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Abstract: Several approaches and descriptors have been proposed to characterize the purity of12

coherency or density matrices describing physical states, including the polarimetric purity of 2D13

and 3D partially polarized waves. This work introduces two new interpretations of the degree of14

purity: one derived from statistics and another from algebra. In the first one, the degree purity is15

expressed in terms of the mean and standard deviation of the eigenvalue spectrum of the density16

or coherency matrix of the corresponding state. The second one expresses the purity in terms17

of two specific measures obtained by decomposing the coherency matrix as a sum of traceless18

symmetric, anti-symmetric and scalar matrices. These two approaches offer better insights into19

the purity measure. Furthermore, interesting relations with existing quantities in polarization20

optics are described.21

© 2022 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement22

The degree of polarimetric purity is an invariant dimensionless quantity that characterizes23

the closeness of a polarization state of a wave to a pure state and is related to the Von Neumann24

entropy [1]. The polarimetric purity of a plane wave characterized by the second-order statistics25

(i.e., the covariance matrix) is uniquely described by the degree of polarization. However, such a26

two-dimensional (2D) formalism is only applicable when the electric field of the wave fluctuates27

in a fixed plane. This assumption is typical in optical and radar polarimetric measurements.28

Therefore, one must consider all the components to describe the general state of wave polarization.29

Starting from Samson [2], and Barakat [3], several different concepts have been proposed in the30

literature to describe the 3D degree of polarization [4–9].31

As a generalization to 𝑛-dimensions of the degree of polarization for 3D random light fields32

established by Setälä et al. [7], the degree of purity, 𝑃𝑛𝐷 [10–12] for the 𝑛 × 𝑛 Hermitian and33

positive semi-definite coherency matrix 𝚽 is defined as,34

𝑃𝑛𝐷 =

{
1

𝑛 − 1

[
𝑛[tr (𝚽2)]
(tr𝚽)2 − 1

]}1/2

(1)

where tr𝚽 is the trace of 𝚽. Besides the general application of this concept to coherency or35

density matrices representing 𝑛-level systems, the interest from the point of view of optics was36

pointed out by Barakat [13] when dealing with systems composed of 𝑛 partially coherent pencils37

of radiation (not necessarily interfering at a given point), with potential application to optical38

quantum channels [14].39

The degree of purity is an invariant dimensionless quantity satisfying, 0 ≤ 𝑃𝑛𝐷 ≤ 1. The40

minimum value 𝑃𝑛𝐷 = 0 corresponds to a state whose 𝑛 variables are second-order uncorrelated.41

In contrast, the maximum value 𝑃𝑛𝐷 = 1 corresponds to a statistically pure state. The degree42
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of purity can take values between the two limits depending on the second-order correlations43

between the 𝑛 variables involved.44

In this work, we propose two new approaches to express the degree of purity, 𝑃𝑛𝐷 . In the first45

approach, we utilize the definition of the mean and standard deviation of real positive eigenvalues46

of Hermitian positive semi-definite matrices [15,16]. In the second approach, we use elementary47

concepts from vector calculus and align them with a matrix decomposition procedure following48

certain notions from Lie algebra [17]. Finally, we establish the parity of the two approaches to49

compute the degree of purity of the 𝑛-dimensional state considered. This work provides simple50

and elegant expressions of the degree of purity using well-known and meaningful statistical51

and algebraic representations. The two distinct approaches offer deeper insights into the purity52

measure.53

1. Approach I: Coefficient of Variation54

In the first approach, let us consider the algebraic mean (𝑚) and the standard deviation (𝑠) of
the real positive eigenvalues 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 ≥ 0 for a 𝑛 × 𝑛 coherency matrix 𝚽 that are
defined using a simple function of the trace of the matrix and the trace of its square [15] as,

𝑚 =
1
𝑛

tr(𝚽) = 1
𝑛

𝑛∑︁
𝑗=1

𝜆 𝑗 , and (2)

𝑠2 =
1
𝑛

[
𝑛∑︁
𝑗=1

𝜆2
𝑗 −

1
𝑛

( 𝑛∑︁
𝑗=1

𝜆 𝑗

)2
]
=

tr (𝚽2) − (tr𝚽)2/𝑛
𝑛

=
tr(𝚽2)

𝑛
− 𝑚2. (3)

In the cases of coherency matrices representing 2D and 3D polarization states, 𝑚 is proportional to55

the intensity via the scale coefficient 1/𝑛. When dealing with coherency matrices associated with56

Mueller matrices (4D), 𝑚 represents the mean intensity coefficient (transmittance or reflectance57

for incident unpolarized light) scaled by 1/4. In the general case of 𝑛𝐷 density matrices 𝑚58

becomes simply 𝑚 = 1/𝑛.59

In the case of trace-normalized 𝑛𝐷 coherency matrices (density matrices), the quantity tr (𝚽2)60

is usually called the purity parameter, with 𝑚 ≤ tr (𝚽2) ≤ 1. Where the maximum is realized61

uniquely by pure states, while the minimum corresponds to maximally mixed states. Note62

that, in contrast to such a definition of purity, the degree of purity 𝑃𝑛𝐷 is defined in such a63

manner that its minimum is zero. Thus, when applied to a 𝑛𝐷 density matrix, 𝑠2 takes the form64

𝑠2 = 𝑚(tr (𝚽2) − 𝑚).65

Using these two quantities, we propose a new expression for the degree of purity as,66

𝑃𝑛𝐷 =
𝑠

√
𝑛 − 1𝑚

. (4)

One can easily observe that for 𝑛 = 2, and 𝑛 = 3, the expressions for the degree of purity given in
equation (1) can be related as [16],

𝑃2𝐷 =

{
2[tr (𝚽2)]
(tr𝚽)2 − 1

}1/2
= 𝑠/𝑚 (5)

𝑃3𝐷 =

{
1
2

[
3[tr (𝚽2)]
(tr𝚽)2 − 1

]}1/2

= 𝑠/
√

2𝑚 (6)

The proposed expression given in equation (4) is physically intuitive as it directly relates the67

measure of polarimetric purity to the coefficient of variation (i.e., 𝑠/𝑚) of the eigenvalues of a68

𝑛 × 𝑛 coherency matrix. The coefficient of variation is a standard metric often used to analyze69



the signal-to-noise ratio in images acquired by radar remote sensing sensors and optical systems70

(e.g., coherence tomography).71

It has been shown in [2,11,12] that the degree of purity could also be expressed as a symmetric72

quadratic mean of all the relative differences between pairs of eigenvalues, 𝜆’s of 𝚽 as,73

𝑃2
𝑛𝐷 =

1
𝑛 − 1

𝑛∑︁
𝑖, 𝑗=0
𝑖< 𝑗

𝑝2
𝑖 𝑗 , 𝑝𝑖 𝑗 =

𝜆𝑖 − 𝜆 𝑗

tr𝚽
. (7)

From this definition, one can show that the standard deviation of the eigenvalues spectrum can be74

expressed as,75

𝑠 =
1
𝑛

√√√√√ 𝑛∑︁
𝑖, 𝑗=0
𝑖< 𝑗

(𝜆𝑖 − 𝜆 𝑗 )2. (8)

Therefore, along with 𝑚 = tr(𝚽)/𝑛, the expression given in equation (7) demonstrates its76

equivalency with the proposed expression given in (4) for the degree of purity.77

The set of positive semi-definite matrices is closed under addition and non-negative scaling.78

Such a set is called a convex cone [18]. It has a particular structure with the identity matrix that79

forms the central direction. Specific kinds of symmetries exist around this central direction. The80

position of each matrix in the cone depends strongly on its eigenvalues and, therefore, on its rank.81

When the rank of a symmetric positive semi-definite matrix decreases, its angle with the identity82

matrix increases, therefore, rank-1 matrices are farthest from the identity matrix, and all form a83

fixed angle with that matrix.84

In R𝑛×𝑛 (i.e., the set of square matrices of order 𝑛), the Frobenius inner product between two85

matrices A and B is defined as, ⟨A,B⟩F = tr(ATB). This inner product then allows us to define86

the cosine of the angle between two matrices in R𝑛×𝑛 as, cos(A,B) = ⟨A,B⟩F/(∥A∥F∥B∥F). The87

cone of symmetric and positive definite matrices (SPD) in this inner product space contains a rich88

geometrical structure. In this context, the angle that any SPD matrix forms with the identity axis,89

i.e., 𝛼I𝑛, for 𝛼 > 0, depicts an important geometrical property that one can use to characterize90

the degree of purity.91

Let 𝜓 denote the angle between 𝚽 and the identity matrix I𝑛 in the space of 𝑛 × 𝑛 matrices.92

Analogously, we can express this angle between the vector of eigenvalues, 𝜆1, 𝜆2, . . . , 𝜆𝑛, and93

the equiangular line formed by the vector of the diagonal elements of I𝑛 as [15],94

𝜓 = cos−1
(
tr𝚽/

√︁
𝑛[tr (𝚽2)]

)
(9)

therefore, using 𝜓 we can also express the degree of purity as,95

𝑃𝑛𝐷 =
tan𝜓
√
𝑛 − 1

(10)

which immediately establishes that tan𝜓 = 𝑠/𝑚. A simple calculation shows that,

tan𝜓 =

√︁
1 − cos2 𝜓

cos𝜓
(11)

=

[
𝑛[tr (𝚽2)]
(tr𝚽)2 − 1

]1/2

. (12)

Thus, one can easily relate equation (12) to the part of the expression of 𝑃𝑛𝐷 given in equation (1),96

providing an additional geometric interpretation of the degree of purity.97



2. Approach II: Direct Sum Decomposition98

In the second approach, let us decompose the 𝑛 × 𝑛 coherency matrix 𝚽 as,99

𝚽 = 𝚽1 +𝚽2 +𝚽3 (13)

where,

𝚽1 =
(𝚽 +𝚽∗)

2
− tr(𝚽)

𝑛
I𝑛, (Traceless symmetric matrix) (14)

𝚽2 =
(𝚽 −𝚽∗)

2
, (Anti-symmetric matrix) (15)

𝚽3 =
tr(𝚽)
𝑛

I𝑛, (Scalar matrix) (16)

where I𝑛 is the 𝑛 × 𝑛 identity matrix and 𝚽∗ is the conjugate of 𝚽. Dennis [19] has addressed100

such a decomposition by the orthogonal transformation of the 3 × 3 coherency matrix. However,101

the scalar part (i.e., 𝚽3) is not separated from the tensor part (i.e., 𝚽1 +𝚽3) to make it traceless102

for geometrical convenience. Note that 𝚽1 and 𝚽2, by themselves, do not represent physical103

states because they are not positive-semidefinite Hermitian matrices.104

On the one hand, we can consider this representation as a direct sum decomposition of the105

Lie algebra 𝔤𝔩(𝑛). It is known from the literature [17] that the sub-algebra of traceless matrices106

is the Lie algebra 𝔰𝔩(𝑛) of the 𝑆𝐿 (𝑛) group (i.e., the special linear group). The anti-symmetric107

matrices form the Lie algebra 𝔰𝔬(𝑛) of the 𝑆𝑂 (𝑛) group (i.e., the special orthogonal group).108

On the other hand, we can interpret using elementary property from vector calculus that the109

symmetric, trace-free derivative operation relates formally to that of a shear [20]. Mathematically110

this operation is represented by the matrix, 𝚽1, which one can imagine as the gradient of a vector111

field in an arbitrary direction. However, the anti-symmetric matrix, 𝚽2 represents pure rotation112

(i.e., the curl operator).113

Using the traceless symmetric matrix, 𝚽1, let us first define the quantity114

𝑃𝑛𝑠 =

√︂
𝑛

𝑛 − 1
∥𝚽1∥F

tr(𝚽) (17)

where ∥·∥F is the Frobenius norm of the matrix. It is remarkable that this quantity is identical to115

the degree of population asymmetry, 𝑃𝑝 proposed independently by Gil [21] while describing116

the structure of purity of a density matrix. In earlier work, Dennis [19] interpreted the traceless117

part as a measure of the departure of the inertia tensor (defined by ℜ(𝚽), i.e., the real part of 𝚽)118

from isotropy.119

One can show that 𝑃𝑛𝑠 is invariant under unitary transformation. In particular, 𝑃3𝑠 can be
considered as the degree of polarization of the real part of the partially polarized 3 × 3 intrinsic
coherency matrix, ℜ(𝚽) [22]. Moreover, it is interesting to note that we can relate 𝑃𝑛𝑠 to the
components of polarimetric purity (CPP) proposed in previous papers [23, 24] i.e., the degree of
linear polarization, 𝑃ℓ , for 2D and 3D cases, and the degree of directionality, 𝑃𝑑 , for the 3D
case as,

𝑃2
2𝑠 = 𝑃2

ℓ , (18)

𝑃2
3𝑠 =

3
4
𝑃2
ℓ +

1
4
𝑃2
𝑑 . (19)

Thus, one can notice from equation (19) that for the 3D case, 𝑃3𝑠 involves not only the degree120

of linear polarization, 𝑃ℓ , but also the degree of directionality, 𝑃𝑑 , which measures the stability121



of the plane that contains the polarization ellipse, or equivalently, a measure of closeness of the122

state represented by 𝚽 to that of a 2D state [24]. In a similar way, this can be further extended for123

𝑛 > 3. However, one needs an appropriate physical interpretation of such extension to higher124

dimensions.125

Further, using the anti-symmetric matrix, 𝚽2, we express the degree of circular polarization126

for 2D and 3D states exactly as defined by Gil [24] as,127

𝑃𝑐 =

√
2∥𝚽2∥F
tr(𝚽) . (20)

This quantity measures all contributions to circular polarization and is also invariant under128

unitary transformation. However, for 𝑛 > 3, the number of correlation parameters exceeds the129

dimensions (𝑛) and therefore 𝑃𝑐 cannot be considered as the absolute value of a vector immersed130

in 𝑛 dimensions. Therefore, Gil [21] calls this parameter as the degree of correlation asymmetry131

for general coherency (or density) matrices.132

Finally, in agreement with the corresponding result obtained in Eq. (20) of [21], we express133

the degree of purity by combining the degree of population asymmetry (17) and the degree of134

correlation asymmetry (20), as,135

𝑃𝑛𝐷 =

√︂
𝑃2
𝑛𝑠 +

𝑛

2 (𝑛 − 1) 𝑃
2
𝑐 . (21)

Furthermore, one can relate the degree of purity for 2D and 3D cases to the three CPP parameters
using equations (18), and (19), and equation (20) as,

𝑃2𝐷 =

√︃
𝑃2

2𝑠 + 𝑃2
𝑐 (22)

=

√︃
𝑃2
ℓ
+ 𝑃2

𝑐, (23)

and

𝑃3𝐷 =

√︂
𝑃2

3𝑠 +
3
4
𝑃2
𝑐 (24)

=

√︂
3
4
𝑃2
ℓ
+ 1

4
𝑃2
𝑑
+ 3

4
𝑃2
𝑐 . (25)

In previous works [24,25], the relationships of 𝑃2𝐷 and 𝑃3𝐷 with the CPP parameters have been136

shown explicitly. Therefore, as shown in [26,27], 𝑃3𝑠 coincides with the so-called polarimetric137

dimension index, and provides fractional contributions from both 𝑃ℓ and 𝑃𝑑 , whereas 𝑃2𝑠138

provides pure contribution from 𝑃ℓ . Using the derivation proposed in Sheppard et al., [22], we139

can show that,140

𝑃2
𝐿 =

3
4
𝑃2
ℓ +

1
4
𝑃2
𝑑 − 1

4
𝑃2
𝑐 (26)

= 𝑃2
3𝑠 −

1
4
𝑃2
𝑐, (27)

where 𝑃𝐿 is defined in [22] as the degree of total linear polarization, i.e., the contribution from141

both the purely polarized and mixed state.142

Now, expanding 𝑃𝑛𝑠, and 𝑃𝑐 in the expression of 𝑃𝑛𝐷 given in equation (21) in terms of the



Frobenius norm and the matrix trace, we find that,

𝑃2
𝑛𝐷 =

( 𝑛

𝑛 − 1

) [ ∥𝚽1∥2
F + ∥𝚽2∥2

F

(tr𝚽)2

]
(28)

=

( 𝑛

𝑛 − 1

) [ 𝑛𝑠2

𝑛2𝑚2

]
, (29)

and therefore,143

𝑃𝑛𝐷 =
𝑠

√
𝑛 − 1𝑚

. (30)

which is coincident with equation (4).144

Hence, we suitably verify the equivalence among the two approaches for the expression of the145

generalized degree of purity, 𝑃𝑛𝐷 .146

In summary, these two approaches offer distinctive perspectives of the degree of purity147

fundamentally stemming from concepts well studied in statistics and algebra. Note that while148

proposing these two approaches, we come across a few new quantities and some relations with149

existing polarization indices widely reported in the literature. The proposed viewpoint can be an150

ideal starting point for further advanced studies about the structures of physical states described151

through coherency or density matrices, as is the case of polarization states.152
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