circumstance, a gauge family that converges to 0 more quickly or slowly than ϕ may yield 
more informative dimensions. Several such circumstances were investigated in a complexity-theoretic setting by Hitchcock, 
J. Lutz, and Mayordomo [14].

The following routine observation indicates the direction in which one adjusts a gauge family’s convergence to 0 in order 
to adjust the resulting gauged dimensions upward or downward.

Observation 3.2. If ϕ and ψ are gauge families with ϕs(δ) = O (ψs(δ)) as δ → 0+ for all s ∈ (0, ∞), then, for all x ∈ X, dimϕ(x) ≤
dimψ(x) and Dimϕ(x) ≤ Dimψ(x).

We now define an operation on gauge families that is implicit in earlier work [36] and is explicitly used in the results of 
Section 5.

Definition (jump). The jump of a gauge family ϕ is the family ϕ̃ given ϕ̃s(δ) = 2−1/ϕs(δ) .

Observation 3.3. The jump of a gauge family is a gauge family.

We now note that the jump of a gauge family always converges to 0 more quickly than the original gauge family.

Lemma 3.4. For all gauge families ϕ and all s ∈ (0, ∞), ϕ̃s(δ) = o(ϕs(δ)) as δ → 0+ .

Proof. Letting x = ϕs(δ)
ln 2 and noting that x → 0+ as δ → 0+ , we have

ϕ̃s(δ) = 2−1/ϕs(δ) = e−1/x = o(x) = o(ϕs(δ))

as δ → 0+ . �
Observation 3.3 and Lemma 3.4 immediately imply the following.

Corollary 3.5. For all gauge families ϕ and all x ∈ X, dimϕ̃ (x) ≤ dimϕ(x) and Dimϕ̃ (x) ≤ Dimϕ(x).

The definitions and results of this section relativize to arbitrary oracles A ⊆N in the obvious manner, so the Kolmogorov 
complexities CA(q) and CA

δ (x) and the dimensions dimA(x), DimA(x), dimϕ,A(x), and Dimϕ,A(x) are all well-defined and 
behave as indicated.

Observation 3.6. For all gauge families ϕ , all x ∈ X, and all s > 0,

log
(
2Cδ(x)ϕ̃s(δ)

) = Cδ(x)ϕs(δ) − 1

ϕs(δ)
.

The ϕ̃-gauged algorithmic dimensions admit the following characterizations, the second of which is used in the proof of 
our hyperspace packing dimension theorem.

Theorem 3.7. For all gauge families ϕ and all x ∈ X, the following identities hold.

1. dimϕ̃ (x) = inf

{
s

∣∣∣∣ lim inf
δ→0+ Cδ(x)ϕs(δ) = 0

}
.

2. Dimϕ̃ (x) = inf

{
s

∣∣∣∣ lim sup
δ→0+

Cδ(x)ϕs(δ) = 0

}
.

Proof. Let ϕ and x be as given, and let S− and S+ be the sets on the right-hand sides of 1 and 2, respectively.
8
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1. It suffices to show that(
dimϕ̃ ,∞) ⊆ S− ⊆ [

dimϕ̃ ,∞)
.

To verify the first inclusion, note that, by Observation 3.6,

t > s > dimϕ̃ (x) =⇒ lim inf
δ→0+ 2Cδ(x)ϕ̃s(δ) = 0

⇐⇒ lim inf
δ→0+

Cδ(x)ϕs(δ) − 1

ϕs(δ)
= −∞

=⇒ lim inf
δ→0+ Cδ(x)ϕs(δ) ≤ 1

=⇒ t ∈ S−.

To verify the second inclusion, note that, by Observation 3.6,

s ∈ S− ⇐⇒ lim inf
δ→0+ Cδ(x)ϕs(δ) = 0

=⇒ lim inf
δ→0+

Cδ(x)ϕs(δ) − 1

ϕs(δ)
= −∞

⇐⇒ lim inf
δ→0+ log

(
2Cδ(x)ϕ̃s(δ)

) = −∞
⇐⇒ lim inf

δ→0+ 2Cδ(x)ϕ̃s(δ) = 0

=⇒ s ≥ dimϕ̃ (x).

2. It suffices to show that(
Dimϕ̃ ,∞) ⊆ S+ ⊆ [

Dimϕ̃ ,∞)
.

The proof of this is completely analogous to the proof of part 1 of the theorem. �
4. The general point-to-set principle

We now show that the point-to-set principle of J. Lutz and N. Lutz [28] holds in arbitrary separable metric spaces and 
for gauged dimensions. The proofs of these theorems are more delicate and involved than those in [28]. This is partially due 
to the fact that the metric spaces here need not be finite-dimensional, and to the weak restrictions that we place on the 
gauge family.

Theorem 4.1 (general point-to-set principle for Hausdorff dimension). For every separable metric space X, every gauge family ϕ , and 
every set E ⊆ X,

dimϕ
H(E) ≥ min

A⊆N
sup
x∈E

dimϕ,A(x). (4.1)

Equality holds if there is a precision family for ϕ .

Proof. Let X , ϕ , and E be as given. As in Section 3, let f : {0, 1}∗ → X be a function such that range( f ) = D is dense in 
X , and let g : ({0, 1}∗)2 ×Q+ →Q be a (not necessarily computable) function satisfying inequality (3.1). The function g is 
implicitly encoded in all oracles for Kolmogorov complexities and algorithmic dimensions in this proof, but we omit g from 
the notation.

For any s ∈ Q+ , the density of D implies that Hϕs (E) = 0 can be witnessed by balls with rational radii and centers in 
D . Hence, for every s, ε ∈Q+ with s > dimϕ

H(E), there exist sequences {xs,ε
i }i∈N = { f (ws,ε

i )}i∈N in D and {δs,ε
i }i∈N in Q+

such that {Bδ
s,ε
i

(xs,ε
i )}i∈N is an ε-cover of E and∑

i∈N
ϕs(δ

s,ε
i ) < 1. (4.2)

Let A be an oracle relative to which the functions

(i, s, ε) �→ (
ws,ε

i , δ
s,ε
i

)
, (4.3)

(i, s, ε) �→ ϕs
(
δ

s,ε)
, (4.4)
i

9
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on the domain N × (Q+)2 and

(s, t, ε) �→ 1

2
log inf

δ≤ε

ϕs(δ)

ϕt(δ)
(4.5)

on the domain (Q+)3 are computable. Let s, t ∈Q+ be such that dimϕ,A(E) < s < t . Let x ∈ E be arbitrary. To prove (4.1), it 
suffices to show that dimϕ,A(x) ≤ t .

Since we have fixed s and t with t > s, (4.5) is an unbounded function of ε that is computable relative to A. It follows 
(cf. Section 3.3 of [25]) that this function is not a lower bound of CA , i.e., that there exist arbitrarily small ε > 0 such that

CA(ε) <
1

2
log inf

δ≤ε

ϕs(δ)

ϕt(δ)
.

Let j be such that x ∈ Bδ
s,ε
j

(xs,ε
j ), and let δ = δ

s,ε
j ≤ ε. Then as ε → 0+ ,

CA
δ (x) ≤ CA(ws,ε

j )

≤ CA(ε, j) + O (1).

By (4.2) and the computability of (4.4) relative to A, Levin’s coding lemma [23,24] (applied with ε as side information) tells 
us10 that there is a constant k ∈N (that depends on the s that we have fixed) such that, for every i ∈N ,

CA(i | ε) ≤ log
(
1/ϕs(δ)

) + k. (4.6)

In particular, then,

CA(ε, j) ≤ 2CA(ε) + CA( j | ε) + O (1)

≤ log
ϕs(δ)

ϕt(δ)
+ log

1

ϕs(δ)
+ O (1)

= log
1

ϕt(δ)
+ O (1).

Since this holds for arbitrarily small ε > 0, it follows that

lim inf
δ→0+ 2CA

δ (x)ϕt(δ) ≤ lim inf
δ→0+ 2log 1

ϕt (δ)
+O (1)

ϕt(δ)

= O (1),

whence dimϕ,A(x) ≤ t , confirming (4.1).
For the other direction, assume that there is a precision family α = {αs}s∈(0,∞) for ϕ , fix any oracle A ⊆ N , and let 

s, t ∈Q be such that

sup
x∈E

dimϕ,A(x) < s < t. (4.7)

For all r ∈N , let

Ur =
{

Bαs(r)( f (w))

∣∣∣∣ CA(w) ≤ log
1

ϕs(αs(r))

}
,

and notice that

|Ur | ≤ 2

ϕs(αs(r))
.

Now fix any r ∈N , and let

Wr =
∞⋃

k=r

Uk.

For every x ∈ E , (4.7), together with the fact that ϕ(αs(r)) = O (ϕ(αs(r + 1))) as r → ∞, tells us that the set

10 In fact, Levin’s coding lemma tells us that KA(i | ε) is bounded above in this manner, where KA is the prefix complexity relative to A, but this 
implies (4.6).
10
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{
r
∣∣∣ 2CA

αs(r)
(x)

ϕs(αs(r)) ≤ 1
}

=
{

r

∣∣∣∣ CA
αs(r)(x) ≤ log

1

ϕs(αs(r))

}
is unbounded, as is the set {k | x ∈ Uk}, so x ∈Wr . Thus Wr is a countable αs(r)-cover of E with

∑
U∈Wr

ϕt(diam(U )) =
∞∑

k=r

∑
U∈Uk

ϕt(αs(k))

<

∞∑
k=r

2

ϕs(αs(k))
· ϕt(αs(k)).

Since α is a precision family for ϕ , this sum converges. We thus have

Hϕt (E) ≤ 2 lim
r→∞

∞∑
k=r

ϕt(αs(k))

ϕs(αs(k))

≤ 2
∑
r∈N

ϕt(αs(r))

ϕs(αs(r))

< ∞,

so dimϕ
H(E) ≤ t . We conclude that dimϕ

H(E) ≤ supx∈E dimϕ,A(x). �
Theorem 4.2 (general point-to-set principle for packing dimension). Let X be any separable metric space, E ⊆ X, and ϕ a gauge family.

1. If for all s < t ϕt(2δ) = O (ϕs(δ)) and ϕs(δ) = O (1/ log log(1/δ)) as δ → 0+ , then

dimϕ
P (E) ≥ min

A⊆N
sup
x∈E

Dimϕ,A(x).

2. If there is a precision family for ϕ , then

dimϕ
P (E) ≤ min

A⊆N
sup
x∈E

Dimϕ,A(x).

Proof. 1. Assume that ϕt(2δ) = O  (ϕs(δ)) and ϕs(δ) = O (1/ log log(1/δ)) hold for all s < t . It suffices to show that there 
exists A ⊆N such that, for all x ∈ E ,

Dimϕ,A(x) ≤ dimϕ
P (E). (4.8)

For each u > dimϕ
P (E), Lemma 2.4 and our hypothesis on ϕ tell us that there is a cover {Eu

i }i∈Z+ of E such that, for all 
i ∈Z+ ,

dim
ϕ
M(Eu

i ) ≤ u. (4.9)

For each u > dimϕ
P (E), i ∈Z+ , and δ ∈Q ∩ (0, 1), let F u,δ

i ⊆ D satisfy∣∣∣F u,δ
i

∣∣∣ = N̂(Eu
i , δ)

and

Eu
i ⊆

⋃
d∈F u,δ

i

Bδ(d).

Define h :Z+ ×Q ∩ (
dimϕ

P (E),∞) ×Q ∩ (0, 1) → ({0, 1}∗)∗ by

h(i, u, δ) =
(

wu,δ
i,1 , . . . , wu,δ

i,N̂(Eu
i ,δ)

)
,

where, recalling that f is the function mapping bit strings onto the dense set D ,

F u,δ
i =

{
f

(
wu,δ

i,1

)
, . . . , f

(
wu,δ

i,N̂(Eu ,δ)

)}
.

i
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To prove (4.8), let A be an oracle encoding h, let s > t > u > dimϕ
P (E) such that u ∈Q, and let x ∈ E . By Lemma 3.4 it 

suffices to show that

lim
δ→0+ 2CA

δ (x)ϕs(δ) = 0.

For this, let ε > 0. It suffices to show that, for all sufficiently small δ ∈Q+ ,

CA
δ (x) < log

ε

ϕs(δ)
. (4.10)

For each δ ∈Q ∩ (0, 1), let r(δ) = ⌈
log 1

δ

⌉
and δ′ = 2−r(δ) , so that δ

2 < δ′ ≤ δ. Since s > t , our hypothesis on ϕ tells us 
that there is a constant a > 0 such that, for all sufficiently small δ ∈Q+ ,

1

ϕt(δ′)
≤ a

ϕs(2δ′)
≤ a

ϕs(δ)
. (4.11)

Since t > u, (4.9) tells us that, for all i ∈N ,

lim
δ→0+ N̂(Eu

i , δ)ϕt(δ) = 0.

Hence, for all i ∈N and all sufficiently small δ ∈Q+ ,

N̂(Eu
i , δ)ϕt(δ) <

ε

2a
. (4.12)

In particular, then, (4.11) and (4.12) tell us that, for all sufficiently small δ ∈Q+ ,

N̂(Eu
i , δ′) ≤ ε

2aϕt(δ′)
≤ ε

2ϕs(δ)
. (4.13)

For each i, k ∈Z+ and δ ∈Q ∩ (0, 1), let π ∈ {0, 1}∗ be a string that encodes i, r(δ), and k, with

|π | = log k + O (log i + log r(δ)).

Let M be an oracle Turing machine that, with oracle A and program π , outputs the string wu,δ′
i,k that is the kth

component of h(i, u, δ′) (if there is one), where δ′ = 2−r(δ) . Let cM be an optimality constant for M .
To see that (4.10) holds, choose i ∈ Z+ such that x ∈ Ei , and let δ ∈ Q ∩ (0, 1). Let δ′ = 2−r(δ) , and choose k ∈{

1, . . . , N̂(Eu
i , δ′)

}
such that x ∈ Bδ′

(
f
(

wu,δ′
i,k

))
. Then

f
(

wu,δ′
i,k

)
∈ D ∩ Bδ′(x) ⊆ D ∩ Bδ(x),

so (4.13) gives, for all sufficiently small δ ∈Q+ ,

CA
δ (x) ≤ CA

(
wu,δ′

i,k

)
≤ CA

M

(
wu,δ′

i,k

)
+ cM

≤ |π | + cM

≤ log k + cM + O (log i + log r(δ))

≤ log N̂(Eu
i , δ′) + O (log i + log r(δ))

≤ log
ε

2ϕs(δ)
+ O (log i + log r(δ)).

Since i is a constant and, by our assumption, log r(δ) ≤ log(log(1/δ) + 1) = O (1/ϕt(δ)) = o(1/ϕs(δ)), the second term 
vanishes as δ → 0+ , affirming (4.10).

2. Let s > t > supx∈E Dimϕ,A(x). Then for each x ∈ E and all sufficiently small δ ∈Q+ , CA
δ (x) < log(1/ϕt(δ)). For all δ ∈Q+ , 

let

Uδ =
{

Bδ( f (w))

∣∣∣ CA(w) ≤ log(1/ϕt(δ))
}

,

and for each i ∈N , let

Ei = {x | ∀δ < 1/i, x ∈ Uδ} .

Then E ⊆ ⋃
i∈N Ei . For each δ < 1/i we have N(Ei, δ) < 2/ϕt(δ), so N(Ei, δ)ϕs(δ) = o(1), and therefore dim

ϕ
M(Ei) ≤ s. 

Assuming that there is a precision family for ϕ , the result follows by Lemma 2.4. �
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5. Hyperspace dimension theorems

This section presents our third main theorem, Theorem 5.2.
As before, let X = (X, ρ) be a separable metric space. The hyperspace of X is the metric space K(X) = (K(X), ρH), where 

K(X) is the set of all nonempty compact subsets of X and ρH is the Hausdorff metric [11] on K(X) defined by

ρH(E, F ) = max

{
sup
x∈E

ρ(x, F ), sup
y∈F

ρ(E, y)

}
,

where ρ(x, F ) = infy∈F ρ(x, y) and ρ(E, y) = infx∈E ρ(x, y).
Let f : {0, 1}∗ → X and D = range( f ) be fixed as at the beginning of section 3, so that D is dense in X . Let D be the set 

of all nonempty, finite subsets of D . It is well known and easy to show that D is a countable dense subset of K(X), and it 
is routine to define from f a function f̃ : {0, 1}∗ → K(X) such that range( f̃ ) = D. Thus K(X) is a separable metric space, 
and the results in section 4 hold for K(X).

It is important to note the distinction between the classical Hausdorff and packing dimensions dimH(E) and dimP(E)

of a nonempty compact subset E of X and the algorithmic dimensions dim(E) and Dim(E) of this same set when it is 
regarded as a point in K(X). In Section 6, we construct an example of a set E with Hausdorff and packing dimensions 
dimH(E) = dimP(E) = log(2)/ log(7) ≈ 0.356 and dim(E) = Dim(E) = ∞.

Theorem 5.1 (hyperspace Minkowski dimension theorem, implicit in [36]). For every set S ⊆ X and every gauge family ϕ such that for 
all s < t ϕt(2δ) = O (ϕs(δ)) as δ → 0+ ,

dimϕ̃
M(K(E)) = dimϕ

M(E) and dim
ϕ̃
M(K(E)) = dim

ϕ
M(E).

Proof. Let E ⊆ X and ϕ be a gauge family. Let δ > 0 and F ⊆ X be such that |F | = N(E, δ) and

E ⊆
⋃
x∈F

Bδ(x).

For every L ∈K(E), we have ρH(L, {x ∈ F | Bδ(x) ∩ L �= ∅}) < δ, so

K(E) ⊆
⋃
T ⊆F

Bδ(T ),

and therefore N(K(E), δ) ≤ |2F | = 2N(E,δ) .
Now suppose that lim infδ→0+ N(E, δ)ϕs(δ) = 0. Then since ϕs(δ) → 0+ as δ → 0+ , we have

lim inf
δ→0+ N(K(E), δ)ϕ̃s(δ) ≤ lim inf

δ→0+ 2N(E,δ)2−1/ϕs(δ)

= lim inf
δ→0+ 2

N(E,δ)ϕs(δ)−1
ϕs(δ)

= 0,

so dimϕ̃
M(K(E)) ≤ dimϕ

M(E).

We now show that dimϕ̃
M(K(E)) ≥ dimϕ

M(E). Let δ > 0, let P be a maximal set of 2δ-separated points in E , and observe 
that |P | ≥ N(E, 4δ). Let F ⊆K(E) satisfy |F | = N(K(E), δ) and

K(E) ⊆
⋃
F∈F

Bδ(F ).

For every distinct pair of non empty sets S, S ′ ⊆ P , we have ρH(S, S ′) ≥ 2δ, so, for each F ∈ F , the ball Bδ(F ) can contain 
at most one subset of P . Hence,

N(K(E), δ) = |F | ≥ |2P | − 1 ≥ 2N(E,4δ) − 1.

Now let t > s > dimϕ̃
M(K(E)). Then

lim inf
δ→0+ N(K(E), δ)ϕ̃s(δ) = 0 =⇒ lim inf

δ→0+

(
2N(E,4δ) − 1

)
2−1/ϕs(δ) = 0

⇐⇒ lim inf
δ→0+ 2N(E,4δ)2−1/ϕs(δ) = 0

⇐⇒ lim inf+

(
N(E,4δ) − 1

)
= −∞
δ→0 ϕs(δ)

13
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⇐⇒ lim inf
δ→0+

N(E,4δ)ϕs(δ) − 1

ϕs(δ)
= −∞

=⇒ lim inf
δ→0+ N(E,4δ)ϕs(δ) ≤ 1

=⇒ lim inf
δ→0+ N(E, δ)ϕt(δ) = 0

=⇒ dimϕ
M(E) ≤ t,

where the penultimate implication holds by our condition on the gauge family ϕ . The argument for upper Minkowski 
dimension is completely analogous. �

Our third main result is the surprising fact that for the hyperspace of a compact set, packing dimension and upper 
Minkowski dimension are equivalent.

Theorem 5.2. For every separable metric space X, every compact set E ⊆ X, and every gauge family ϕ such that for all s < t ϕ̃t(2δ) =
O (ϕ̃s(δ)) and ϕ̃s(δ) = O (1/ log log(1/δ)) as δ → 0+ and there is a precision family for ϕ̃,

dimϕ̃
P (K(E)) = dim

ϕ̃
M(K(E)).

The point-to-set principle is central to our proof of this theorem: We recursively construct a single compact set L ⊆ E
(i.e., a single point in the hyperspace K(E)) that has high Kolmogorov complexity at infinitely many precisions, relative to 
an appropriate oracle A. We then invoke Theorem 3.7 to show that this L has high ϕ-gauged strong algorithmic dimension 
relative to A. By the point-to-set principle, then, K(E) has high packing dimension.

Observation 5.3. Let ϕ be any gauge family, X any metric space, E ⊆ X, and δ > 0. If N(E, δ/2) < ∞, then there exists a point x ∈ E
such that dim

ϕ
M(E ∩ Bδ(x)) = dim

ϕ
M(E).

Proof. It follows from the monotonicity of Minkowski dimensions that

dim
ϕ
M(E ∩ Bδ(x)) ≤ dim

ϕ
M(E)

holds for every x ∈ X .
Let the set {x1, . . . , xN(E,δ/2)} ⊆ X testify to this value. Then every E ∩ Bδ/2(xi) is nonempty, and

E ⊆
N(E,δ/2)⋃

i=1

(E ∩ Bδ/2(xi)),

so by the finite stability of upper Minkowski dimension (cf. Section 2.2 of [9]), there is some 1 ≤ i ≤ N(E, δ/2) such that

dim
ϕ
M(E) ≤ dim

ϕ
M(E ∩ Bδ/2(xi)).

Now let x ∈ E ∩ Bδ/2(xi) and observe that E ∩ Bδ/2(xi) ⊆ E ∩ Bδ(x), so monotonicity gives

dim
ϕ
M(E ∩ Bδ/2(xi)) ≤ dim

ϕ
M(E ∩ Bδ(x)). �

Lemma 5.4. Let ϕ be any gauge family, X any metric space, and E ⊆ X a compact set. There exists a point x ∈ E such that dim
ϕ
M(E ∩

Bδ(x)) = dim
ϕ
M(E) holds for all δ > 0.

Proof. By the compactness of E , N(E, δ) is finite for every δ > 0. Hence, Observation 5.3 yields a sequence {xr}r∈N of points 
in X such that

dim
ϕ
M(E ∩ B2−r (xr)) = dim

ϕ
M(E)

for all r ∈ N . Since E is compact, there is a subsequence {xri }i∈N of {xr}r∈N that converges to some point x ∈ E . Thus, for 
all δ > 0, there is an i ∈N such that ρ(xri , x) < δ/2 and 2−ri < δ/2, so

B2−ri (xri ) ⊆ B21−ri (x) ⊆ Bδ(x).

By the monotonicity of Minkowski dimensions, then,

dim
ϕ
M(E) = dim

ϕ
M(E ∩ B2−ri (xr )) ≤ dim

ϕ
M(E ∩ Bδ(x)) ≤ dim

ϕ
M(E). �
i
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Proof of Theorem 5.2. Lemma 2.4 immediately gives dimϕ̃
P (K(E)) ≤ dim

ϕ̃
M(K(E)).

For the other direction, apply the general point-to-set principle for packing dimension (Theorem 4.2) to let A be an 
oracle such that

dimϕ̃
P (K(E)) ≥ sup

L∈K(E)

Dimϕ̃,A(L), (5.1)

and let t < dim
ϕ
M(E). Applying Lemma 5.4, let x ∈ E be a point such that for all δ > 0

t < dim
ϕ
M(E ∩ Bδ(x)).

By the hyperspace Minkowski dimension theorem, then, we also have

t < dim
ϕ̃
M(K(E ∩ Bδ(x))) (5.2)

for all δ > 0.
Let s < t . We will recursively define a compact set L ∈ K(E) such that

Dimϕ̃,A(L) > s.

Let A0 be an oracle that encodes both A and x. By (5.2) and Observation 2.2,

lim sup
δ→0+

N̂(K(E ∩ B1(x)), δ)ϕ̃s(δ) = ∞.

Thus there is a precision δ0 ∈Q+ such that

N̂(K(E ∩ B1(x)), δ0)ϕ̃s(δ0) > 1.

That is, it requires at least 1/ϕ̃s(δ0) open balls of radius δ0 (in the ρH metric), with centers that are finite subsets of D , to 
cover K(E ∩ B1(x)). By the pigeonhole principle, the number of finite sets J ⊆ D satisfying

CA0( J ) ≤ log

(
1

2ϕ̃s(δ0)

)
is at most

2
log

(
1

2ϕ̃s(δ0)

)
+1 − 1 <

1

ϕ̃s(δ0)
.

Hence there is some compact set L0 ∈K(B1(x) ∩ E) with

CA0
δ0

(L0)ϕs(δ0) > log

(
1

2ϕ̃s(δ0)

)
ϕs(δ0)

= 1 − ϕs(δ0)

> 1/2.

Define the compact set

L′
0 = (L0 \ Bδ0(x)) ∪ {x},

and notice that ρH(L0 ∪ {x}, L′
0) ≤ δ0, so

CA0
δ0

(L0) ≤ CA0
δ0

(L′
0, x) + O (1) ≤ CA0

δ0
(L′

0) + O (1),

since A0 encodes x. Thus, as long as δ0 is sufficiently small, we have

CA0
δ0

(L′
0)ϕs(δ0) ≥ 1/4.

Now, for each i ≥ 1, let Ai be an oracle encoding Ai−1 and δi−1. Let δi ∈Q+ and

L′
i ∈ K

(
Bδi−1/2(x) ∩ E

)
be such that L′

i ∩ Bδi (x) = {x} and

CAi
δi

(L′
i)ϕs(δi) ≥ 1/4. (5.3)

This pair exists for exactly the same reason that δ0 and L′ exist.
0
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Define the set

L =
⋃
i∈N

L′
i .

Notice first that this set belongs to K(E). Consider any sequence {xr}r∈N of points in L. If the sequence is contained within 
{x} ∪ ⋃n

i=0 L′
i for some finite n—i.e., within a finite union of compact sets, which is compact—then it has a convergent 

subsequence that converges to a point in that union. Otherwise, the sequence has points in infinitely many of the L′
i , 

and there is a subsequence {xr j } j∈N such that, for every pair j′ > j there exists a pair i′ > i such that xr j ∈ L′
i \ {x} and 

xr j′ ∈ L′
i′ \ {x}; such a subsequence converges to x. Thus L is sequentially compact and therefore compact.

Let D be a countable dense set in X , and recall that U is a fixed universal oracle prefix Turing machine. Consider an 
oracle prefix Turing machine M , with access to an oracle for x and δi . On input π such that U (π) = F ⊆ D , M outputs the 
set

{y ∈ F | ρ(x, y) < δi/2}.
Now let π testify to CAi

δi
(L). Then M(π) ⊆ D is a set of points satisfying ρH(L′

i, U (π)) < δi , so we have

CAi
δi

(L′
i) ≤ |π | + cM = CAi

δi
(L) + cM (5.4)

where cM is an optimality constant for the machine M . Furthermore,

CAi
δi

(L) ≤ CA
δi
(L) + O (1).

Combining this fact with (5.3) and (5.4) yields

CA
δi
(L)ϕs(δi) ≥ 1/4 − ϕs(δi) · O (1).

The latter term vanishes as i → ∞, so

lim sup
δ→0+

CA
δ (L)ϕs(δ) ≥ 1/4.

By Theorem 3.7, this implies that Dimϕ̃,A(L) > s. We conclude that Dimϕ̃,A(L) ≥ t , so by (5.1), the proof is complete. �
Observation 5.5. The conclusion of Theorem 5.2 does not hold for arbitrary sets E.

Proof. Let E = {1/n : n ∈ N}. Then dim
θ

M(E) = 1/2, but every compact subset of E is finite, so K(E) is countable and 
dimθ̃

P(K(E)) = 0. �
As an application of the preceding results, we prove the following hyperspace packing dimension theorem. It is implicit 

in the work of McClure [36] that the conclusion of this theorem holds for σ -compact sets.

Theorem 5.6 (hyperspace packing dimension theorem). If X is a separable metric space, E ⊆ X is an analytic set, and ϕ is a gauge 
family such that for all s < t ϕ̃t(2δ) = O (ϕ̃s(δ)) and ϕ̃s(δ) = O (1/ log log(1/δ)) as δ → 0+ and there is a precision family for ̃ϕ, then

dimϕ̃
P (K(E)) ≥ dimϕ

P (E).

Proof. For compact sets E , Theorem 5.2 and the hyperspace Minkowski dimension theorem (Theorem 5.1) imply 
dimϕ̃

P (K(E)) = dim
ϕ
M(E).

Notice that ϕ̃t(2δ) = O (ϕ̃s(δ)) implies ϕt(2δ) = O (ϕs(δ)). A result of Joyce and Preiss (Corollary 1 in [16]) states that 
under the doubling condition ϕt(2δ) = O (ϕt(δ)), every analytic set with infinite ϕt -gauged packing measure contains a 
compact subset with positive ϕt -gauged packing measure. A straightforward substitution of the present, slightly weaker 
doubling condition into the proof in [16] shows that if ϕt(2δ) = O (ϕs(δ)) for all s < t , then for all s < t every analytic set 
with infinite ϕt -gauged packing measure contains a compact subset with positive ϕs-gauged packing measure.

It follows that if E is analytic, then for all ε > 0 there exists a compact subset Eε ⊆ E with dimϕ
P (Eε) ≥ dimϕ

P (E) − ε. 
Therefore

dimϕ̃
P (K(Eε)) = dim

ϕ
M(Eε)

≥ dimϕ
P (Eε)

≥ dimϕ
P (E) − ε.

Letting ε → 0 completes the proof. �
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6. The dimensions of sets as points

As promised in Section 5, we give an explicit example of a set E ⊆R whose classical Hausdorff and packing dimensions 
are (of course) finite, but whose algorithmic dimension (and strong dimension) is infinite when E is considered as a point 
in the hyperspace K(R).

Construction 6.1. Given a sequence R ∈ {0, 1}ω , define a sequence A0, A1, . . . of 2�-element sets A� ⊆ {0, 1}2� by the follow-
ing recursion.

(i) A0 = {λ}, where λ is the empty string.
(ii) Assume that

A� =
{

ui

∣∣∣0 ≤ i < 2�
}

⊆ {0,1}2�

has been defined, where the ui are in lexicographical order. Let

bu10,bu11,bu20,bu21, . . . ,bu2� 0,bu2� 1

be the first 2�+1 bits of R that have not been used in earlier stages of this construction. Then

A�+1 = {uabua | u ∈ A� and a ∈ {0,1} } .

For each string w ∈ {0, 1}∗ of even length, define the closed interval I w ⊆ [0, 1] of length 7−|w|/2 by the following recursion.

(i) Iλ = [0, 1].
(ii) Assume that I w has been defined, and divide I w into seven equal-length closed intervals, calling these K1, J00, J01, 

K2, J10, J11, and K3, from left to right. Then, for each a, b ∈ {0, 1}, we have I wab = Jab .

For each � ∈N , let

E� =
⋃

w∈A�

I w ,

and let

E =
∞⋂

�=0

E�.

This completes the construction.

Intuitively, each E� in Construction 6.1 consists of 2� closed intervals of length 7−� , with gaps between them of length 
at least 7−� . For each of these, one bit of R decides which of the subintervals J00 and J01 is included in E�+1, and the next 
bit of R decides which of the subintervals J10 and J11 is included in E�+1. The set E is a Cantor-like set chosen in this 
fashion. It is clear that E is compact.

Observation 6.2. For all R ∈ {0, 1}ω , the set E of Construction 6.1 has Hausdorff and packing dimensions

dimH(E) = dimP(E) = log 2

log 7
≈ 0.356.

Proof. Let R ∈ {0, 1}ω , and let R0 = 0ω . Let E be the set constructed from R as in Construction 6.1, and let E0 be the set 
constructed from R0. Note that E0 is the set of all reals in [0, 1] whose base-7 expansions consist entirely of 1 s and 4 s. 
Define the function

g : {1,4}ω → {1,2,4,5}ω
by

g(S)[n] = S[n] + R
[
2n + S[n]]

for all S ∈ {1, 4}ω and n ∈N . Note that g transforms each 1 in S to a 1 or 2 in g(S), and g transforms each 4 in S to a 4 or 
5 in g(S). If we identify sequences in {1, 2, 4, 5} with the reals that they represent in base 7, then we now have a bijection
17
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g : E0
1-1−−→

onto
E.

Moreover, if x, y ∈ E0 are distinct, and n is the first position at which x and y have different base-7 digits, then

|x − y|, |g(x) − g(y)| ∈ [
7−n,71−n] ,

so g is bi-Lipschitz and hence preserves Hausdorff and packing dimensions [9]. We thus have

dimH(E) = dimH(E0), dimP(E) = dimP(E0). (6.1)

The set E0 is the self-similar fractal given by an iterated function system consisting of two contractions, each with ratio 1
7 . 

It follows by the fundamental theorem on self-similar fractals [8,9,38] that the Hausdorff and packing dimensions of E0 are 
both the unique solution s of the equation 2 · 7−s = 1, i.e., that

dimH(E0) = dimP(E0) = log 2

log 7
. (6.2)

The observation follows from (6.1) and (6.2). �
Observation 6.3. If R ∈ {0, 1}ω is Martin-Löf random, then the set E of Construction 6.1 has algorithmic dimensions

dim(E) = Dim(E) = ∞.

(sketch). Let R and E be as given. By (3.2) it suffices to show that, for all sufficiently large r,

C2−r (E) > 2r/3.

For this it suffices to show that, for all sufficiently large r and all F ∈D,

ρH(F , E) ≤ 2−r =⇒ C(F ) > 2r/3. (6.3)

Let r ∈N be large, and assume that ρH(F , E) ≤ 2−r . Let � = �r/3�. Then 2−r < 1/2 · 7−� , so the finite set F can be used 
to compute the set Al of Construction 6.1. This implies that F can be used to compute the (2� − 1)-bit prefix w of R that 
was used to decide the set A� . Since R is random and r is large, this implies that C(F ) > 2r/3. �

In addition to illustrating the difference between classical and algorithmic dimensions, Observation 6.3 combines with 
our general point-to-set principle to give a very non-classical proof of the following known classical fact.

Corollary 6.4. dimH(K([0, 1])) = dimP(K([0, 1]) = ∞.

Proof. Let A ⊆ N . By Theorem 4.1 applied to K([0, 1]), it suffices to exhibit a point E ∈ K([0, 1]) such that dimA(E) =
∞. If we choose R ∈ {0, 1}ω to be Martin-Löf random relative to A, then Observation 6.3, relativized to A, tells us that 
Construction 6.1 gives us just such a point. �
7. Conclusion

Our results exhibit and amplify the power of the theory of computing to make unexpected contributions to other areas 
of the mathematical sciences. We hope and expect to see more such results in the near future.

We mention three open problems whose solutions may contribute to such progress. First, at the time of this writing, a 
hyperspace Hausdorff dimension theorem remains an open problem. The difficulty in adapting our approach to that problem 
is that in the proof of Theorem 5.2, the set L we construct is only guaranteed to have high complexity at infinitely many 
precisions. An analogous proof for Hausdorff dimension would require constructing a set L that has high complexity at all 
but finitely many precisions.

Second, it would be useful to identify classes of spaces in which Billingsley-type algorithmic dimensions—dimensions 
shaped by probability measures—can be formulated.

Finally, we do not at this time know how to characterize algorithmic dimensions in separable metric spaces in terms of 
martingales or more general gales. This is despite the fact that algorithmic dimensions were first formulated in these terms 
in sequence spaces [1,26].
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