000128227 001__ 128227 000128227 005__ 20241125101202.0 000128227 0247_ $$2doi$$a10.1016/j.jmp.2023.102806 000128227 0248_ $$2sideral$$a135603 000128227 037__ $$aART-2023-135603 000128227 041__ $$aeng 000128227 100__ $$0(orcid)0000-0002-3841-8774$$aCandeal, Juan C.$$uUniversidad de Zaragoza 000128227 245__ $$aA characterization of two-agent Pareto representable orderings 000128227 260__ $$c2023 000128227 5060_ $$aAccess copy available to the general public$$fUnrestricted 000128227 5203_ $$aPartial orders defined on a nonempty set X admitting a two-agent Pareto representation are characterized. The characterization is based upon the fulfillment of two axioms. The first one entails the existence, for any point x € X, of a very particular decomposition of the points which are incomparable to x. The second one encodes a separability condition. Our approach is then applied to show that if the cardinality of X is, at most, 5, then a two-agent Pareto representation always exists whereas this need not be the case otherwise. The connection with the concept of the dimension of a poset is also discussed. Certain examples are also presented that illustrate the scope of our tools. 000128227 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-108348RA-I00 000128227 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000128227 590__ $$a2.2$$b2023 000128227 592__ $$a0.938$$b2023 000128227 591__ $$aPSYCHOLOGY, MATHEMATICAL$$b4 / 13 = 0.308$$c2023$$dQ2$$eT1 000128227 593__ $$aPsychology (miscellaneous)$$c2023$$dQ1 000128227 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b39 / 135 = 0.289$$c2023$$dQ2$$eT1 000128227 593__ $$aApplied Mathematics$$c2023$$dQ1 000128227 591__ $$aSOCIAL SCIENCES, MATHEMATICAL METHODS$$b17 / 67 = 0.254$$c2023$$dQ2$$eT1 000128227 594__ $$a3.7$$b2023 000128227 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000128227 7102_ $$14000$$2415$$aUniversidad de Zaragoza$$bDpto. Análisis Económico$$cÁrea Fund. Análisis Económico 000128227 773__ $$g116 (2023), 102806 [6 pp.]$$pJ. math. psychol.$$tJOURNAL OF MATHEMATICAL PSYCHOLOGY$$x0022-2496 000128227 8564_ $$s381880$$uhttps://zaguan.unizar.es/record/128227/files/texto_completo.pdf$$yVersión publicada 000128227 8564_ $$s3178531$$uhttps://zaguan.unizar.es/record/128227/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000128227 909CO $$ooai:zaguan.unizar.es:128227$$particulos$$pdriver 000128227 951__ $$a2024-11-22-12:12:16 000128227 980__ $$aARTICLE