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Resumen 

En esta tesis doctoral abordamos el estudio relativo al intercambio de información sobre la demanda 
dentro de una cadena de suministro cuando las partes interactúan de una forma estratégica. Los 
distribuidores minoristas forman una agrupación y delegan la gestión del inventario (los pedidos y la 
asignación) a un planificador central benévolo (CP, por sus siglas en inglés). Cada uno de los minoristas 
debe enfrentarse a una demanda incierta y dispone de información privada sobre ella como 
consecuencia de su proximidad al mercado; nos centramos en determinar si entre los minoristas y el CP 
se produce un intercambio fiable de información sobre la demanda. En primer lugar estudiamos el 
impacto de diversos mecanismos de asignación sobre el comportamiento en materia de pedidos de los 
minoristas, cuando la cantidad de inventario total en el almacén central es fija. Los minoristas efectúan 
los pedidos después conocer de manera privada su demanda. Demostramos analíticamente que los 
minoristas comunicarán sus necesidades reales, es decir, sus demandas realizadas, de acuerdo a una 
norma de asignación uniforme pero no de acuerdo a otras normas comunes como, por ejemplo, la noma 
proporcional o lineal; posteriormente, estudiamos una configuración donde la cantidad de inventario 
agrupado no es fija, sino más bien una variable de decisión, determinada por el CP después de haber 
solicitado información de demanda prevista de los minoristas. Las asignación del inventario total, en este 
caso también, se efectúa después de conocerse las realizaciones de demanda final, pero las demandas 
finales son de conocimiento común. Entonces, los minoristas pueden influir su asignación solo a través 
de la cantidad de inventario total. Mediante modelos teóricos asociados a tácticas podemos ver que el 
reconocimiento de la verdad y la confianza no se encuentran en una situación de equilibrio. A 
continuación, en un entorno de laboratorio controlado que simula la configuración de la cadena de 
suministro objeto de consideración, estudiamos el impacto de a) la competencia por el inventario común 
y b) la incertidumbre del mercado sobre la distorsión de la información, la confianza y la eficacia de la 
cadena de suministro. Nuestros resultados sugieren que existe una confianza continua cuando los 
incentivos pecuniarios están alineados y cuando no lo están, lo que viene a desmentir los casos teóricos 
extremos de minoristas completamente dignos de confianza o que no son fiables en absoluto; incluso 
aunque la información no sea totalmente fiable, el valor de la comunicación es importante. En última 
instancia, estudiamos el impacto de la propiedad del inventario sobre las motivaciones de las partes 
implicadas de cara a compartir de manera honrada sus previsiones de demanda; los inventarios 
específicos tampoco inducen a decir la verdad. Comparamos los inventarios resultantes y los beneficios 
de acuerdo con la toma de decisiones a nivel local con información más precisa con respecto a la toma 
de decisiones centralizada, mediante la cual se logra la coordinación de los pedidos. 
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Conclusiones y debate

En esta tesis hemos estudiado los aspectos relacionados con el intercambio de infor-

mación sobre la demanda – previsiones y demanda realizada – dentro de una coalición

asociada con la puesta en común de inventarios. Incluso a pesar de que el valor de

la información es un tema bien estudiado en la bibliografa especializada relativa a la

gestión de operaciones y de cadenas de suministro, normalmente se parte de la base

de que el intercambio de información, cuando se produce, se realiza de una manera

créıble. Por otro lado, muchos fallos bien documentados en las actividades comer-

ciales se deben a la desinformación en materia de datos privados, como por ejemplo

la exageración de pedidos ante la expectativa de escasez del inventario o pedidos im-

precisos demasiado optimistas que nunca se materializan. Centramos nuestro trabajo

en determinar si el intercambio fiable de información sobre la demanda se produce

entre minoristas y un planificador central benévolo (CP) que coordina la asignación

de pedidos y de inventario dentro de una coalición asociada con la puesta en común de

inventarios. Los minoristas no compiten por la demanda, pero pueden competir por el

inventario; cada uno de ellos cuenta con información privada sobre la demanda en su

región como consecuencia de la proximidad al mercado, la cual puede ser transmitida

de forma fidedigna, o no, al planificador central.

En primer lugar, estudiamos anaĺıticamente el impacto de diversos mecanismos de

asignación en lo que respecta al comportamiento de los minoristas al efectuar pedidos,

una vez que se ha establecido la cantidad total de inventario en el almacén central.

Para hacer esto, en primer lugar mostramos que, cuando la asignación se basa en la

demanda realizada (es decir, la demanda realizada pasa a ser conocida para todas



las partes interesadas), todas las normas de asignación consideradas, es decir, pro-

porcional, lineal y uniforme, resultan eficaces (excluyen pérdidas) y con un resultado

Pareto óptimo. Sin embargo, cuando las demandas realizadas en cada región per-

manecen en el ámbito privado con respecto a los minoristas, la norma de asignación

empleada desempeña un importante papel; solo a través de la norma de asignación

uniforme los minoristas podrán informar de sus necesidades reales mediante la pre-

sentación de un pedido definitivo equivalente a su demanda realizada. Este resultado

es análogo al caso t́ıpico de racionamiento de la capacidad, incluso si en la configu-

ración que esté considerándose (a) la asignación se determina después de resolver la

incertidumbre de la demanda y (b) cada minorista puede recibir por encima o por

debajo de su pedido final. La diferencia fundamental es que la asignación uniforme

basada en los pedidos definitivos, en nuestro caso, induce a decir la verdad y resulta

óptima desde el punto de vista de Pareto. En el caso del racionamiento de la capaci-

dad, la asignación uniforme no resulta óptima desde el mencionado punto de vista de

Pareto, puesto que no es receptiva desde la perspectiva individual, lo cual constituye

una condición necesaria para que resulte óptima desde dicho punto de vista. Además,

proponemos una norma modificada de asignación uniforme que no solo sea óptima

desde el punto de vista de Pareto e induzca a decir la verdad, sino que también garan-

tice a cada minorista un beneficio superior al que habŕıamos obtenido en un sistema

puramente descentralizado de acuerdo con cualquier realización de la demanda.

A continuaciòn, procedemos a efectuar un estudio anaĺıtico y experimental del in-

tercambio de la previsión de la demanda entre minoristas y el CP que solicita esta

información para establecer el inventario total. Las demandas realizadas pasan a ser

de dominio común cuando se produce la asignación, y nos centramos en la táctica de

registrar señales de la demanda (previsión) para influir sobre el inventario contenido

en el sistema. Valoramos la táctica en los casos en los que se utiliza un mecanismo

de asignación proporcional (para la demanda realizada a nivel local): un mecanismo

ampliamente utilizado en la práctica y con multitud de propiedades atractivas. Me-

diante el uso de modelos basados en la teoŕıa de juegos determinamos que, cuando



existe una incertidumbre no resuelta en materia de demanda antes de la comuni-

cación, el hecho de decir la verdad y la confianza no forman un equilibrio Bayesiano

Perfecto; además, en un sistema de inventario automatizado que toma como datos las

previsiones registradas por los minoristas y solicita el nivel de inventario óptimo para

toda la coalición, no existe un equilibrio Bayesiano de Nash puro entre los diversos

minoristas. Posteriormente, en un entorno de laboratorio controlado que simula la

configuración de la cadena de suministro objeto de consideración, estudiamos el im-

pacto de a) la competencia por el inventario común y b) la incertidumbre del mercado

sobre la distorsión de la información, la confianza y la eficacia de la cadena de sum-

inistro. Nuestros resultados sugieren que existe una confianza continua cuando los

incentivos pecuniarios estàn alineados y cuando no lo están, lo que viene a desmentir

los casos teóricos extremos de minoristas completamente dignos de confianza o que no

son fiables en absoluto. Además, determinamos que tanto la competencia por el in-

ventario común como la incertidumbre en materia de previsiones dañan notablemente

tanto el hecho de decir la verdad como la cooperación entre las diversas partes de la

cadena de suministro. Ese es el motivo por el que la acumulaciòn de inventario con

arreglo a una asimetŕıa de la información puede tener resultados negativos, a pesar

de la agregación de riesgos de la demanda. Incluso aunque la información no fuera

ı́ntegramente fiable, el valor de la comunicación era significativo en todos nuestros

experimentos.

En último lugar, estudiamos el impacto de la propiedad del inventario sobre los

alicientes de las partes interesadas para compartir sus previsiones de forma fidedigna.

Cuando valoramos dos ubicaciones independientes que deciden a nivel local sobre su

nivel de inventarios y toman en consideración la posibilidad de transferir la propiedad

del inventario después de realizar las demandas, existe un equilibrio Bayesiano de Nash

con caracteŕısticas únicas. La elección óptima de un inventario en un emplazamiento

se incrementa en su señal de demanda recibida; cuando el CP adopta la decisión de

efectuar el pedido, lo que importa es únicamente la cantidad total de inventario. A

menos que concurran algunas condiciones especiales de conservación, éste no podrá ser



separado entre los dos emplazamientos antes de que se realice la demanda, de forma

que los incentivos locales y del sistema queden alineados. Procedemos a comparar en

términos numéricos los inventarios y los beneficios resultantes en condiciones de toma

de decisiones a nivel local con información más precisa frente a la toma de decisiones

centrales en las que se consigue la coordinación de pedidos. Vemos que, cuando

el fractil fundamental es alto, la toma de decisiones a nivel central desemboca en

inventarios más elevados, mientras que cuando el fractil fundamental es bajo se cumple

la circunstancia contraria. Las comparaciones direccionales de beneficios esperados

dependen del valor de la información local que se pierde cuando pasamos a la toma

de decisiones a nivel central frente al valor adicional de la coordinación del inventario

(en el equilibrio babbling o equilibrio no informativo).

Este trabajo tiene varias limitaciones, como consecuencia de la complejidad analtica

del problema. Estudiamos por separado la estrategia de asignación de inventarios

cuando el planificador central no conoce las demandas finales y aquella relacionada

con el intercambio de información sobre la previsión de la demanda para influir sobre

el nivel de inventario de la coalición. El hecho de saber cuáles seŕıan las interacciones

cuando ambos temas se valoraran de manera conjunta sigue siendo una pregunta

abierta. Por ejemplo, si la asignación final estuviera vinculada a la previsión reg-

istrada, ¿cómo cambiaŕıan las dinàmicas del intercambio de información sobre previ-

siones? ¿Cuál seŕıa el impacto sobre la actitud de los minoristas a la hora de efectuar

pedidos? ¿Seŕıa eficaz la asignación final?

Hay muchas ampliaciones interesantes de esta tesis doctoral; para empezar, po-

dramos analizar con mayor detalle el impacto de los factores del comportamiento en la

estrategia de compartir información relativa a las previsiones de la demanda. Cuando

el inventario es común, es interesante investigar cómo el tamaño de la coalición y el de

la demanda media los minoristas afecta relaciones de confianza. Además, quisiéramos

estudiar si el nivel de confiabilidad de los minoristas cambia cuando hay una garant́ıa

de cómo se utilizan sus previsiones de la demanda para ajustar el nivel de inventario



común. Consideramos esto una pregunta de investigación interesante con implica-

ciones gerenciales potencialmente muy relevantes. Como investigación futura, esta-

mos planeando ejecutar experimentos adicionales cuando el nùmero de minoristas

aumenta a 3 y 4, el CP está automatizado y los minoristas no son idénticos. Seŕıa

interesante estudiar, desde un punto de vista experimental, cómo la propiedad so-

bre el inventario tiene un impacto sobre la estrategia de registro de las previsiones

por parte de los minoristas. Incluso aunque los inventarios espećıficos no alinearan

los alicientes individuales y los pecuniarios del sistema, ¿la incertidumbre reducida en

relación con la asignaciòn final incrementaŕıa la confianza de los minoristas y mejorara

la cooperación?

Un segundo tema de interés es estudiar, mediante experimentos asociados al com-

portamiento, el impacto de los mecanismos de asignaciòn en las actitudes de formu-

lación de pedidos de los minoristas, para aśı arrojar luz sobre los componentes que,

potencialmente, pudieran “faltar” en esta interacción. Los conceptos de equilibrio,

que parten de la base de que las partes interesadas son perfectamente racionales, ¿ex-

ageran notablemente la tendencia de los minoristas a pedir más / menos de que lo

que necesitan? ¿En virtud de qué mecanismos de asignación es más pronunciada la

distorsión en los pedidos?

Otra v́ıa de investigación futura es estudiar el intercambio de informaciones sobre

la demanda en una coalición para la puesta en común de inventarios y centrarse en las

implicaciones conductuales a la hora de presentar pedidos imprecisos (no vinculantes)

frente al intercambio de predicciones sobre la demanda. Una vez más, partimos de

la base de que todos los minoristas tienen una mejor información sobre la demanda

gracias a su proximidad al mercado, y que la comparten (quizá de manera falsa) con el

CP, ya sea en forma de intercambio de previsiones (enviando su señal de demanda) o

de una orden no vinculante antes de que la demanda se realizara. ¿Cómo se comparan

los niveles de inventario y los beneficios con arreglo a estas dos formas diferentes de

intercambio de información?



Una configuración de cadena de suministro distinta donde el intercambio de las

previsiones de la demanda desempeña un papel fundamental es la de proveedor –

fabricantes / minoristas. Cuando el proveedor es una unidad de negocio independiente

con su propio margen de beneficio, ¿cómo cambia la dinàmica de la comunicación? El

hecho de saber cuál seŕıa el impacto de confianza y confiabilidad sobre el intercambio

de información estratégica, el nivel inventario (o capacidad) y / o la asignación, en una

configuración de proveedor único – múltiples minoristas, sigue siendo una pregunta

abierta.

Otra ampliación interesante para trabajos futuros es estudiar, tanto a nivel anaĺıtico

como experimental, las dinámicas de comunicación y de intercambio de información

(demanda final o previsiones) en problemas multipeŕıodo. Cuando se toman en con-

sideración las interacciones repetidas, ¿en virtud de qué condiciones pueden formar

un equilibrio sostenible la confianza y el hecho de decir la verdad? Los contratos

de relación (p. ej., basados en estrategias de desencadenamiento), ¿inducen a la

colaboracin? En estrategias multiperodo, muchos aspectos adicionales pueden de-

sempeñar tambièn un papel importante, como por ejemplo las opiniones y el apren-

dizaje, las consideraciones relativas a la reputación, la posibilidad de sancionar un

comportamiento engañoso o la confianza en las relaciones a largo plazo.
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In this thesis, we study the issue of demand information sharing within a supply
chain when parties strategically interact. Multiple retailers form a pooling coalition
and delegate inventory management – ordering and allocation – to a benevolent cen-
tral planner (CP). Each retailer faces uncertain demand and has private information
about it due to his proximity to the market. We focus on whether reliable demand
information sharing occurs between retailers and the CP. First, we study the im-
pact of various allocation mechanisms on the ordering behavior of retailers, when the
quantity of pooled inventory is fixed. Retailers place their orders after demand is pri-
vately revealed to them. We determine analytically that retailers will communicate
their true needs (i.e., their realized demand) under a uniform allocation rule, but not
under other common rules such as proportional or linear. Next we study a setting
where the pooled inventory quantity is no longer fixed, but rather a decision variable,
set by the central planner after receiving initial demand forecast information from the
retailers. The inventory allocation is still determined after final demand realizations
are known, but now this final demand information is common knowledge. So, the
retailers can only influence their allocation through the quantity of pooled inventory
available. Using game theoretical models, we find that this setting has no trust-telling
equilibrium. We then study this setting in a controlled laboratory experiment to test
the impact of (a) the number of retailers, and (b) level of demand uncertainty on
information distortion, trust and supply chain efficiency. Our results suggest that a
continuum of trust exists both when pecuniary incentives are aligned or misaligned,
refuting the extreme theoretical cases of fully trustworthy or fully non-trustworthy
retailers. Even when information is not fully reliable, the value of communication is
significant. Last, we study the impact of inventory ownership on the incentives of the
players to truthfully share their demand forecasts and find that dedicated inventories
do not induce truth-telling either. We compare resulting inventories and profits under
local decision making with more accurate information versus central decision making
where coordination of orders is achieved.
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Chapter 1

Introduction

1.1 Motivation

One of the critical strategic decisions in supply chain management is whether to

decentralize inventory decisions or centralize them at a corporate or supply chain

network level. The supply chain management literature often advocates for central-

ized planning because of its ability to pool inventory risk (e.g. [15,18]) or coordinate

inventory orders to maximize aggregate performance [2, 46]. However, in practical

settings, the realized benefits of centralization may be less than analytical inventory

models would suggest for a variety of reasons. Possible hidden costs of centraliza-

tion include managing increased complexity, addressing local incentive conflicts and

coordinating decision authority and information structure [1].

One key assumption in most of these models is that the proposed central decision

maker can view local demand information at the same level of detail and accuracy

as local decision makers when she sets inventory level(s) or when she allocates total

inventory to satisfy realized demands. In reality the information that is available to

different decision makers within a supply chain, or even within the same company

varies [1]. Retailers or local managers may have more information or “feel” for local

market conditions because of their proximity to the market. A central decision maker

on the other hand, especially later in the demand cycle of a product, may have more
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information about its popularity because she observes demand information across

many locations.

When there is information asymmetry among supply chain parties, reliable infor-

mation sharing between the better-informed party and the decision maker is critical

for the supply chain to operate effectively [11]. Many supply chain failures have been

well-documented in the literature due to the ordering behavior of downstream par-

ties that does not reflect their true market needs (e.g., order inflation when capacity

shortage is anticipated) [8–10, 38] or the inability of the involved parties to credibly

share forecasts (e.g. overoptimistic soft orders that never materialize) [42,44,54]. The

latter has a two-fold negative effect: inflated forecasts may lead to an over-investment

in inventory or capacity, with possibly serious operational and financial consequences

for supplier’s profitability, or to persistent shortages due to the lack of credibility

of the shared information. For example, overoptimistic forecasts from its customers

led Cisco, a major networking equipment supplier, to write off $2.1 billion in excess

inventory in 2001 [42]. According to New York Times (March 3, 2007), when UPS

cancelled its orders for the Airbus A380 freighters, Airbus had to launch a cost-cutting

plan with an expected loss of 10,000 jobs. On the other hand, “Boeing admits that it

has been a significant job to persuade suppliers to invest in enough capacity to meet

future demand” (The Economist, January 2012).

The goal of this research is to determine whether reliable demand information

sharing (realized demand or forecasts) occurs in a setting where a number of retailers

form a pooling coalition and strategically interact. We study the impact of inventory

ownership, inventory ordering and allocation rights, and behavioral factors, such as

trust and trustworthiness on information transmission among supply chain parties.

1.2 Common setting

This thesis focuses on the setting where a group of n retailers pool together their

inventories at a central location, managed by a single central planner, to more effi-
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ciently satisfy their uncertain local demand. For convenience, we refer to the central

planner as she and a retailer as he. Retailers face the problem of procuring, before the

start of the selling season, the inventory that they will stock to serve their stochastic

demand for the period. In other words, each retailer faces a classic newsvendor prob-

lem [47]. The newsvendor problem applies in a broad array of settings characterized

by substantial demand forecast error and a single order or production decision. For

example, it could represent the case of fashion apparel retailers, manufacturers of

high-technology products (e.g., computers or smart phones) or specific promotional

periods. The central planner has the right to set the inventory for the pooling coalition

and / or allocate total inventory to its members after local demands are realized.

Given the type of product retailers are trading, the central planner has one op-

portunity to order inventory before the selling season with no possibility of further

replenishments. She procures inventory from an uncapacitated external supplier.

The central planner is benevolent, interested in maximizing expected aggregate prof-

its (sum of retailer profits). We assume that retailers within the network do not

compete for demand. This is typical in many industries where retailers have exclu-

sive territory rights (e.g., car dealers, franchising). The same dynamics arise in the

case of a single company that owns multiple stores that operate in different markets,

where each store is a separate business unit (local profit maximizer). Hence, the

term “retailer”, “regional manager” or “location” are used interchangeably for the

purposes of this thesis.

Each retailer has private information about his local demand due to his proximity

to the market (e.g., better knowledge of local market conditions and trends). Retail-

ers are homogeneous in their cost parameters. However, they may have heterogeneous

expectations about local demand (i.e., different market sizes, competition from sub-

stitute products, promotion plans, geographic variation)1. Each retailer gains more

1We keep our analytical work general allowing for different market sizes at each location but,
for comparison purposes and to gain some useful insights, we assume retailers have homogeneous
expectations about demand for much of the numerical analysis and experimental work.
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knowledge about his local demand as time unfolds, which is captured through a pri-

vate demand signal known only to him. Cost parameters and demand distributions

(before the signal) are common knowledge to all players.

Demand at each location is the sum of three elements: average demand that rep-

resents the market size at each location, local private information (demand signal),

which represents additional knowledge that becomes available only to the retailer just

before the beginning of the selling season, and market uncertainty (demand fluctu-

ations). The central planner knows the distribution of the local demand signal but

the retailer learns its exact realization at the beginning of the period. The retailer

may obtain this information because of his proximity to the market [42]. Both re-

tailer and the central planner know the average market size at each location and also

the distribution of market uncertainty. We assume that demand signals and mar-

ket uncertainty are independent across markets and that demand signal and market

uncertainty in the same region are independent as well.

When retailers decide to form an inventory pooling coalition managed by a central

planner there are a number of dimensions to be considered: 1) Who decides on the

level of inventory held centrally? Is the decision taken locally or centrally? 2) How

will inventory be allocated after demands are realized? Are inventory re-allocations

(“transshipments”) allowed? 3) When inventory level and allocation decisions are

taken by the CP, what is the available information they are based on? If both inven-

tory and allocation decisions are delegated to the central planner, and both demand

signal and demand realizations remain retailers’ private knowledge, the setting can

be described as follows. Retailers receive their demand signal and they communicate

their forecast to the central planner who determines total inventory. Demands are re-

alized and retailers simultaneously submit their orders to the central warehouse who

allocates total inventory among retailers. This is a double information asymmetry

case. The central planner does not know demand signals but she sets inventory based

on the forecast information solicited by retailers and she does not observe demand
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realizations and thus she bases inventory allocation on the final orders placed by the

retailers.

In this thesis, we study the issue of inventory allocation when final demands remain

retailers’ private knowledge as well as the issue of demand forecast information sharing

between retailers and the central planner who sets inventory for the coalition. Due

to the analytical complexity and mathematical intractability of the general problem,

we study these two separately. In chapter 3 we assume that final demands remain

private knowledge, and we study the ordering behavior of retailers under various

allocation mechanisms. For chapters 4 and 5, we shift focus to the quality of forecast

sharing and its influence on the quality of the inventory decision. For this purpose,

we assume that realized demands become common knowledge to all players. This

captures the dynamics of a single firm operating in many geographical markets or a

third party logistics provider that monitors sales data at a retail location and decides

on its inventory (Vendor Managed Inventory principles).

1.3 Research questions

As aforementioned, the thesis consists of three main chapters, each one studying a

different aspect of demand information sharing within a supply chain. In chapter 3

we focus on the influence of allocation mechanisms on quality of demand information

passed through final orders. In chapter 4, we study the forecast information sharing

game, when inventory is common and inventory allocation is assigned proportionally

to realized demands. We focus on how competition for common inventory, mar-

ket uncertainty and behavioral factors affect information sharing within the pooling

coalition. In chapter 5, we explore the effect of inventory ownership, employing the

notion of claims, on retailers’ incentives to share truthfully their demand forecasts.

We also compare central to local (each retailer decides his own inventory while lateral

reallocations are allowed) decision making regimes, studying the resulting system in-
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ventories and profits. Next, we present in more detail the specific business problem

each chapter relates to and the specific research questions it addresses.

When a number of retailers form an inventory pooling coalition, the issue of allo-

cation after demands are realized becomes very important. Allocation, or rationing

of limited common inventory, is an ongoing issue in many industries ranging from

automobiles, to pharmaceuticals and toys [8]. In the presence of demand and supply

imbalances, retailers may have an incentive to misreport their needs in order to gain

a more favorable allocation. In chapter 3, we assume the pooled inventory quantity

is given and focus on how this inventory is allocated between retailers when the cen-

tral planner must rely on retailers to pass final demand information. We consider

various allocation mechanisms and their effect on retailers’ ordering behavior after

local demands are realized. The main questions include: (a) Which allocation mech-

anisms are Pareto optimal when realized demands become common knowledge? (b)

Do Pareto optimal allocation mechanisms exist that are also truth-inducing when

realized demands remain retailers’ private knowledge? (c) Under which allocation

schemes will retailers truthfully report their local realized demands (through order

placement) to the central planner who allocates inventory?

As already mentioned, many supply chain failures (e.g., excessive inventory, insuf-

ficient capacity to meet demand) are due to the inability of supply chain parties to

credibly share demand information. Chapter 4 focuses on the demand forecast shar-

ing game between retailers and the central planner who decides, at the beginning of

the selling season, the common inventory quantity to be held for the coalition. Cred-

ible demand forecast sharing is critical in this context given that the central planner

has less accurate information about demand in each of the regions. Recent research

has shown that reliable information sharing in a supply chain depends not only on

parties’ incentives but also on behavioral factors between supply chain parties [42].

Hence, in chapter 4, we first use game theoretical models to study players’ pecuniary

incentives in such a setting and then we conduct laboratory experiments to study the
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impact of behavioral factors, such as trust and trustworthiness on the communication.

In this work we define trust as the CP’s willingness to rely on retailers’ forecasts to

determine total inventory. Trustworthiness is measured by the difference between a

retailer’s real forecast and the one he reports to the CP. We also study, both ana-

lytically and experimentally, the role of supply chain environment (i.e., number of

retailers, market uncertainty) on the result of the communication. The main research

questions are: (a) Do retailers truthfully transmit their demand forecasts (private

information) to the central planner when they compete for inventory? (b) Does the

CP incorporate retailers’ transmitted forecast information in her inventory decision

(i.e., trust the shared demand information)? (c) How are communication dynamics

affected by the supply chain environment, i.e., number of retailers, level of forecast

uncertainty, retailers’ trust in the CPs inventory decision process?

In chapter 5, we continue studying the demand forecast sharing game between loca-

tions and the central planner, keeping the same information structure. In contrast to

chapter 4 where the inventory held centrally is common, in this chapter we examine

the impact of inventory ownership on individual players’ incentives. We study the

quality of communication when each region has a dedicated inventory quantity and

unilateral inventory reallocations are allowed after demands are realized. Unilateral

transshipments (or reallocations of centrally held inventories) is a common practice

in many industries such as OEMs [46] and pharmaceuticals. We first study the im-

pact of inventory decision rights placement (locally versus centrally) on the resulting

inventory levels and profits. We then examine whether inventory ownership may

align retailers’ and system’s incentives so that, in the case of central decision making,

truthful forecast information sharing can be expected. The main research questions

are: (a) What is the impact of inventory ownership on the reliability of information

transmitted? To be more specific, do the dynamics of information sharing change

when each retailer has a dedicated inventory quantity held centrally? (b) What are

the resulting inventory levels when inventory decision rights are placed locally (i.e.,

to retailers) versus centrally (i.e., the right to decide on inventories is transferred to
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the central planner)?

Table 1.1 summarizes the settings we consider in the following chapters, comparing

them along the dimensions of decisions studied and information transmitted. The

pooling coalition (retailers and the central planner) is the system we are considering.

For example, when we refer to “endogenous” inventory quantity, we mean that it is a

decision variable for either retailers or the central planner. Before presenting the main

chapters of the thesis, in the next chapter we review the related literature, mainly

within the field of operations and supply chain management but not exclusively, and

we position our research within each research stream.

Inventory Quantity Allocation Information Asymmetry

Chapter 3 Exogenous Various rules Final demands

Chapter 4 Endogenous Proportional Demand forecasts (signals)

Chapter 5 Endogenous Dedicated Inventories Demand forecasts (signals)

w/ reallocation possibility

Table 1.1: Summary of main chapters
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Chapter 2

Literature Review

In this chapter, we review the streams of literature this thesis is mainly related to,

considering both analytical and experimental papers. We first review the literature

related to inventory pooling decisions and associated behavioral issues. We next

examine related literature on capacity choice and allocation, random yield, central

versus local decision making and demand forecast information sharing, focusing on

the issue of information credibility. We comment on how our work fits into each of

these fields and why it differs from previous research.

2.1 Inventory pooling decisions

Benefits of inventory pooling

Pooling, the strategy of aggregating demand streams, has long been studied under

two main contexts: reducing product variety (i.e., through SKU rationalization) or

geographical variety (i.e. inventory centralization). A third dimension of aggregation

is that of demand aggregation across time (i.e., order consolidation). Reducing va-

riety will generally allow a company to provide the same customer service level at a

lower cost, or to improve it without incurring extra costs. Eppen (1979) [18] in his

seminal work showed that total holding and stockout costs are lower when demand is

aggregated, under the assumption of independent and normal demand distributions

25



and identical cost parameters (one-period setting). Eppen and Schrage (1981) [19] ex-

tend the result to the multiple period problem while Corbett and Rajaram (2006) [15]

generalize Eppen’s model to (almost) arbitrary multivariate dependent demand dis-

tributions. In this thesis we study the benefits of pooling when there is information

asymmetry. We assume that a central planner has less information about the demand

distributions than that of the decision makers in the decentralized case (due to her

distance from the markets). To the best of our knowledge this is the first attempt to

incorporate information asymmetry in the problem of inventory pooling.

Sharing the benefits of inventory pooling

Another stream of papers studies how the benefits of inventory pooling should

be shared among retailers, so that the pooling coalition is stable, in the sense that

all participating retailers have higher expected profits. Hartman et al. (2000) [26]

employ cooperative game theory to prove the existence of a cost allocation scheme

so that all retailers are better off (incur lower costs) by pooling their inventories

together, under the assumption of symmetric and independent demand distributions,

identical overage and underage costs, or a multivariate normal demand distribution.

In other words, they show that, under these assumptions, the core of the inventory

centralization game is non-empty, implying stability of the system. They do not

study which cost allocation schemes or mechanisms of inventory rationing are on the

core of the game. Muller et al. (2002) [40] extend this result for all possible joint

distributions of random demands and give sufficient conditions under which the core

is a singleton and conditions under which at a core allocation every newsvendor shares

a nonnegative cost. Gerchak and Gupta (1991) [22] study whether “popular” cost

allocation methods, namely cost allocation by demand volume, by individual safety

stock requirements, by incremental contribution to joint costs, and proportional to

stand-alone costs, are potentially unfair (in the sense that a retailer may be charged

more under consolidation than his cost would be under a dedicated inventory system).
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Only apportioning costs according to each retailer’s stand-alone costs is found to be

“fair” in centralized continuous review inventory systems. Robinson (1993) [45] uses

cooperative game theory and, through a counterexample, proves that this basis of

allocation is not always in the core of the game; some customers may be worse off

when new customers join up. He uses the Shapley value allocation rule to determine

“fair” cost allocations in which no one is worse off after consolidation [48]. This

allocation ensures that each customer is charged somewhere between their incremental

and stand-alone costs.

Kemahlioglu-Ziya and Bartholdi (2011) [31] study a two-stage supply chain consist-

ing of a supplier and multiple retailers and find that if savings of centralized inventory

are allocated among supply chain members by Shapley value, the pooling coalition is

farsightedly stable. This allocation may not always belong to the core of the central-

ization game if retailers are not identical but it always coordinates the supply chain

and distributes profits in a “fair” way. They move one step further by identifying a

quantity allocation rule (a modified linear allocation) of shared inventory where play-

ers’ expected after-pooling profits are equal to their Shapley value allocations plus

their before-pooling profits and the supplier carries the supply-chain-optimal level of

inventory.

In this stream of research, cost or profit allocation is based on full information. In

our work we abstract from the issue of excess profit allocation by assuming that all

retailers join the inventory pooling mechanism. This is representative of situations

where retail stores belong to the same parent company or are otherwise constraint to

accept a pooling policy. In other words, we study the information sharing dynamics

within a coalition, after its synthesis has been set. In chapter 3, where different al-

location mechanisms are compared, we identify one that guarantees each individual

retailer profit’s is at least as high as in the decentralized system.
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Behavioral issues in inventory pooling decisions

It has long been acknowledged in the decision making (i.e. Tversky and Kahne-

man, 1974 [56]; Thaler, 1980 [55]) and economics literature (Mullainathan and Thaler,

2000) [39] that decision makers are not perfectly rational expected profit maximizers.

Their decisions may systematically deviate from optimality for a variety of reasons.

For example, people exhibit systematic biases in their judgments and rely on a limited

number of heuristic principles to assess uncertain situations [56], they have limited

cognitive abilities and bounded self-interest [39], they may have other social consid-

erations, e.g., fairness, reputation, social norms [14]. In the field of operations and

supply chain management, there has been a growing interest in behavioral research.

Behavioral research studies the effects of human behavior in processes and perfor-

mance by incorporating social and cognitive psychology considerations [17]. For a

comprehensive review of this stream, please see Bendoly et al. 2010 [3] and Dono-

hue and Siemsen 2010 [17]. We continue with reviewing behavioral literature that is

specifically related to inventory and pooling decisions.

There is a vast literature on how people make newsvendor problem decisions [4,

5, 7, 47]. We focus on multi-player newsvendor settings. Su (2008) [53] builds a de-

cision model based on the quantal choice model (best decision need not always be

made but better decisions are made more often) and applies it to the newsvendor set-

ting. He predicts that when inventory for multiple locations is held centrally, apart

from the benefits associated with variance reductions, behavioral benefits also exist

as inventory centralization helps by pooling decision errors across locations (“supply

uncertainty” pooling). Lavaro and Corbett (2003) [33] study analytically and through

simulations the pooling effect in the context of SKU rationalization when inventory

policies are suboptimal and demand is non-normal (single planning period). They

find that the value of pooling may be negative when the inventory policy in use is

suboptimal while it varies little across the distributions they studied. More recently,

Ho et al. (2010) [28] study experimentally the ordering behavior in multilocation
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inventory systems and they show that systematic biases eliminate the risk-pooling

benefit when the demand across stores is strongly correlated. They propose a be-

havioral theory based on reference dependence (psychological aversion to leftovers is

greater than the disutility of stockouts) to explain / predict ordering behavior in a

multi-location newsvendor framework, under both a centralized and a decentralized

inventory structure.

Kremer (2007) [32] studies experimentally the impact of secondary markets (oppor-

tunity of inventory rebalancing after demands are realized) on newsvendor’s ordering

decisions. Inventory reallocations are possible, at exogenous or endogenous market

prices determined through a market-clearing auction mechanism, allowing for de-

mand risk pooling. He finds that the option to trade units in the secondary market

increases supply chain profitability in all cases. More interestingly, it also has a ben-

eficial impact on inventory decisions ahead of the selling season as it induces average

order quantities to regress towards system-optimal levels. Behavioral issues related to

transshipment as a pooling strategy are studied as well by Bostian et al. (2012) [6].

Unlike Kremer’s work, transshipment decisions are considered automatic (both quan-

tities and prices) and the main focus is on whether behavioral bias in ordering nullify

the risk-pooling benefit of transshipments. They find that transshipment is a behav-

iorally robust risk-pooling technique in the sense that it gives an even greater benefit

in the presence of behavioral biases than in the absence of these biases.

Our work considers behavioral factors in information sharing within an inventory

pooling coalition. On the one hand, we study the role of trust and trustworthiness

in a pooling coalition where information asymmetry among players is present. We

compare the predictions of analytical models based solely on pecuniary payoffs to the

results of controlled laboratory experiments with human subjects. On the other hand,

we show that under information asymmetry and when behavioral factors are taken

into consideration, the benefit of inventory pooling may, in practice, be inexistent or

even negative, even when demands across locations are independent.

29



2.2 Capacity choice and allocation

The framework employed to study the dynamics of a centralized inventory system

when retailers strategically interact closely parallels that of capacity choice and al-

location in a single supplier, multiple retailer (or manufacturer) context. One main

characteristic of the capacity choice and allocation literature is that it employs a

two-stage supply chain in contrast to the classical inventory pooling literature where

retailers decide to collude among themselves (i.e. forming an aggregate retailer) to

increase total profits. Cachon and Lariviere (1999, 1999 b) [8,10] study how the capac-

ity allocation scheme affects retailers’ orders and supply chain performance when the

supplier has limited capacity and the retailers have private information about their

optimal stocking levels. They find that under any Pareto allocation mechanism (e.g.,

proportional or linear), all retailers truthfully reporting their optimal allocations is

not a dominant Bayesian equilibrium and that a manipulable mechanism (not truth

revealing) may lead to higher capacity and higher profits for everyone. Our work

differs in that “the central planner”, who decides about the inventory (rather than

capacity) to be held centrally, is a total system profit maximizer. Cachon and Lar-

iviere (1999 a) [9], in a two period setting and with two retailers, find that linking

a retailer’s current allocation to his previous sales rate (“turn and earn” allocation)

does not generally coordinate the system. Retailers sell more but in equilibrium no

one gains an advantage. Lu et al. (2010) [37] extend this work to an infinite horizon

game with multiple retailers and find a richer set of equilibria. “Turn and earn” allo-

cation may reduce demand variability placed on the supplier as retailers absorb local

demand fluctuations.

Compared to this stream of literature, the timing of the allocation in our work, and

therefore the information it is based on, differs. In the capacity rationing literature,

manufacturers usually order from a capacitated supplier a quantity at the start of

the selling season, before their demands are revealed. In the pooling coalition case

considered in this thesis, total quantity is procured from an uncapacitated external

supplier at the beginning of the selling season and it is held centrally until regional
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demands are realized. Hence, the final allocation happens after demand uncertainty is

resolved because of the different supply chain tier considered. In our work, allocation

by the central planner is based on realized demands if they are known (chapters 5

and 6) or on final orders that are placed by the retailers after they see their final

demands (chapter 3). In chapter 3, we consider inventory allocation mechanisms that

are similar to the capacity allocation mechanisms studied in these papers (modified

accordingly to represent our setting), while in chapters 4 and 5 we take the allocation

rule as given and we focus instead on the issue of optimal central inventory choice for

the coalition.

Li et al. (2011) [35] consider situations where firms buy options to use the capacity

of a supplier. They explore whether the supplier benefits from providing transfer

rights with these options such that a firm that cannot use all its purchased capacity

can sell it to another firm that may need it. They examine what happens when a buyer

requires more or less than her reserved capacity under three policies: a) individual

reservations are final and excess demand at any buyer is lost, b) any unused capacity

by each buyer returns to the supplier and he has the right to sell it to another buyer if

there is demand for it and c) each buyer owns her reserved capacity and can resell any

unused capacity to another buyer after demands are realized. They find that providing

transfer rights to the buyers can be better for the supplier than reserving the transfer

rights to itself in a wide variety of situations because the buyers value their reserved

capacity more which in turn allows the supplier to charge higher reservation prices.

Their setting parallels ours, mainly the one considered in Chapter 5, in the sense that

they are comparing final “individual capacity reservations” to “pooled” capacity with

minimum guarantees (allowing “capacity transshipments”) and they are focusing on

the issue of who has the right to transfer unused capacity. In the case where the

supplier owns the property rights to reserved capacity, and both buyers need capacity

above their reserved quantities, the uniform capacity allocation rule is employed in

order to exclude retailers’ strategic ordering and to keep the model tractable. We are

considering a central total system profit maximizer instead and we are focusing on
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the gaming between the players in the presence of information asymmetry.

The only work, to the best of our knowledge, that explicitly models and experi-

mentally estimates behavioral factors in an allocation game, is that of Chen et al.

(2012) [13]. They consider a setting of complete information, capacity shortage,

known demands and proportional allocation. They find that retailers do not order

that much more than what they need, as game theory would predict as a result of

their strategic interaction. They propose a model of bounded rationality, based on

the quantal response equilibrium, to explain the observed ordering behavior in the

lab. For our experimental work, we base the allocation of total inventory on realized

demands (instead of orders placed) and we focus on the information sharing game

between the retailers and the central planner who sets the inventory quantity.

2.3 Random yield

In our setting, the final allocation that a retailer or a region gets is random because it

is based either on realized demands at two or more locations (chapters 4 and 5) or on

retailers’ final orders that, in turn, depend on random demand realizations (chapter

3). The allocation that each retailer receives can be thought of as a random yield of

the total inventory quantity and hence our work is also related to the random yield

literature. The yield factor will depend on the allocation rule employed. Analytical

models of determining lot sizes when production or procurement yields are random

can be classified in two main categories: single-stage continuous time review models

where demand is constant or random and periodic review (discrete time) models

for single or multiple production stages and single or multiple periods (known or

random demand). Yano and Lee (1995) [59] provide a comprehensive review on

quantitatively-oriented approaches for determining lot sizing with random yields. Our

setting is closer to the discrete time, single period, single run model studied first

by Shih (1980) [49]. He focuses on the case where yield uncertainty is caused by

defective units and he shows that when the distribution of the % of defectives is
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known and invariant with the production level (stochastically proportional yield) the

expected cost is convex and a closed form solution for the optimal procured quantity

can be found. Gerchak et al. (1988) [23] study periodic review production models

with variable yield and uncertain demand but they start their work with the single

period case. It is the first paper that provides a complete analysis of a general profit

maximizing single-period model with variable yield and uncertain demand and they

show that the profit function is concave in the lot size. Henig and Gerchak (1990) [27]

study the structure of periodic review policies in the presence of random yield and

they start as well by studying the single period case. They show that for linear

holding and shortage costs (as in our case) the probability of shortage under random

yield is no smaller than the probability of shortage under certain yield. Even if in our

work allocation at each location is a random part of the total inventory, the modeling

of ”yield” uncertainty, through the allocation mechanism, is quite distinct than the

classic random yield literature (e.g., the number of good units follows the binomial

distribution, the fraction of good units (yield rate) follows a known distribution etc).

It is worth mentioning that in one of the earliest papers in the random yield liter-

ature [50], it is acknowledged that the randomness of the amount received from an

order may come from many sources of uncertainty, including human administrative

errors. Silver (1976) refers to the ratio of the expected amount received to the lot size

as the ”bias factor”. In our setting, there are two sources of randomness in the yield;

one resulting from the fact that retailers in a pooled setting will receive a random

fraction of the total inventory and a second resulting from errors in decision making

(order quantity from the central planner may not always be the one that maximizes

expected profit). Our modeling work is based on the assumption that the optimal or-

der quantity is always ordered but experimental results do not exclude that ordering

error may also be present.

33



2.4 Central versus local decision making

The analysis of classical distribution systems usually assumes a single (central) deci-

sion maker or that decisions are somehow coordinated by a central agency. However,

distribution systems may consist of multiple decision makers with their own objec-

tives and without an explicit mechanism that coordinates decisions. Along these lines,

Rudi et al. (2001) [46] consider a two-location inventory model where transshipments

are allowed, and examine how this possibility affects optimal inventory levels at each

location. They consider local decision making and contrast it to central decision mak-

ing by comparing the resulting inventory levels. Anupindi et al. (2001) [2] introduce

a general framework for the analysis of decentralized distribution systems. They con-

sider a setting of both local and central inventories and they study together inventory

ordering and allocation decisions. Our work (chapter 5) closely parallels these papers

with respect to the dynamics that arise. Even if inventories are held centrally, each

unit of inventory “belongs” to a specific location (retailer) and change of ownership

for units of inventory is allowed after demands are realized (lateral inventory real-

location). The critical difference is that local decision makers have more accurate

information about their local demands due to their proximity to the market (com-

pared to the central decision making case). Therefore, our work could be considered

as an extension in the sense that it incorporates information asymmetry.

Anand and Mendelson (1997) [1] model different coordination structures within a

monopolistic firm that operates in multiple horizontal markets. They jointly consider

decision rights (who decides what) and information structure (who knows what),

and quantify the value of collocating decision rights with specific knowledge. They

discriminate between information that can be transmitted and local knowledge that

cannot be communicated, and study the information structure jointly with the deci-

sion making structure. They consider a firm with increasing marginal cost and linear

in price demand curves. They take the system perspective, assuming that all players

want to maximize expected overall profits, but also consider transfer-pricing schemes

that address incentive conflicts between local and overall profitability. In our work, we

34



take the information structure as given, we assume that all available local knowledge

can be efficiently communicated if the right incentives are in place and we focus on

whether truthful sharing of private information is expected, when retailers operate in

competitive markets (exogenous price, constant cost and high demand uncertainty).

In similar lines, Netessine and Rudi (2003) [41] study centralized and competitive

inventory models with demand substitution. They compare under these two settings

optimal inventory stocking policies for a given product line when demand substitution

is consumer driven. Our work analyzes centralized versus competitive inventory mod-

els for a single product but multiple retailers that they do not directly compete with

for demand. However, they do strategically interact for inventory allocation in case of

a centralized system. Jiang et al. (2010) [30] study the optimal stocking levels of mul-

tiple newsvendors that compete for demand but they have asymmetric information

about future demand realizations, and this information is limited to knowledge of the

support of the demand distribution. They characterize the Nash-equilibrium stocking

quantities by applying a robust optimization methodology. They find that a compet-

ing newsvendor does not necessarily benefit from having better information about its

own demand distribution than its competitor. This work, related to a decentralized

competitive inventory setting relaxes the assumption of complete and symmetric in-

formation that game-theoretic models in operations management primarily rely on.

Similarly, we relax the assumption of complete and symmetric information in a dis-

tinct setting: we consider a two stage supply chain when the central planner plays an

active role in setting total inventory while, in both local and central decision making

cases, retailers do not compete for demand but strategically interact for inventory

allocation.

2.5 Demand forecast information sharing

While there has been substantial work in operations and supply chain management

regarding the value of sharing (demand) information, it is usually assumed that the
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exchange of information is truthful and credible. For a comprehensive review on the

gains of information sharing see Chen (2003) [12]. For example, Li (2002) [34] and

Zhang (2002) [60] both study the issue of information sharing in a two-level supply

chain where there is one upstream and multiple downstream competing firms, which

have better information either about demand or their costs. In these papers, firms

operate in a duopoly market and compete for demand (in contrast to the newsvendor

setting with seperate markets we are considering) but most importantly, if players

agree to share information it is assumed that they will do it truthfully. The main

focus is on how information sharing affects the profitability of the firms and whether

firms will engage in such activities. Cachon and Lariviere (2001) [11] study demand

forecast sharing in a supply chain with one manufacturer and one supplier. The

player who is closer to the market (the manufacturer), as in our case, has better

forecast information. However, he has an incentive to inflate his forecast to induce

the supplier to build more capacity. They study contracts that allow the supply

chain to share demand forecasts credibly under two contract compliance regimes:

forced and voluntary compliance of the supplier. They find that it is always in the

interest of the manufacturer with high demand forecast to share credibly his forecast

(separating equilibrium), but doing so creates system inefficiencies compared to the

full information case, as credible signaling comes at a cost.

The issue of whether information sharing within a supply chain is truthful and to

what extent, both in theory and in practice, has recently received some attention in

the literature. Li and Zhang (2008) [36] consider the issue of truthful information

sharing in a setting where one manufacturer supplies to multiple retailers competing

in price. They study the effect of confidentiality in information sharing and they find

that if retailers share their private information about demand confidentially with the

retailer, truth-telling is an equilibrium and supply chain coordination is achieved.

Our work is very close in spirit and could be considered an extension of Ozer

et al. (2011) [42]. In this paper, the authors explicitly consider the issue of fore-
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cast information sharing in a single supplier — single manufacturer context where

the manufacturer has better information about the stochastic demand. They ex-

perimentally test the analytical predictions of game theory in such a setting (cheap

talk, uninformative communication) and find that there is a continuum of trust when

people share information. Trust among the decision makers significantly affects the

outcome of cheap-talk forecast communication that is not totally uninformative in

practice and improves channel efficiency. Our paper extends their work to multiple

retailers while the incentives of the central planner are distinct. We do not consider

manufacturing and capacity decisions but inventory decisions instead within a pooling

coalition. A closely related, follow-up working paper compares forecast information

sharing in China and the U.S., investigating the effect of the cultural and institutional

heterogeneity in trust and trustworthiness in this context [43]. They find that Chinese

consistently exhibit lower trust and trustworthiness than their U.S. counterparts.

Ren et al. (2010) [44] study forecast sharing in a long term supplier-customer

relationship. They prove that a truth-sharing outcome can emerge as an equilibrium

through the repeated supply chain relationship, even when a linear price contract

is employed between the supplier and the customer. They identify a multi-period

review strategy profile that not only can induce truthful information sharing, but

also system coordination. We employ instead a single-period setting and we study

how behavioral factors, i.e., trust, may lead to truthful communication even in the

absence of repeated interactions. Terwiesch et al. (2005) [54] empirically study, in a

specific industry (semiconductor equipment industry), the demand forecast sharing

process between one buyer and a number of suppliers. They find that suppliers

penalize the buyer for unreliable forecasts by providing lower service level, while, in

turn, the buyer overly inflates his forecasts to the suppliers with poor service history.

There has been some additional research recently that examines the role of trust and

trustworthiness in information sharing in different operational settings. For example,

Inderfurth et al. (2013) [29] shed more light on the role of trust and trustworthiness
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in communication under asymmetric information within a supply chain, by studying

the effect of pre-play communication in a principal-agent setting. They conduct a

laboratory experiment and they find that information sharing, reduces inefficiencies

in the supply chain despite the cheap-talk dynamics, if there is a certain amount of

trust. In a similar context, Voigt and Inderfurth (2012) [57] study analytically the

effect of communication and trustworthiness on supply chain performance. They allow

pre-play communication in a supplier-buyer relationship that falls into the principal-

agent category and assume that a proportion of the agents are always truth-tellers.

In this thesis we consider the issue of forecast sharing in a cheap talk setting

without mechanism design contracts or repeated interactions. We focus on whether

truthful information is an equilibrium when multiple retailers being part of a pooling

coalition strategically interact and compete for inventory. We study the effect of

competition, market uncertainty and inventory ownership on players’ incentives for

truthful forecast sharing. We then study the role of trust and trustworthiness on the

result of communication and cooperation within the supply chain by conducting a

laboratory experiment.
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Chapter 3

Impact of Inventory Allocation

Mechanisms on Demand

Information Sharing

3.1 Introduction

When a number of retailers form an inventory pooling coalition, the issue of how

inventory is allocated after demands are realized becomes very important. In the

absence of a pricing mechanism that would balance supply and demand, inventory

rationing through quantity limits (upper or lower) in case of shortage or surplus are

necessary. In such cases though, retailers may have an incentive to misreport their

needs in order to gain a more favorable allocation. Allocation, or rationing of limited

common inventory, is an ongoing issue in many industries where there is only one

opportunity for production or procurement, before the start of the selling season. For

example, allocation mechanisms have been employed in the fashion apparel, consumer

electronics and, automotive industries [8, 9, 38].

The issue of capacity rationing in a supply chain with one supplier selling to multiple

retailers is a phenomenon well-studied in the literature [8–11]. When several retailers

compete for limited capacity, a broad class of allocation mechanisms are prone to
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manipulation. When inventory is limited, prior analytical research has shown that

retailers may order more than what they need to gain a higher allocation [10]. Our

setting differs from this prior research in three ways: (a) the manager of the pool-

ing coalition (CP) is interested in maximizing total supply chain profits (she is not

a seperate business entity trying to maximize her own profits), (b) when allocation

takes place, retailers already know their realized demands (not their optimal stocking

levels under demand uncertainty), and (c) retailers are responsible for both under-

stocking and over-stocking costs of the coalition. In contrast to the case of capacity

rationing, total inventory of the coalition is held in the central warehouse until local

demands are realized. After demands are realized and final orders are placed to the

central warehouse, retailers may receive less or more than their final order. Retail-

ers collectively assume all demand uncertainty risk, as the central planner is not a

separate unit with its own financial objectives.

In this chapter, we abstract from the issue of how the quantity in the central ware-

house is set (i.e. the level of inventory held at the CP is for now assumed to be given)

and study how retailers pass orders under different allocation mechanisms. We study

three allocation mechanisms that are commonly used in practice and analyzed in the

literature. These include proportional, linear and uniform. Perhaps the most intuitive

mechanism is the proportional allocation where each retailer receives a proportional

amount of his announced demand (or order when demands are not common knowl-

edge). Linear allocation gives each retailer his final demand (or order) plus / minus

a common quantity when there is inventory surplus / shortage. Under uniform allo-

cation, each retailer gets the same quantity, under some conditions. No retailer gets

more than what he asks for when total orders exceed total inventory and no retailer

gets less than what he asks when the reverse is true. Under common knowledge, these

conditions guarantee that there are no unsold units when there is inventory shortage

and that there is no unmet demand when there is inventory surplus. Furthermore,

we introduce a new allocation rule, the modified uniform allocation rule, which has

some attractive properties in this setting. This allocation mechanism connects retail-
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ers’ initial (soft) orders to the final allocation they receive after demands have been

realized.

The research questions we address in this chapter include: (a) Which allocation

mechanisms are Pareto optimal under common knowledge of realized demands? (b)

When final demands remain retailers’ private knowledge, under which allocation rules,

if any, will retailers truthfully report these to the central planner (who allocates

inventory)? (i.e. place a final order equal to their realized demand) (c) Do Pareto

optimal allocations that induce truthful demand telling exist?

The rest of the chapter is organized as follows: we start by further defining the

supply chain setting we are studying and the timing of events. Then, we identify

properties that Pareto optimal allocation mechanisms have in this setting. Next, we

introduce the various allocation mechanisms we are considering in this chapter. We

first study the case of symmetric information (the CP knows the realized demands

when she allocates inventory) which serves as a benchmark. Then, we analyze the

asymmetric information case. Each retailer knows his realized demand (and only his)

while the CP does not see actual demands but only the orders retailers place.

3.2 Setting and timing of events

A number of retailers n have decided to form a pooling coalition to better satisfy

their uncertain demand. At the beginning of the season, each retailer receives a

signal θi about the demand at his region (i = 1...n). Demand at each region is

given by di = µi + θi + �i, where µi is a positive constant representing the average

demand at location i and θi is retailer’s i private information about demand, a zero-

mean random variable with cumulative distribution function Fi(·), probability density

function fi(·) and support [θi, θi] (adopted from Ozer, 2011 [42]). Market uncertainty

is represented by �i, a zero-mean random variable with cdf Gi(·), probability density

function gi(·) and support [�i, �i]. Both retailer i and the central planner know µi and

Gi(·). Retailer i also knows at the beginning of each selling season the realization of θi,
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while the central planner knows only its distribution Fi(·). We assume that signal and

market uncertainty are independent across regions and that within a region market

uncertainty is independent of the signal received (i.e., Cov(�i, �j) = 0, Cov(θi, θj) = 0

∀i, j = 1, 2...n, i �= j and Cov(�i, θj) = 0 ∀i, j = 1, 2...n). Cost parameters are also

common knowledge to all players. Each retailer receives p for each unit he sells and

pays c for each unit he receives from the central warehouse. The salvage value of the

product at the end of the selling season is normalized to zero.

In this chapter, we focus on the information transmission and retailers’ incentives

at the inventory allocation stage. Hence, the level of inventory held by the CP is for

now assumed to be a given quantity (i.e., it is a parameter). Central inventory can be

determined in many ways, e.g., as the sum of local inventory level calculations, or set

optimally by the CP given his full knowledge of the demand distributions at the time

that the inventory level decision is made. In all cases though, we assume that the

level of common inventory is independent of the allocation mechanism employed. For

the rest of the chapter we consider the case where inventory level is determined as the

sum of retailers’ initial (soft) orders qa
i
. It is important to point out that these initial

orders could be decided in a number of ways (e.g., optimal newsvendor quantity for

each retailer) but retailers do not have freedom in choosing the way q
a

i
is calculated.

Hence allocation does not change the way retailers behave. In this sense, we ignore at

this stage the interaction between the allocation mechanism and the total inventory

set. The same assumption would hold if the CP announces the allocation mechanism

along with the inventory level set for the coalition at the same time.

The central planner (CP) is responsible for managing total inventory at the central

warehouse and for distributing it to retailers after their local demands are realized,

according to a publicly announced mechanism. After he observes his realized demand,

each retailer places a second, final, order (qb
i
≥ 0) to the central warehouse. We

denote by α the vector of quantities sent to retailers. The timing of events, depicted

graphically in Figure 3-1, is as follows:
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0. Before the period begins, the central planner announces the allocation mecha-

nism she will use once demands are realized (or after retailers have placed their

final orders in the asymmetric information case).

1. At the beginning of the period, each retailer i observes a private signal θi (only

his) about his demand at location i and places an order qa
i
to the central planner.

2. The central planner calculates total inventory to be held centrally, Q =
�

n

i
q
a

i
.

This quantity becomes common knowledge to all players.

3. Demand is realized. In the symmetric information case after local demands are

realized they become common knowledge to all players. In the asymmetric infor-

mation case, where only retailers know their own di’s, retailers simultaneously

place a second order qb
i
to the central planner.

4. The allocation of inventory to retailers (α) is calculated according to the posted

allocation mechanism based on Q and the available information. The central

warehouse fulfills the orders submitted by sending to each retailer αi. Each

retailer is charged with c · αi.

Figure 3-1: The timing of events in the inventory allocation game

Before we analyze the symmetric and asymmetric information case, we begin

by formally defining a Pareto optimal allocation mechanism and identifying some

properties of such mechanisms in this context.
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3.3 Properties of Pareto optimal allocation mech-

anisms

An allocation mechanism in this case, where demand uncertainty is resolved before

allocations are determined, is efficient when it excludes wastage. System efficiency

implies that there are no unsold units when total demand is equal to or higher than

Q and there is no locally unsatisfied demand when total demand is lower than Q. In

other words, no retailer faces a shortage while at the same time another retailer faces

a surplus (i.e., it cannot be that αi > di and αj < dj for some i, j = 1...n).

We denote by d and qb the vector of local demand realizations and the vector

of final orders placed by retailers, respectively. An allocation mechanism is Pareto

optimal if it maximizes the sum of retailers profits and thus system profits, assuming

in the asymmetric information case that all retailers truthfully report their realized

demand by ordering qb = d. Please note that initial orders qa
i
are soft orders used to

determine total inventory and are not sent to retailers (qb
i
is not on the top of qa

i
).

Proposition 3.1 :

(a) A Pareto optimal allocation mechanism satisfies: ∂πi(αi,di)
∂αi

= ∂πj(αj ,dj)
∂αj

∀i, j.

(b) An allocation mechanism is Pareto optimal if and only if it is efficient.

All proofs are provided in Appendix B.1.

Next we show that in our setting, a Pareto optimal allocation mechanism is not

necessarily individually responsive. An individually responsive mechanism ensures

that if a retailer is receiving not zero but positive allocation (αi > 0), his allocation

quantity increases when his demand (or his final order quantity in the asymmetric

information case) increases, unless he has already been allocated the total quantity.

Similarly, under such a mechanism, allocation quantity decreases when demand (or

order quantity) decreases.
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Following the definition of Cachon and Lariviere (1999) [10], an allocation mecha-

nism is individually responsive if, for all i, 0 < αi(di) < Q implies

αi(d̂i, d−i) > αi(di, d−i), d̂i > di (3.1)

Proposition 3.2 states that being individually responsive is not a necessary condition

for Pareto optimality in our setting.

Proposition 3.2 : A Pareto optimal allocation mechanism is not necessarily individ-

ually responsive.

This is an important result because the (modified) uniform allocation mechanism,

which is not individually responsive, is not excluded from the set of potentially Pareto

optimal allocations. This result is different from the result of Cachon and Lariviere

(1999) [10] who show that when allocation of scarce capacity to retailers is done

before demand uncertainty is resolved if an allocation mechanism is not individually

responsive it cannot be Pareto optimal.

The intuition behind their result is that a Pareto mechanism “must recognize the

smallest change in every retailer’s marginal valuation of stock and thus must be

individually responsive”. If a retailer has a higher optimal stocking level, it is optimal

to receive a higher allocation. In the setting under consideration, because allocation

is decided after demand uncertainty is resolved at each location (and retailers have

identical cost parameters), the incremental value of an additional unit of stock is

constant; it is p−c when there is inventory shortage and −c in case of total inventory

surplus. Hence, responsiveness is not a necessary condition for allocation optimality

(unlike the capacity allocation setting considered in papers [8–10]).
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3.4 Allocation with symmetric information

We start by introducing the structure of the three allocation functions of interest

and checking whether they are Pareto optimal. We build on the allocation rules

for capacity rationing proposed by Cachon and Lariviere (1999, 199b) [8, 10] and we

modify them so that
�

n

i=1 αi = Q. Please note that in the context under consideration

a retailer may be allocated a quantity higher than his final demand, if total demand

is lower than the total quantity held centrally.

Proportional allocation

αi(d) =
di�
n

i=1 di
Q (3.2)

Under symmetric information, it is trivial to show that proportional allocation is

efficient and therefore Pareto optimal.

Linear allocation Index retailers in decreasing order of their demand, i.e. {d1 ≥

d2 ≥ ... ≥ dn}.

Case 1:
�

n

i=1 di ≥ Q, retailer i is allocated αi(d, ñ), where

αi(d, ñ) =





di − 1

ñ
(
�

ñ

j
dj −Q) for i ≤ ñ

0 for i > ñ

(3.3)

and ñ is the largest integer such that αñ(d, ñ) > 0.

Case 2:
�

n

i=1 di < Q, retailer i is allocated αi(d), where

αi(d) = di +
1

n
(Q−

n�

i=1

di) (3.4)

Linear is also an efficient allocation because if
�

n

i=1 di ≥ Q, then αi ≤ di ∀ i.

Similarly, when
�

n

i=1 di < Q, it is guaranteed that αi ≥ di ∀ i. Therefore wastage is

excluded in both cases. Although this is an allocation mechanism that maximizes the
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sum of retailer profits, when there is inventory shortage it may assign zero inventory

to retailers with low demand [8]. Consequently, implementing this allocation rule by

itself may not satisfy the individual rationality constraints of the retailers and hence

may not encourage inventory centralization [31].

Uniform allocation Index retailers in decreasing order of their demand, i.e. {d1 ≥

d2 ≥ ... ≥ dn}.

Case 1:
�

n

i=1 di ≥ Q, retailer i is allocated αi(d, n̂), where

αi(d, n̂) =






1
n̂
(Q−

�
n

j=n̂+1 dj) for i ≤ n̂

di for i > n̂

(3.5)

and n̂ is the largest integer such that αn̂(d, n̂) < dn̂.

Case 2:
�

n

i=1 di < Q, retailer i is allocated αi(d, n̂), where

αi(d, n̂) =





di for i < n̂

1
n−n̂+1(Q−

�
n̂−1
j=1 dj) for i ≥ n̂

(3.6)

and n̂ is the smallest integer such that αn̂(d, n̂) > dn̂.

Again, as in linear allocation, the uniform allocation rule guarantees that when
�

n

i=1 di ≥ Q, αi ≤ di ∀ i and when
�

n

i=1 di < Q, αi ≥ di ∀ i. Therefore it is efficient

and Pareto optimal. Uniform allocation favors retailers with low demand in the case

of inventory shortage, and retailers with high demand in the case of inventory surplus.

These allocation mechanisms are based solely on realized demands and not on

retailers’ initial orders q
a

i
. Hence, they do not allow for comparisons between the

profit of a retailer as part of the pooling coalition and what he could have earned in a

decentralized system, assuming that he would have ordered q
a

i
. The mechanisms also

do not provide any minimum inventory or profit guarantee to individual retailer.
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We are interested in identifying an allocation mechanism that provides a guaranteed

and a maximum allocation. A guaranteed allocation is the amount of inventory that

the retailer is assured to receive if he wants it. Maximum allocation is the retailer’s

largest possible allocation given his demand. A mechanism that satisfies condition

(3.7) provides such guarantees and gives a retailer a greater control over his own

destiny.

min(di, q
a

i
) ≤ αi(di, q

a

i
, Q) ≤ max(di, q

a

i
) ∀i &

n�

i=1

αi = Q (3.7)

An allocation mechanism that satisfies condition (3.7) guarantees retailer i a quan-

tity at least equal to his initial order and up to his demand, when his realized demand

is higher than his initial order. When his local demand is lower than his order quan-

tity, retailer’s demand is guaranteed to be satisfied but he may be allocated and

charged a quantity less than his initial order. An allocation mechanism satisfying

these properties is Pareto efficient because it excludes wastage and eliminates all

profitable trade among retailers (total profit maximizing).

An allocation mechanism that satisfies (3.7) also guarantees a retailer a profit larger

or equal to what he would have earned under a decentralized system.

Proposition 3.3 : Each retailer’s profit when his is part of a pooling coalition that

sets Q =
�

q
a

i
and the CP allocates inventory according to a mechanism that satisfies

condition (3.7) is larger or equal to his profit under a pure decentralized system.

In Proposition 3.3 we assume that in a decentralized system (separate newsvendors)

each retailer will set inventory q
a

i
. Please note that we put no restrictions on how q

a

i

is calculated. We assume though that it is the same and it does not depend on the

allocation function. It follows immediately from Proposition 3.3. that total profits

as well will be larger or equal to sum of individual profits in a decentralized setting.

This is due to the benefit of excess demand and stock rebalancing opportunity after

demands are realized (unilateral change of inventory ownership).
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None of the allocation mechanisms considered so far satisfies condition (3.7) for

arbitrary demand realizations. One possible way to implement an allocation satisfying

the above inequality is to initially charge each retailer c · qa
i
to cover the quantity he

ordered and then allow “allocation changes” after individual demands are realized.

Each additional inventory unit above qa
i
is received at a cost c and sent for a revenue

of c as well. In this case the same dynamics arise as in a decentralized inventory

system where transshipments are allowed and their cost is zero.

We continue by introducing a specific allocation rule, the modified uniform al-

location, which satisfies condition (3.7). This rule uses each retailer’s initial order

q
a

i
as a starting point to determine his allocation. In case of shortage, shortage is

divided equally among retailers that have di > q
a

i
as long as their resulting allocation

is above qa
i
. In case of surplus, additional units are equally divided among those that

have di < q
a

i
as long as the resulting allocation is lower than q

a

i
. By construction,

this allocation rule is efficient and Pareto optimal. We formally define the modified

uniform allocation rule as follows:

Modified uniform allocation Define gi = di−q
a

i
and index retailers in decreasing

order of the difference between their final and their initial order, i.e. {g1 ≥ g2 ≥ ... ≥

gn}.

Case 1:
�

n

i=1 di ≥ Q, retailer i is allocated αi(qa
,d, n̂), where

αi(q
a
,d, n̂) =





q
a

i
+ 1

n̂
(Q−

�
n̂

j=1 q
a

j
−

�
n

j=n̂+1 dj) for i ≤ n̂

di for i > n̂

(3.8)

and n̂ is the largest integer such that αn̂(qa
,d, n̂) < dn̂.

Case 2:
�

n

i=1 di < Q, retailer i is allocated αi(qa
,d, n̂), where

αi(q
a
,d, n̂) =





di for i < n̂

q
a

i
− 1

n−n̂+1(
�

n̂−1
j=1 dj +

�
n

j=n̂
q
a

j
−Q) for i ≥ n̂

(3.9)
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and n̂ is the smallest integer such that αn̂(qa
,d, n̂) > dn̂.

3.5 Allocation under asymmetric information

In the asymmetric information case, the central planner determines the allocation of

total quantity without observing local demand at each retailer’s location. Instead,

each retailer, after observing his local demand di, places a final order qb
i
to the central

warehouse. The main question of this section is: will retailers truthfully report their

realized demands to the central planner (qb
i
= di ∀i)? Also, how do the various

allocation mechanisms influence the report?

We consider the allocation rules introduced in the previous section, modified to

reflect the case where final demands are not known to the central planner. Under

asymmetric information, the structure of these allocation mechanisms remains un-

changed but they become a function of qb instead of d (i.e. di is replaced by q
b

i
∀i).

All allocation mechanisms studied in 3.4 are Pareto optimal under common knowl-

edge, but the question remains if these allocation mechanisms are inducing retailers to

truthfully report their realized demands. To answer this question, we use the concept

of dominant strategy equilibrium. We define q
b

i
(di) to be a function mapping from

[di, di] to [0, Q]. This function defines a strategy for player i, dictating an order for

each possible demand realization. Similarly, qb−i
denotes the vector of orders submit-

ted by all retailers but retailer i. The function q
b∗(d) = {qb∗1 (d1), qb∗2 (d2), ..., qb∗n (dn)}

forms a dominant equilibrium for all i and d, if and only if :

πi(αi(q
b∗
i
(di), q

b

−i
(d−i))) ≥ πi(αi(q

b

i
(di), q

b

−i
(d−i))) ∀ q

b

i
, q

b

−i
∈ [0, Q] (3.10)

In a dominant strategy equilibrium, each retailer has a strategy that maximizes his

profit regardless of the strategies of the other retailers. We are interested in strategies

where retailers order their optimal quantities, their true needs, in a dominant equi-

librium (qb∗
i
(di) = di). Under a proportional or linear allocation rule, a retailer has
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an incentive to inflate his final order above his demand when he thinks there will be

inventory shortage and order less than his realized demand when he believes there will

be inventory surplus. This results from the observation that under these two alloca-

tion mechanisms (a) no retailer receives exactly what he orders, unless
�

n

i=1 q
b

i
= Q,

and (b) each retailer can influence his allocation to his benefit by modifying his order

above or below his demand. On the other hand, uniform allocation is truth inducing:

all retailers are always better off placing a final order equal to their realized demand.

More formally, we have the following results.

Proposition 3.4 : Truthfully reporting their realized demands is not a dominant

strategy equilibrium for retailers under proportional or linear allocation mechanisms.

Proposition 3.5 : Truthfully reporting their realized demands is a dominant strategy

equilibrium for retailers under uniform allocation mechanism.

The intuition behind this result is that when the uniform allocation rule is employed

and there is inventory shortage, a retailer can increase his allocation by untruthfully

placing an order above his demand only when he belongs to those that receive an

allocation equal to their final order. Thus, by placing a final order above his realized

demand, the retailer will receive additional units that he cannot sell. The retailers

that receive an allocation lower than their final order cannot increase their allocation

by ordering more. Similarly, when there is inventory surplus in the system, a retailer

can reduce his allocation by ordering less only when he is among the ones who get

a quantity equal to their final order. In this case, placing an order lower than the

realized demand results in lost sales and hence lost profits for the retailer.

Even if the uniform allocation rule incentivizes retailers to truthfully place a final

order equal to their realized demands, it does not guarantee that each retailer gains

a profit higher than what he would have gained under a pure decentralized system

(i.e. inequality (3.7) may not hold). We show that the modified uniform allocation
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rule, introduced in section 3.4, not only assures condition (3.7) holds for each retailer

and any demand realization, but it is also truth-inducing.

Proposition 3.6 : The modified uniform allocation rule is a truth revealing Pareto

optimal allocation mechanism that guarantees each retailer a profit larger or equal to

his profit under a decentralized system.

Table 3.1 provides a summary of the comparison of the various allocation mecha-

nisms along the dimensions of Pareto optimality (under common knowledge), truth-

inducing property and inventory / profit guarantees.

Proportional Linear Uniform Modified Unifrom

Pareto optimal
Yes Yes Yes Yes

(under common knowledge)

Truth Inducing No No Yes Yes

Quantity & Profit
No No No Yes

Guarantees

Table 3.1: Comparison of various allocation mechanisms

In this thesis we assume that the coalition is already formed. If this is not the case,

only the modified uniform allocation guarantees that each retailer is not worse off as

part of the coalition, for any demand realization. Table 3.1 results hold under the

assumption that the inventory level is exogenous, an assumption relaxed in chapters

4 and 5. Therefore, the proportional allocation rule studied in chapter 4 may lead to

different results as total inventory becomes an endogenous decision and allocation is

based on common knowledge of demand realizations.
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3.6 Concluding remarks

Acknowledging that the issue of allocation is present and may play an important

role in the dynamics of an inventory pooling coalition formed by multiple retailers,

in this chapter we studied the impact of three well-known allocation mechanisms on

retailers’ strategic behavior and resulting profits. We started by identifying the prop-

erties of Pareto optimal allocation mechanisms in the setting under consideration and

showing that any allocation mechanism that excludes wastage is Pareto optimal. We

continued by showing that when inventory allocation is based on realized demands

(when assuming that these are common knowledge) all three allocation schemes we

are considering (i.e. proportional, linear, uniform) are Pareto efficient. On the other

hand, when the CP bases inventory allocation on final orders placed by the retailers

(asymmetric information about local demands), only the uniform and the introduced

modified uniform mechanism induce truth-telling and result in Pareto optimal out-

comes. Under both these cases, retailers truthfully reporting their realized demands

(i.e. place a final order equal to local demand) is a dominant strategy equilibrium.

The latter allocation mechanism has the additional attractive property of guarantee-

ing each retailer and for any demand realization a profit larger or equal to what he

would have earned in a decentralized system.

In this chapter, information sharing relates to reporting local realized demands

from the retailers to the CP when the latter allocates total inventory. In the follow-

ing chapters, we focus on demand forecast information sharing between retailers and

the CP when the CP sets also the total inventory level. In that case, the CP solicits

private demand information from the various markets to inform the inventory deci-

sion. When they report their forecasts, retailers consider the impact on the inventory

level decision.

53



54



Chapter 4

Forecast Information Sharing and

the Order Quantity Decision:

Impact of Inventory Competition

and Market Uncertainty

4.1 Introduction

When we consider the case of multiple retailers that form a pooling coalition and

delegate inventory management to a central planner (CP), reliability of demand fore-

cast sharing becomes crucial. The present chapter analyzes the forecast-sharing game

between multiple retailers and a central planner who sets common inventory under

information asymmetry. In particular, early demand signals are known by retailers

but the CP needs this information to make appropriate inventory decisions for the

coalition.

Reliable demand information sharing in a supply chain depends on parties’ incen-

tives as well as on behavioral factors such as trust and trustworthiness between supply

chain parties [42]. For example, in a typical supplier-retailer setting, where a supplier

solicits private forecast information from a retailer to set his capacity, standard game
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theory predicts that parties do not cooperate and the only equilibrium is uninfor-

mative. However, recent research reveals that in controlled laboratory experiments

parties cooperate even in the absence of reputation-building mechanisms and complex

contracts (e.g., [42]). The underlying reason for cooperation seems to be supplier’s

trust in retailer and the retailer’s associated trustworthiness.

In the case of multiple retailers trading the same product, an additional level of

complexity is added due to their strategic interactions. Retailers compete for common

inventory and this may affect their incentives when sharing demand information. In

such a case, the free-rider problem may arise. The alignment of system and individ-

ual incentives becomes important as well as the ability of the CP to induce or detect

truthfulness in forecast sharing. For example, observing multiple forecasts may in-

crease the CP’s ability to detect truthful information sharing1 but on the other hand

the increased competition among retailers may distort incentives or harm trust.

The same dynamics arise in the case of a single company that owns multiple stores

and decides to hold inventory centrally, under the assumption that each store is a

separate business unit that strives to maximize local profit. Each branch has private

information regarding local market factors that may or may not transmit truthfully

to the central decision maker who sets and controls the common inventory.

The research focus of this chapter is on whether reliable forecast information

sharing occurs when multiple retailers form an inventory pooling coalition managed

by a benevolent CP who (a) sets common inventory level before demand is realized

and (b) allocates inventory to the retailers after demand uncertainty is resolved in

proportion to their realized demands. As in the previous chapter, we consider the

case of a benevolent CP in the sense that she is interested in maximizing total system

profits (sum of retailer profits).

1In our work we do not model this situation, the CP cannot make inferences whether retailers
are lying or not.
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Furthermore, we want to study what the impact of the size of the pooling coalition

and the market uncertainty is on the level of trust and trustworthiness of supply

chain parties. We define trust as the CP’s willingness to rely on retailers’ forecasts

to determine total inventory. Trustworthiness, similarly to Ozer et al. (2011) [42], is

measured by the difference between a retailer’s real forecast and the one he reports

to the CP.

To be more specific, we are interested in answering the following questions: (a)

Do retailers transmit truthfully their demand forecasts to the CP in such a setting

where they strategically interact and compete for common inventory? (b) Does the

CP trust the retailers’ shared demand information? (c) Does retailers’ truthfulness

depend on their forecast accuracy? (d) Does the number of retailers forming the

coalition have an impact on their trustworthiness and the CP’s level of trust? To

answer these research questions, we first study players’ incentives and the result of

their strategic interaction using game theoretical models. After developing a series of

analytical results, we develop and execute a series of laboratory experiments to test

the theories implied by these results.

The rest of this chapter is organized as follows: first we analyze the forecast com-

munication game with one-time interaction to obtain the standard model prediction.

We proceed by doing an extensive numerical analysis to gain some insights on the

analytical results. Next, we present four hypotheses in forecast information sharing

and cooperation, established based on the analytical results of the game theoretic

model and on the existing literature about trust, trustworthiness and human behav-

ior biases. We test these hypotheses in a controlled laboratory environment. The last

section describes the experimental procedure, analysis and findings.
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4.2 The analytical model

4.2.1 Setting and timing of events

We consider, again, a setting where a group of n retailers each face uncertain demand

(newsvendor type problem) and have private information (receive a signal) about it

due to their proximity to the market. We denote by d̃i the demand that retailer i

faces, after he receives his signal θi, a random variable with mean µi + θi, cumulative

distribution function Li(·), probability density function li(·) and support [µi + θi +

�i, µi + θi + �i], and by Di the random variable representing total demand from the

point of view of retailer i after he receives θi.

Each retailer reports his signal (maybe untruthfully) to the CP (θ̂i). The CP

makes a single ordering decision (Q) for the whole coalition after she solicits demand

information from each retailer and before demand is realized. She allocates the total

inventory quantity to retailers after demand uncertainty is resolved, in proportion to

their realized demands. In contrast to the previous chapter, demand realizations at

the end of the period are common knowledge to all players. Let di be the realized

demand at location i and αi denote the allocation retailer i gets. Then, we define

proportional allocation as follows: αi(d) =
di�
n

i=1 di
Q.

The proportional allocation rule is widely used in practice and easy to enforce,

as it is perhaps the most intuitive scheme [8]. Furthermore, it has several attractive

properties. First, as we showed in chapter 3, when realized demands become common

knowledge before allocation, proportional rule is a Pareto optimal mechanism from

the system’s perspective. It is an efficient mechanism, in the sense that it excludes

wastage (there are no unsold units when total demand is equal to or higher than

Q and there is no locally unsatisfied demand when total demand is lower than Q).

Hence, it maximizes total system profit. Second, because total inventory is assigned

to retailers (even when inventory exceeds total demand), the profit function for the

retailer is not monotonically increasing in Q. Third, the proportional rule provides
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the same service level to all retailers, a property expected in a system with identical

retailers. Last, the proportional allocation rule is chosen for analytical tractability.

The timing of the events, described schematically in Figure 4-1, is as follows:

0. Before the period begins, the size of the pooling coalition and the allocation

rule are announced.

1. At the beginning of the period each retailer observes his (and only his) private

demand signal (θi).

2. Each retailer sends his forecast (reports a demand signal θ̂i) to the CP.

3. The CP sets the inventory level of the system (Q) and this quantity becomes

common knowledge to all players.

4. Local demands (di’s) are realized and revealed to all players, the allocation of

inventory to retailers is done according to the proportional rule and profits are

calculated.

Figure 4-1: The timing of events in the information sharing game with common
inventory

Compared to Figure 3-1, the timing of events is very similar. The main differ-

ences are: (a) retailers send their forecasts to the CP and not their soft orders and

(b) retailers do not place a final order to the central warehouse before allocation is

calculated. In terms of decision rights, in the case described in Figure 3-1, the CP just
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aggregates soft orders placed by the retailers to set the quantity (she has no decision

rights on the inventory level).

We first study the information sharing game when there is a single retailer and a

CP (n = 1) and, second, when multiple retailers form a coalition (n > 1). In the case

of multiple retailers, we present both the case where the coalition has an automated

ordering system in place and the case where there exists a CP with decision rights

on setting inventory. We also study the special cases of infinitely many retailers and

the case where demand uncertainty is resolved for each retailer before information

transmission.

4.2.2 The information sharing game for n = 1

We start our analysis with the simplest setting of one retailer to gain intuition on the

dynamics between a retailer and the CP when there is no competition for inventory.

In this case, there is only one retailer who sends his signal to the CP who in turn

decides the quantity to be held for the retailer. For given Q and known θi, the

retailer’s and the CP’s expected profits are given by:

πi(Q, θi) = E�i
[pmin[(µi + θi + �i),αi(Q)]− cαi(Q)] (4.1)

Π(Q, θi) = E�i
[pmin[(µi + θi + �i), Q]]− cQ (4.2)

The allocation of retailer i after demand is realized reduces to αi(Q) = Q and hence

πi(Q, θi) = Π(Q, θi). If the CP knew θi, she would maximize her expected profit by

setting inventory Q(θi) = µi + θi + G
−1
i
(p−c

p
). This is the quantity that maximizes

retailer’s expected profit, when he has received θi. Thus, in this interaction, the

retailer has no incentive to distort the report of his forecast, and the CP has no

reason not to consider the reported forecast as credible.

Observation 4.1: In the case of a single retailer, agents’ interests coincide and a

truthful information sharing equilibrium exists.
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This setting is different from the supplier-manufacturer (or retailer) case considered

in Ozer et al. (2011) [42] because the retailer’s profit function is not monotonically

increasing in the CP’s inventory choiceQ. Even if he incurs no direct cost by reporting

θi, in the case of just one retailer his forecast indirectly works as an enforceable order.

The CP allocates the retailer the total quantity she orders no matter if it is higher

than retailer’s demand. The retailer assumes all demand uncertainty risk while the

CP has no individual profit margin; she is benevolent instead, trying to maximize

retailer’s profit.

Please note that this equilibrium is not unique; other equilibria exist in such a

setting which vary based on the CP’s belief concerning how θ̂i and θi are related. For

example, for any δi, the retailer reporting θ̂i = θi + δi and the CP setting Q(θ̂i) =

µi + θ̂i − δi + G
−1
i
(p−c

p
) constitute a BNE. In such a case the retailer is partially

trustworthy and the CP is partially trusting. The resulting equilibrium though is

totally informative in the sense that the CP can infer from the forecast reported the

true value of θi.

4.2.3 The information sharing and allocation game for n > 1

In the case of multiple retailers, the issue of allocation becomes important. The

ultimate allocation that each retailer gets is a function of the realized demands and the

total inventory set by the CP: αi(d, Q) = di�
n

i=1 di
Q. We note that there is no dedicated

inventory to each retailer and no quantity commitment based on his forecast. A

retailer’s allocation is a (random)2 fraction of the inventory held centrally. Hence, a

retailer may influence the allocation he expects to get after the demands are realized

only through influencing the total quantity that is held centrally. In other words,

when retailer i reports a signal θ̂i, his allocation depends on θ̂i only through Q that

may depend on the signal sent by retailer i. For given Q and θi’s, retailer’s i and

2At the time of forecast information transmission allocation is a random fraction of the total
quantity because final demands have not been yet realized.

61



CP’s expected profits are:

πi(Q, θi) = E�,θj,j �=i
[pmin[(µi + θi + �i), ᾱi(d, Q)]− cᾱi(d, Q)] (4.3)

Π(Q,θ) = pE�[min[
n�

i=1

(µi + θi + �i), Q]]− cQ (4.4)

where ᾱi(d, Q) = d̃i

Di

Q and θ = [θ1, θ2, ..., θn].

Common knowledge We begin by studying the common knowledge case where all

players have the same information about local and total demand (i.e. θ is common

knowledge to all players). This case serves as a benchmark and a way to better

understand the incentives of the players who have private information in the general

setting.

When the CP knows the demand signals at each retail location, she faces a newsven-

dor problem with total demand equal to the convolution of all individual retailers’

demand distributions updated according to the realized demand signals. She maxi-

mizes Equation (4.4) by setting inventory as:

Q
CP

f
(θ) =

n�

i=1

(µi + θi) + (G1 ◦G2... ◦Gn)
−1

�
p− c

p

�
(4.5)

We then study how the quantity given by equation (4.5) compares to the quantity

that maximizes each retailer’s profit, when he has the same information about total

demand. We denote by Q
i

f
the optimal quantity to be held centrally from the point

of view of retailer i (the quantity that maximizes retailer’s i expected profit) when he

has the same information about total demand like the CP who sets Q (retailer knows

the realized demand signals in all retail locations).

Lemma 4.1: When demand signals are common knowledge, the CP will set Q
CP

f
=

Q
i

f
iff E[ d̃i�

n

i=1 d̃i
|
�

n

i=1 d̃i > Q
i

f
] = E[ d̃i�

n

i=1 d̃i
|
�

n

i=1 d̃i < Q
i

f
].

All proofs are in Appendix B.2.
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Lemma 4.1 shows that with the same information about total demand, individual

retailers’ and CP’s incentives may not coincide; the CP sets an inventory level that is

different than the optimal inventory from the point of view of a retailer i unless the

expected ratio of own demand to total demand at Qi

f
is the same in case of shortage

and in case of surplus.

Corollary 4.1: When E[ d̃i�
n

i=1 d̃i
|
�

n

i=1 d̃i > Q
i

f
] > E[ d̃i�

n

i=1 d̃i
|
�

n

i=1 d̃i < Q
i

f
] then

Q
i

f
> Q

CP

f
. When the reverse is true, Q

i

f
< Q

CP

f
.

Corollary 4.1 states that when the expected ration of own demand to total demand

in case of shortage is higher than the expected ratio in case of surplus, the optimal

total inventory from retailer’s i point of view is higher than the system optimal

inventory. If the expected ration of own demand to total demand is higher when

there is surplus compared to when there is shortage, retailer i prefers a lower total

inventory than the system optimal quantity.

Automated inventory ordering system

Under common knowledge, even if the desired quantity by retailer i may be different

than the quantity set by the CP, the retailer does not have the chance to influence

CP’s decision by misreporting demand information. But, under asymmetric informa-

tion, due to this discrepancy in incentives, retailers, anticipating how the CP will set

common inventory, may have an incentive to misreport to her their private informa-

tion. In the context of strategic communication and information sharing, in which

a better informed sender sends a possibly noisy signal to a receiver, who then takes

an action that determines the welfare of both, the amount of information that the

sender shares is related to the similarity of agents’ interests [16].

We begin with the case of an automated central inventory ordering system that

takes as input the forecasts reported by the retailers and automatically calculates

and orders the optimal inventory level for the whole coalition, based on the demand

information provided. The total quantity ordered is given by the equation Q
CP (θ̂) =
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�
n

i=1(µi+ θ̂i)+(G1◦G2...◦Gn)−1(p−c

p
) and satisfies the sufficient optimality condition

(p− c) Pr[D̂ > Q
CP ] = cPr[D̂ < Q

CP ], where D̂ denotes the total demand, updated

according to the reported signals. In this case, retailer i has an incentive to distort his

report of θi, if and only if Q
CP is different than Q

i that maximizes Equation (4.3).

As the next theorem formally states, when such an automated inventory ordering

system is in place, we expect QCP �= Q
i ∀i.

Theorem 4.1: Under an automated inventory ordering system, the optimal quantity

from the point of view of retailer i solves the equation

(p− c) Pr[Di > Q
i]E[ d̃i

Di

|d̃i > ᾱi(d, Q
i)] = cPr[Di < Q

i]E[ d̃i
Di

|d̃i < ᾱi(d, Q
i)]

and consequently Q
CP �= Q

i ∀i, unless
� �

d̃i>ᾱi

r̄iΓ(r̄i, d̃i)dr̄idd̃i = Pr[D̂ > Q
i]E[r̄i],

where r̄i =
d̃i

Di

and Γ is the joint distribution of r̄i and d̃i . Hence, retailer i may have

an incentive to distort his reported signal.

Theorem 4.1 shows that the optimal total quantity for retailer i will differ from

the one that the automated system sets, for two reasons. First, each retailer has

partial information about total demand (knows only his demand signal) while the

automated system uses reported signals about all local markets (which in turn may

be distorted). To be more specific, total demand for retailer i is characterized by

the random variable Di = [
�

n

i=1 µi + θi] + [
�

n

j=1,j �=i
θj +

�
n

i=1 �i] where the random

part is
�

n

j=1,j �=i
θj +

�
n

i=1 �i, while the automated system sets inventory based on

D̂ =
�

n

i=1(µi + θ̂i) +
�

n

i=1 �i, where the random part is
�

n

i=1 �i. Thus, for any

given Q, retailer i has different belief about the probability of inventory shortage (or

surplus) for the coalition than the one the automated system calculates (Pr[Di >

Q] �= Pr[D̂ > Q]). This is also the case when all the reported signals to the system

are true (when θ̂i = θi ∀i, D̂ =
�

n

i=1(µi + θ̂i) +
�

n

i=1 �i, a different random variable

than Di).

64



Second, the expected ratio of own demand to total demand may be different in

case of shortage and in case of surplus for a given Q (similar to the symmetric

information case). When E[ d̃i
Di

|d̃i > ᾱi(d, QCP )] �= E[ d̃i
Di

|di < ᾱi(d, QCP )], this is

another reason why Q
i �= Q

CP , incentivizing retailer i to misreport his demand

signal to the automated inventory system. The expected ratio of own demand to

total demand determines how much the expected allocation to retailer i will increase

when the central inventory is increased by one unit. For example, a retailer with

E[ d̃i
Di

|d̃i > ᾱi(d, QCP )] > E[ d̃i
Di

|d̃i < ᾱi(d, QCP )] expects to receive more out of one

unit of additional central inventory when he needs it (case of shortage) than when he

can’t sell it (case of surplus).

Next, we study whether a (pure strategy) Bayesian Nash equilibrium exists among

retailers when reporting their demand forecasts in this setting. The Bayesian Nash

equilibrium is both the natural generalization of the Nash equilibrium to games with

incomplete information and a natural extension of the concept of rational-expectations

equilibrium to situations where strategic interactions are important [16]. A Bayesian

equilibrium requires that each retailer maximizes his profit in expectation, assuming

other retailers follow the same Bayesian equilibrium. In this context, a player’s type

is defined by his demand signal θi (private information). Let θ̂i(θi) be the reporting

strategy of retailer i, a function mapping from [θi, θi] to [θi, θi], dictating a reported

signal for each possible type. Similarly, θ̂−i(θ−i) denotes the vector of signals re-

ported by all retailers but retailer i. The functions θ̂∗(θ) = {θ̂∗1(θ1), ..., θ̂∗n(θn)} form

a Bayesian equilibrium if for all i,

θ̂
∗
i
(θi) ∈ argmax

θ̂i

�

θ−i

E�[Pi(Q(θ̂i, θ̂
∗
−i
(θ−i)), (θi, θ−i)]f(θ−i|θi)ddθ−i

where f denotes the joint probability function of θ−i and Pi = pmin[di,αi(d, Q)] −

cαi(d, Q).
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Theorem 4.2: Under an automated inventory ordering system, a pure strategy

Bayesian Nash equilibrium does not exist among retailers when reporting their de-

mand forecasts.

Central Planner with inventory decision rights

In order to study the information sharing (and allocation) game with multiple re-

tailers and a human CP that makes the ordering decision, we employ the concept of

Perfect Bayesian equilibrium. In such an equilibrium, the central planner and the

retailers maximize their respective expected profits by responding optimally to each

other’s strategy, taking into account their actions’ implications on the beliefs about

the reported signals. Although each retailer’s forecast sharing necessarily precedes

CP’s action in time (setting of total inventory), because the CP observes only the

signal (and not the signal reporting rule), retailers’ choice of reporting their signal

and CP’s choice of total inventory are strategically “simultaneous”. The CP though,

after observing θ̂, updates her beliefs about θ and bases her choice of inventory on

the posterior distribution of b(·|θ̂) over [θi, θi]n.

We show that a situation where (a) retailers truthfully communicate to the central

planner their private demand signal θi and (b) the CP considers the reported forecasts

as credible, is not a perfect Bayesian equilibrium (PBE).

Theorem 4.3: Let φ(θ̂i|θi) denote retailer’s i reporting strategy given θi, Q(θ̂) denote

the total quantity to be held determined by the central planner given θ̂ and b(θ|θ̂) the

central planner’s posterior belief about θ after observing θ̂.Then,

- φ(θ̂i|θi) = θi

- Q(θ̂) =
�

n

i=1(µi + θ̂i) + (G1 ◦G2... ◦Gn)−1(p−c

p
) and

- b(θ|θ̂) = θ̂

do not constitute a perfect Bayesian equilibrium. In other words, a perfectly informa-

tive bayesian equilibrium of forecast sharing where retailers are fully trustworthy and

the CP is fully trusting does not exist.
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Theorem 4.3 shows that a completely informative, truthful information sharing

PBE among retailers and the central planner does not exist. Moreover, using a

similar argument, a perfectly informative equilibrium of forecast information sharing

where the CP can infer with certainty from the signal reported the true signal of a

retailer cannot exist either. On the other extreme, it is easy to show that a babbling

equilibrium exists. In a babbling equilibrium the sender’s strategy is independent of

his type and the receiver’s strategy is independent of signal [51]. In our setting, in

this uninformative equilibrium each retailer’s report θ̂i is independent of θi. The CP

has no update about θ and determines the optimal quantity based on her prior belief

about θ: i.e., the CP sets inventory levelQ =
�

n

i=1 µi+(F1◦...◦Fn◦G1◦...◦Gn)−1(p−c

p
).

Infinitely many retailers

The dynamics that arise in an extremely multitudinous pooling coalition can be ap-

proximated by considering the case of infinitely many retailers.

Lemma 4.2: When n → ∞, if sup{f �
�

(n−1)(t)|t ≥ 0} → 0 as n → ∞, where

f

�
(n−1)

is the pdf of D−i =
�

j �=i
dj, then E[ d̃i

Di

|d̃i < ᾱi(d, Q)] = E[ d̃i
Di

|d̃i > ᾱi(d, Q)] =

0.

As the number of retailers forming the coalition approaches infinity and under the

condition, loosely speaking, that the pdf of D−i flattens as n increases, the expected

ratio of own demand to total demand goes to zero for every retailer, both in case

of inventory surplus and in case of shortage. This result implies that a perfectly

informative equilibrium of truth telling is sustainable both when the ordering system

is automated and when a CP is in charge of setting the common inventory, as the

next theorem formally states.

Theorem 4.4: When n → ∞, a) in the automated inventory system case, φ(θ̂i|θi) =

θi ∀i form a Bayesian Nash Equilibrium and b) in the case of a CP with decision

rights, φ(θ̂i|θi) = θi, Q(θ̂) =
�

n

i=1(µi + θ̂i) + (G1 ◦G2... ◦Gn)−1(p−c

p
) and b(θ|θ̂) = θ̂,

constitute a Perfect Bayesian Nash equilibrium.
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Demand uncertainty is resolved before information transmission

In this section, we consider the special case where demand uncertainty is resolved

when retailers receive their private demand signal. In other words, retailers’ forecasts

are perfectly accurate and demand at each retailer location is Di = µi+ θi. This case

allows us to study trustworthiness and trusting behavior in demand forecast sharing

in a very simple setting with multiple retailers and privately known deterministic

demands. Recent research shows that when demand is deterministic and capacity is

binding, Nash equilibrium predictions substantially exaggerate retailers’ tendency to

strategically order more than they need in order to gain a more favorable allocation

[13].

In case of deterministic demand, the reasoning behind forming a coalition may not

be hedging against demand uncertainty but lower procurement prices due to volume

discounts. As before, each retailer, after he receives his demand signal θi (private

information), inputs to the automated inventory system or sends to the CP a forecast

θ̂i who in turn sets the common inventory Q. After Q is set, local demands are

revealed and the automated system or the CP allocate the common quantity according

to the proportional allocation rule. We note that when the common inventory is set,

demand uncertainty is resolved but the central system or the CP do not have this

information. Local demand information is private knowledge to each retailer who

may share it truthfully or not.

Theorem 4.5: When demand uncertainty is resolved before information transmis-

sion then a) in the automated inventory system case, φ(θ̂i|θi) = θi ∀i form a Bayesian

Nash Equilibrium and b) in the case of a CP with decision rights, φ(θ̂i|θi) = θi,

Q(θ̂) =
�

n

i=1(µi+ θ̂i) and b(θ|θ̂) = θ̂, constitute a Perfect Bayesian Nash equilibrium.

Theorem 4.5 suggests that retailers truthfully inputing to the automated inventory

system their accurate demand forecasts is a sustainable equilibrium among them.

Moreover, in the case of a human CP with decision rights, a truthful information

68



sharing PBE exists (retailers are fully trustworthy and the CP is fully trusting) when

retailers’ demand signals are perfectly accurate. We note that also in this case multi-

ple equilibria exist, under different belief structures; retailers may be partially trust-

worthy and the CP partially trusting. For example, for any δi, φ(θ̂i|θi) = θi + δi,

Q(θ̂) =
�

n

i=1(µi + θ̂i − δi) and b(θi|θ̂i) = θ̂i − δi constitute a BNE.

Automated system CP with decision rights

n = 1 - Truth-telling/ trusting is PBE

General Case Pure strategy BNE Truth-telling/ trusting is not PBE

(n > 1, market uncertainty) does not exist Babbling equilibrium exists

n → ∞ Truth-telling/ trusting is BNE Truth-telling/ trusting is PBE

No demand uncertainty

when info sharing Truth-telling/ trusting is BNE Truth-telling/ trusting is PBE

Table 4.1: Summary of analytical findings of Chapter 4

4.3 Numerical study

To complement our analytical findings, we present a numerical study of how the opti-

mal quantity from the point of view of retailer i differs from the optimal quantity for

the whole coalition, under common knowledge and asymmetric information. The mis-

alignment between each retailer’s and the system’s optimal quantities will determine

retailers’ incentives to misreport their forecasts (as long as an automated inventory

system is in place or the CP is – at least partially – trusting).

We consider the case of two retailers (i = 1, 2) and an automated inventory ordering

system. Retailers are symmetric in their cost parameters. Each unit received by the

retailer costs c = 1, and can be sold at unit price, p = 2. Demand at the two locations

is distributed independently (Cov(θi, θj) = 0, Cov(�i, �j) = 0 for i, j = 1, 2 and i �= j

and Cov(θi, �j) = 0, for i, j = 1, 2). We compute explicit solutions for the total order

quantity that retailer i would prefer. We first consider the case where retailer i knows
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the signal received by the other retailer and then the case where he knows only its

demand distribution.

4.3.1 Common knowledge

Suppose average demand at each location, before the market signal, is 10 units (µ1 =

µ2 = 10) and market uncertainty at the two locations is independent and distributed

normally, with mean 0 and variance 1 (�i ∼ N(0, 1)). The optimal inventory quantity

for retailer 1 (Q1
f
) and the difference with the system optimal inventory (QCP

f
) are

reported in Table 4.2 for different values of θ1 and θ2.

Q1
f Q1

f − QCP
f

θ2 θ2

θ1 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

-3 14.000 15.010 16.018 17.026 18.032 19.038 20.043 0.000 0.010 0.018 0.026 0.032 0.038 0.043

-2 14.992 16.000 17.008 18.014 19.020 20.025 21.030 -0.008 0.000 0.008 0.014 0.020 0.025 0.030

-1 15.986 16.993 18.000 19.006 20.011 21.016 22.020 -0.014 -0.007 0.000 0.006 0.011 0.016 0.020

0 16.982 17.989 18.995 20.000 21.005 22.009 23.013 -0.018 -0.011 -0.005 0.000 0.005 0.009 0.013

1 17.980 18.986 19.991 20.996 22.000 23.004 24.008 -0.020 -0.015 -0.009 -0.004 0.000 0.004 0.008

2 18.978 19.986 20.988 21.992 22.996 24.000 25.003 -0.022 -0.017 -0.012 -0.008 - 0.004 0.000 0.003

3 19.977 20.982 21.986 22.990 23.994 24.997 26.000 -0.023 -0.018 -0.014 -0.010 - 0.006 - 0.003 0.000

Table 4.2: Optimal inventory for retailer 1 as a function of θ1 and θ2 when cr=0.5

As these numbers suggest, when the signal received by retailer 1 is higher than the

signal received by retailer 2, retailer’s 1 optimal inventory quantity is always smaller

than the optimal inventory quantity of the coalition. From corollary 4.1, this implies

that for retailer 1 the expected ratio of own demand to total demand given surplus is

larger than the expected ratio given a shortage. The reverse is true when the signal

received by retailer 1 is smaller than that of retailer 2. As the difference between

the two signals increases, so does the difference between the optimal inventory from

the point of view of retailer and the optimal inventory for the coalition. In all cases

though, the difference is extremely small, ranging from 0 to 0.22% of the corresponding
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system optimal quantity. When the demand signals received by the two retailers are

identical, then Q
1
f
= Q

CP

f
, suggesting that the expected ratio of own demand to total

demand is the same in case of shortage and in case of surplus (Lemma 4.1).

We perform the same analysis, when p = 4 and c = 1, resulting in a critical ratio

of 0.75, and for p = 2 and c = 1.5, resulting in a critical ratio of 0.25. The difference

between the optimal quantity for retailer 1 and the system optimal one are summa-

rized in Table 4.3. We observe that the comparison gives the same directional results,

independent of the critical ratio considered. We therefore continue our numerical

analysis with the asymmetric information case, using cr=0.5 while the calculations

for the base case under asymmetric information and critical ratios 0.75 and 0.25 are

delegated into Appendix C.

Q1
f − QCP

f when cr=0.75 Q1
f − QCP

f when cr=0.25

θ2 θ2

θ1 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

-3 0.000 0.009 0.017 0.024 0.030 0.036 0.041 0.000 0.010 0.019 0.027 0.034 0.040 0.046

-2 -0.008 8.000 0.007 0.013 0.019 0.024 0.029 -0.009 0.000 0.008 0.015 0.021 0.027 0.032

-1 -0.013 -0.006 0.000 0.006 0.011 0.015 0.019 -0.015 -0.007 0.000 0.006 0.012 0.017 0.021

0 -0.017 -0.011 -0.005 0.000 0.005 0.009 0.013 -0.019 -0.012 -0.006 0.000 0.005 0.010 0.014

1 -0.019 -0.014 -0.009 -0.004 0.000 0.004 0.007 -0.022 -0.015 -0.010 -0.005 0.000 0.004 0.008

2 -0.021 -0.016 -0.011 -0.007 -0.003 0.000 0.003 -0.023 -0.018 -0.013 -0.008 - 0.004 0.000 0.003

3 -0.025 -0.020 -0.016 -0.013 -0.009 -0.006 0.000 -0.024 -0.019 -0.015 -0.011 - 0.007 - 0.003 0.000

Table 4.3: Q1
f
−Q

CP

f
, as a function of θ1 and θ2, for cr=0.75 and cr=0.25

4.3.2 Asymmetric information

We calculate the optimal quantity for retailer 1 (Q1), as a function of the market signal

he receives, when he does not observe the signal received by the other retailer, but he

knows only its distribution. In order to study retailer’s incentives in the information
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sharing game, we compute the expected quantity an automated inventory system

would set, assuming that θ̂i = θi, for i = 1, 2, and we compare it to Q
1.

We note that QCP (θ̂1, θ̂2) = K + θ̂1 + θ̂2, where K = µ1 + µ2 + (G1 ◦ G2)−1(p−c

p
).

Retailer 1, does not know the reporting rule of retailer 2 and therefore we cannot

calculate E
θ̂2
[QCP ] as a function only of θ̂1. But it is reasonable to assume that

retailer’s 1 belief about retailer’s 2 reporting rule does not depend on θ1 and therefore

E[θ̂2] = λ, where λ is a constant. Hence, E[QCP (θ̂1)] = K+λ+θ̂1. For our calculations

of Q1 − E[QCP ], we assume λ = 0 (or θ̂2 = θ2) and θ̂1 = θ1, but it is straightforward

to compute how the difference would change for different beliefs about λ or different

reporting rules of retailer 1.

In the base case, the average market size at both locations (before demand signals

are realized) is the same (µ1 = µ2 = 10), the demand signals are independent, nor-

mally distributed, with mean 0 and variance 1 (θi ∼ N(0, 1)) and market uncertainty

at each location follows as well the standard normal distribution (�i ∼ N(0, 1)).

For the base case, the optimal quantity for retailer 1 and the expected system

quantity had the two retailers reported the true signals are presented in Table 4.4. It

is interesting to note that in all instances Q
1
< E[QCP ] and the absolute difference

is increasing in the signal received by retailer 1. Retailer’s 1 perception about total

demand uncertainty is higher because he does not know the demand signal of retailer

2. The CP instead, in these numerical experiments, takes the received signals as given.

But since the critical fractile is 0.5, this difference in total demand uncertainty does

not influence the optimal total inventory level from the point of view of each player.

The fact that retailer 1 always prefers a smaller quantity is in line with the result that

“for linear holding/shortage costs the optimal probability of shortage under random

yield is no smaller than the probability of shortage under certain yield” [27].

We continue by studying the effect of private information variability, the effect of

market uncertainty and that of the magnitude of local demands. Figure 4-2a) shows
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θ1 Q
1 E[QCP ] Q

1 − E[QCP ]

-3 16.966 17 −0.034

-2 17.958 18 −0.043

-1 18.952 19 −0.048

0 19.949 20 −0.051

1 20.947 21 −0.053

2 21.946 22 −0.054

3 22.946 23 −0.054

Table 4.4: Comparison of the optimal inventory for retailer 1 and the expected in-
ventory in the system under truth-telling, as a function of θ1

(Q1−E[QCP ]) for the base case, for high signal variability (θ2 ∼ N(0, 3)) and for very

small market uncertainty (�i ∼ N(0, 0.5)) while Figure 4-2b) shows the results when

the average market size of retailer 1 doubles (µ1 = 20) and when instead the average

market size of retailer 2 doubles (µ2 = 20).

Figure 4-2: (Q1 − E[QCP ]) as a function of the signal received, for high signal vari-
ability, small market uncertainty and asymmetric market sizes

Results suggest that when market signal variability increases, the difference be-

tween retailer’s and system’s preferred inventory level increases in magnitude. On
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the contrary, market uncertainty does not have a strong effect on the difference of

preferred quantities. This is because both the retailer and the central system have

the same information about total market uncertainty, while the automated inventory

system treats the reported signals as true constants. In addition, results suggest that

the relative size of the retailer plays an important role in his incentives. In our ex-

ample, we observe that when µ1 = 20, retailer 1 always prefers for total inventory

a quantity smaller than the system optimal inventory (independent of θ1). On the

other hand, when his market is relatively small (µ2 = 20), he may have an incentive

to inflate his forecast when his market signal is low and under-report his signal when

it is high.

To summarize, numerical analysis suggests that the market size of a retailer com-

pared to the other member of the coalition plays an important role in his preferred

total inventory level compared to the system optimal one. A retailer that expects

lower demand than the other retailer has a higher expected allocation ratio in case

of shortage than in case of surplus and this drives up his preferred inventory level.

On the other hand, uncertainty in the allocated quantity, which increases with signal

variability, drives the locally optimal inventory level down compared to the system

optimal level.

4.4 Hypotheses

When there is only one retailer sharing information with a benevolent CP, game

theory provides a definitive prediction of the result of the information sharing game:

any equilibrium is totally informative. This result is the opposite to the case of one

supplier-one manufacturer, where the only theoretical equilibrium in demand forecast

sharing for capacity investment is uninformative [42]. In that case, players’ incentives

are opposed as the manufacturer always prefers a higher capacity. In the setting we

consider, a single retailer’s and CP’s incentives coincide (Observation 4.1). Thus,

truth-telling, in this “cheap talk” setting, is an equilibrium even if it may not be
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unique. The retailer truthfully communicates his demand forecast to the CP who, in

turn, updates accordingly her belief about demand when setting the inventory. Based

on this equilibrium, we formulate the following hypothesis:

Hypothesis 1 : In the information sharing game between a retailer and a CP, (a)

the retailer is fully trustworthy (θ̂ = θ) and (b) the CP is fully trusting (Q(θ̂) =

µ+ θ̂ +G
−1(p−c

p
) ).

In the case of two or more retailers, they compete for common inventory. Theorem

4.3 predicts that in the forecast communication and inventory allocation game, retail-

ers being fully trustworthy when reporting their demand forecasts and the CP fully

trusting them do not constitute a Bayesian Equilibrium. Retailers that want to max-

imize their pecuniary payoffs have an incentive to distort the information they send

and thus a rational CP will not consider their forecasts as credible. But in this strate-

gic information transmission setting, even though there are no exogenous signaling

costs when reporting a forecast, there are endogenous signaling costs resulting from

the fact that the total inventory quantity held centrally by the CP will be allocated

to the retailers after local demands are realized. Retailers are held responsible for

both system understocking and overstocking costs. If the central inventory quantity

is very high, individual expected overstocking costs increase while if the quantity is

very small, individual expected under-stocking cost increase. Motivated by these re-

sults and the work of Ozer et al. (2011) [42] that suggest that in reality a continuum

of trust exists when supply chain parties share forecast information (in contrary to

the all-or-nothing view adopted by the extant literature), we formulate the following

two hypotheses:

Hypothesis 2 : In the information sharing and allocation game, retailers’ reports θ̂i’s

are informative about their private forecasts θi’s. More specifically, θ̂i is positively

correlated with θi (retailers are are partially trustworthy).
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Hypothesis 3 : The CP relies on θ̂i’s to determine inventory that is held centrally.

More specifically, Q is positively correlated with
�

n

i=1 θ̂i (the CP is partially trusting).

The second factor in the supply chain environment that we study is the impact

of market uncertainty. When demand uncertainty is resolved before information

transmission, i.e. there is no market uncertainty after retailers receive their demand

signals, Theorem 4.5 predicts that the resulting equilibrium is totally informative.

Motivated by this prediction, we examine the following hypothesis.

Hypothesis 4 : When demand uncertainty is resolved before information sharing (i.e.

retailers’ private forecasts are perfectly accurate), (a) retailers are fully trustworthy

(θ̂i = θi) and (b) the CP is fully trusting (Q(θ̂) =
�

n

i=1[µi + θ̂i]).

To summarize, theory predicts reliable information transmission only in the case of

a single retailer and in the case of known demand by retailers when communication

takes place. On the other hand, when more than one retailers compete for common

inventory and demand is uncertain, truth-telling and trust do not form an equilib-

rium. We therefore hypothesize, that competition for common inventory and demand

uncertainty harm reliable information sharing. To be specific, compared to the other

two cases, we expect that the signal sent is less informative (lower correlation between

θ̂i and θi) and the CP relies less on the information received to set inventory (lower

correlation between
�

n

i=1 θ̂i and Q).

4.5 Experiments

4.5.1 Experimental design and procedures

We conducted a series of human-subject controlled laboratory experiments3 to inves-

tigate the aforementioned hypotheses. We conducted three treatments / experiments

3All experiments were conducted at the Social and Behavioral Sciences Laboratory, at the Uni-
versity of Minnesota.
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as summarized in Table 4.5. Each treatment is labeled as RiDj, where i = 1, 2 de-

notes the number of retailers and j ∈ {U,K} stands for “uncertain” and “known”

demand, respectively. In case R1DU , only one retailer interacts with a CP. In cases

R2DU and R2DK , the number of retailers increases to two and the issue of inven-

tory allocation becomes relevant. Under case R2DK , demand uncertainty is resolved

before demand information transmission. Under two treatments retailers compete

for common inventory (cases R2DU and R2DK) and under two treatments there is

demand uncertainty when information is transmitted (cases R1DU and R2DU).

All other supply chain parameters are kept constant across the different treatments.

We fix average demand, signal variability and market uncertainty (for the cases that

is relevant).4 For the demand parameters used in our experiments, we calculate

a retailer’s optimal inventory level, for various demand signal realizations, and we

compare it to the system optimal had the CP known the real signals (i.e., the expected

inventory level under the assumption that the other retailer reports his true signal

and the CP trusts the reported information). The results, analogous to Table 4.4

but for discrete uniform demand distributions, are presented in Appendix C. We note

that in all cases, the difference between the quantity that retailer 1 prefers and the

system optimal inventory level is less than 1%.

We use revenue and cost parameters that result in critical ratio of 0.5. In that case,

the optimal order quantity for the CP is equal to the mean of the demand. By doing

so, we avoid experimental results to be influenced by the “pull-to-center” effect when

setting the inventory quantity; the phenomenon of systematically ordering too little

when the cost of underage is high and ordering too much when the cost of overage is

high. This phenomenon may be explained by some well-known decision biases, e.g.,

anchoring and insufficient adjustment, observation bias, reference-dependent prefer-

ences and is well documented in the literature in single newsvendor [5, 7, 47] and

4For average demand and signal distribution we adopted the values used for the information
sharing experiments reported in Ozer et al (2011). Regarding market uncertainty, we use the average
of the aforementioned experiments.
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multilocation newsvendor models [28]. The number of participants in each treatment

was decided based on the supply chain group synthesis in each case (one vs. two

retailers), taking into account the probability that a specific group will play more

than once and the average number of rounds a given group is expected to play.

Treatment No of retailers (n) Demand Uncertainty No. of participants No. of rounds

Case R1DU n=1 Yes 10 30

Case R2DU n=2 Yes 15 30

Case R2DK n=2 No 12 30

Notes. In all treatments, µi = 250, θi ∼ U [−150, 150], �i ∼ U [−50, 50] (all discrete),

p = 2 and c = 1.

Table 4.5: Experimental Design

We used a between-subjects design; i.e., each treatment involves an independent

group of participants. We recruited students of the University of Minnesota for the

experiments, through the Carlson School of Management Subject Pool 5. Participants

in each treatment were randomly assigned the role of retailer or central planner; this

role assignment remained unchanged for all rounds. At the beginning of each round,

all participants were randomly and anonymously assigned to a supply chain group.

Players were informed that they would not be assigned to the same supply chain

group in consecutive rounds. The experimenter also stressed out that rounds are

independent, both in terms of group assignment and demand realizations, to avoid

reputation effects and demand chasing.

Each subject received a detailed sheet of experimental instructions and a short

summary sheet with the important info about supply chain parameters, the sequence

5Carlson School of Management (CSOM) Subject Pool was launched on September 26, 2008 and
consists of a database of individuals who have previously agreed to be part of the pool. CSOM
Subject Pool members are able to go online, view studies available for their participation, and sign
up to participate in any study they are interested in, provided they meet the filtering criteria set by
the researcher.
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of events and a reminder about how profits are calculated. The detailed instructions

to the CP and to the retailers for case R2DU can be found in Appendix D. Each

participant was informed about the task performed by the other role, including the

information available and profit objective. After the instructions were read, subjects

were allowed to ask questions and then directed to the computers’ room where the

experiment was implemented. The experiment was programmed and conducted with

the software z-Tree [20]. Participants were not allowed to talk to each other from the

time they entered the laboratory until the time they left. During the experiment,

participants interacted with each other only through computer terminals and did not

know the identity of the person with whom they were playing.

Each treatment consisted of 35 rounds. The first 5 rounds served as a trial period

and did not affect the final profit; they served as training for the participants to

better understand the dynamics of the game. Participants were not informed how

many rounds they would play after this trial period6 to avoid end-of-treatment effects.

Participants played the information sharing inventory game specified in section 4.2.1.

Briefly, each round consisted of 3 periods. In period 1, each retailer i observed his

private information (the exact value of µ + θi) and was asked to submit a report to

the CP. In period 2, the CP, after observing the report(s) sent by the retailer(s),

decided on the (total) order quantity to place. The software indicated to the CP the

quantity that maximized her expected profit, if the reports sent are considered to be

true. After the decisions were made, in period 3, demands were revealed and profits

were calculated. At the end of each round, participants observed realized demand(s)

(and total demand in case of two retailers), (total) order quantity, own inventory

allocation and own profits from the round. We provide sample snapshots of the CP

and retailer screens in Appendix E.

In the experiment, the demand values generated (θi and �i) varied between the two

retailers in the same supply chain group (for case R2DU and case R2DK) and across

6Participants were told they are going to make decisions for up to 40 independent rounds (5 trial
and up to 35 game rounds).

79



rounds. However, they remained the same across treatments whenever that was ap-

plicable (e.g. θ1 in round 1 was the same across all cases, for all groups, while �1 in

round 1 was the same between case R1DU and case R2DU , for all groups). This design

feature is particularly useful because it allows to compare decisions across treatments

while controlling for individual specific effects and to compare profits across treat-

ments (in some cases), while controlling for the impact of demand realizations on

actual profits.

At the beginning of each treatment, participants were asked for basic demographic

information, including major, class year, specific courses and level of experience in

supply chain management. At the end of each treatment, and after all rounds were

played, participants were required to complete a post-game survey. The survey con-

tained questions asking to comment on the choices they made during the study (report

of private information or order quantity placement), on how their strategy changed

throughout the session and on their degree of trust towards the other players in their

supply chain. The level of trust they placed in the other supply chain group members

was measured, for each role, on a Likert-type scale from 1 to 5, where 1 denotes

“No trust at all” and 5 represents “Absolute trust”. Finally, every participant re-

ceived payment proportional to the total experimental dollars he or she earned, with

a minimum participation fee of $10 and maximum potential earnings of $20.7

7Experimental earnings that a player would earn under full information, common knowledge
and optimal decisions (i.e., had all supply chain members known the actual demand and ordered
inventory quantity equal to demand) were calculated. Given the demand stream each player faced,
a corresponding rate from experimental to USD dollars was calculated so that the maximum profit
a player could make was $10. Experimental profits of each player were then divided by his/her
corresponding rate to calculate his/her earnings in USD. These dollar earnings were rounded up to
the highest integer and added to the player’s $10 participation fee.
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4.5.2 Experimental results

A continuum of trust exists both when pecuniary incentives are aligned

and misaligned

Table 4.6 and Table 4.7 present, for all treatments, the summary statistics for retailers’

reported information and CP’s inventory decisions, respectively. First, we observe

that the average forecast distortion is relatively higher in case R2DU , compared to the

other treatments, as expected from the model predictions. More interestingly though,

in cases R2DU and R2DK where there is competition for common inventory, in the

majority of cases we observe forecast inflation (in 61.0% and 72.3% of observations

for case R2DU and R2DK respectively).8 Despite the fact that under R2DK retailers

inflate their reports more often, the average magnitude of inflation is lower by almost

10 units (4.6 versus 14.4). In the single retailer case (case R1DU ) we observe both

forecast inflation and deflation, with the latter more pronounced (participants deflated

twice as often as they inflated their forecasts while the average forecast distortion is

negative, -1.51). In addition, a single retailer truthfully reported his/her received

signal in almost half of the instances. Interestingly, in all cases, the magnitude or

the direction of forecast distortion does not seem to depend on the magnitude of the

signal received. In other words, we observe no pattern of θ̂i − θi as a function of θi,

for i = 1, 2.

We also observe that the CP, in all treatments, places an Order Quantity that is

lower, on average, than the one suggested by the system as optimal, if the reported de-

mand information was accurate. Similarly, the deviation from the suggested optimal

quantity is more pronounced in case R2DU , as expected. When there is competition

for inventory, the CP, in the majority of cases, sets a quantity lower than the sug-

gested as optimal. Under case R2DU though, even if the CP orders a quantity lower

than the suggested one, it is on average about 15 units above what would be optimal

under common knowledge. This suggests that in this case the CP “discounts” the

8the percentages when taking the average per round are even higher; in 93.3% and 86.6% of
rounds, respectively, we observe forecast inflation
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Averages per round Individual observations

Treatment No of obs Avg [med] (s.d.) Inflate Deflate Truth Slope θ̂ on θ No of obs Inflate Deflate Truth

Case R1DU 30 2.3 [2.8] (1.7) 33.3% 63.3% 3.3% 0.997 150 16.7 % 36.0% 47.3%

Case R2DU 60 15.0 [12.2] (11.6) 93.3% 6.7% - 0.983 300 61.0% 23.0 % 16.0 %

Case R2DK 60 5.8 [4.0] (4.5) 86.7% 13.3% - 0.989 240 72.3% 21.7% 7.1%

Notes. ”Obs”, ”Avg”, ”med” and ”s.d.” stand for observations, average, median and standard deviation of |θ̂ − θ|, respectively.

Regression: θ̂ = aθ + b; all slopes are significant at 0.1% level.

Table 4.6: Summary Statistics on Reported |θ̂ − θ|

received signals, but not sufficiently. In other words, the CP shows more trust to

the received information than she should, assuming that she correctly calculates the

overage / underage cost trade-off. It is also interesting to note that under R2DK

the percentage of time the CP trusts the reported information is the lowest among

all cases. On average though, she discounts the reported signal less than in the case

R2DU . This behavior is consistent with the observation that when the number of

retailers is two and demand is constant (case R2DK), retailers inflate as often (per

round) or even more often (individual observations), but not as much compared to

when demand is uncertain (case R2DU).

Treatment No of obs |Q−Q(θ̂)| Q−Q(θ̂) Q > Q(θ̂) Q = Q(θ̂) Q < Q(θ̂) Q−Q
CP

f
Q > Q

CP

f
Q = Q

CP

f
Q < Q

CP

f
Q on Q(θ̂)

Avg [med] (s.d.) Avg Avg

Case R1DU 150 14.84 [11] (14.57) -0.11 41.3% 16.7% 42.0% -1.61 40.7% 5.3% 54.0% 0.926

Case R2DU 150 24.93 [13] (31.55) -17.74 22.0% 25.3% 52.7% 14.47 60.0% 2.0% 38.0% 0.938

Case R2DK 120 8.87 [6.5] (9.87) -8.43 22.0% 6.7% 71.7% 0.79 45.0% 8.3% 46.7% 0.968

Notes. ”Obs”, ”Avg”, ”med” and ”s.d.” stand for observations, average, median and standard deviation, respectively. Q(θ̂) is the Q suggested as the

optimal order quantity if the CP trusted the reported demand information. QCP

f
is the optimal Q had the CP known the realized θi’s (common knowledge)

Regression: Q = aQ(θ̂) + b; all slopes are significant at 0.1% level.

Table 4.7: Summary Statistics on Total Order Quantity Q

Figures 4-3 and 4-4 present graphically the experimental data. In Figure 4-3, the

reported demand signals (forecasts) are plotted against the real signals, for each of
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the three treatments. If retailers had been always reporting the truth, all observations

would fall on the 45◦ line drawn in the plots. It is visually evident that in cases R2DU

and R2DK retailers more often inflate their reports than they deflate them (more

observations are above the diagonal line). Further, we observe that in case R2DU the

variability and the magnitude of information distortion are higher than in the other

two cases (consistent with the descriptive statistics).

Figure 4-3: Retailers’ reported versus actual demand signal

Figure 4-4 plots the inventory quantity set by the CP versus the forecasts she re-

ceived (mean demand plus reported signals). As aforementioned, optimal inventory

quantity, if the reported demand information was accurate, equals the sum of the

reported forecasts. If the CP had trusted the received information, her optimal in-

ventory choices would fall on the the 45◦ line in these graphs. We observe, instead,

deviations under all treatments, less pronounced though under case R2DK . The hor-

izontal line represents the optimal inventory if the CP ignores the received demand

information. These graphs suggest that although the CP usually does not fully trust

the reports, she takes the information sent by the retailers into consideration when

setting the common inventory. We continue by formally testing the Hypotheses laid

out in the previous section.

To test Hypothesis 1(a), we first observe that in 71 out of 150 instances retailers

reported the true signal but the average reported signal is the same as the true signal

only in 1 of the 30 rounds played (3.3%). Because players both inflate and deflate the

received signal, we cannot reject the hypothesis that the average θ̂ is different than
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Figure 4-4: CP’s inventory choice versus reported forecasts (Q(θ̂))

θ (two-sided Wilcoxon signed rank test, p > 0.01). In case R2DK , only in 17 out

of 240 instances retailers reported the true signal (7.1%) and the average reported

signal was never the same as the true signal. The two-sided Wilcoxon signed rank

test shows that the average θ̂i is significantly different from θi (p < 0.01) and we

can reject Hypothesis 4 (a). To test Hypothesis 2 we regress θ̂i per round on θi for

case R2DU . The slope is significantly positive (p < 0.01) suggesting a strong positive

correlation between θ̂i and θi. Therefore, we find evidence supporting Hypothesis

2. We also regress θ̂i per round on θi for the other two cases and the resulting

slopes are both significantly positive as well (p < 0.01) and higher than that of case

R2DU (Table 4.6). Experimental data refute the extreme theoretical cases of fully

trustworthy (θ̂i = θi) and fully not trustworthy (θ̂i and θi are uncorrelated) retailers

based on the supply chain environment. Retailers, in all cases, tend to cooperate and

be partially trustworthy; in none of the cases they credibly share their forecasts but

in all cases their reported signals are informative (strong positive correlation with the

true signals). On the other hand, data suggest a directional shift of demand forecast

reporting consistent with theory, which is further explored in the following section.

A similar analysis shows that when we regress Q on Q(θ̂), the resulting slopes are

significantly positive (p < 0.01) for all treatments (Table 4.7). Therefore, Q and
�

i
θ̂i are positively correlated9. Further, the two-sided Wilcoxon signed rank tests

show that Q is not significantly different from Q(θ̂) in case R1DU (p > 0.05) but the

difference is statistically significant in the other 2 cases (p < 0.01). Hence, we find

9in all experiments the critical ratio is 0.5 and thus Q(θ̂) =
�

i µi + θ̂i
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evidence supporting Hypotheses 1(b) and 3 but Hypothesis 4(b) is rejected. How-

ever, even under case R1DU , the CP fully trusted the reported forecasts in less than

17% of the cases. Combining our findings, we have evidence that under all treat-

ments participants tend to trust and cooperate. However, this does not imply neither

that participants fully trust each other nor that the level of trust and cooperation is

invariant under all treatments. The latter is the topic of the subsequent analysis.

Impact of inventory competition and forecast uncertainty on trust and

cooperation

We investigate the impact of inventory competition and forecast uncertainty on the

efficacy of forecast sharing. We use the following linear models to test the treatment

effects regarding retailers’ reports and CP’s order quantity decisions:

θ̂it − θit = β
R

0 + β
R

c
· C + β

R

u
· U + β

R

T
· t+ �it (4.6)

Qjt −Q(θ̂)jt = β
CP

0 + β
CP

c
· C + β

CP

u
· U + β

CP

T
· t+ ωj + ejt (4.7)

Ekt = β
E

0 + β
E

c
· C + β

E

u
· U + β

E

T
· t+ β

E

D
·Dkt + vkt (4.8)

The subscript i in Equation (4.6) denotes retailer i, where i = 1, 2 , and θ̂it is

the average report of all retailers i in round t (these retailers received the same

signal). With this model, we average out individual-specific effects. The subscript j

in Equation (4.7) is the index for a participant that was assigned the role of the CP

(j = 1, 2, .., l, where l equals to the number of groups in each treatment). Even if the

same “type” retailers in each group received the same demand signal in a given round,

each CP received different reported forecast(s). In model 2, to control for individual

heterogeneity and possible correlation in the decisions made by the same individual,

CP, we introduce an individual specific error term, ωj (see, e.g., [42]). The resulting

equation is a random effects general linear model (GLM) [25].
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We compare also the resulting profits with the profits of a supply chain under

common knowledge, i.e., when all parties have the same demand information. In

this case, we define system efficiency (E) to be equal to Π(Q(θ̂))/Π(Q(θ)) (realized

system profits to system profits had the CP known the retailers’ demand signals

and set inventory optimally). Model 3 (4.8), investigates average channel efficiency

per round as a function of competition and demand uncertainty when information is

transmitted. We control for demand realizations under each treatment and for group

specific effects, by taking the average channel efficiency of all groups per round in a

given treatment (recall that all groups in the same treatment see the same demand

in a given round). Table 4.8 summarizes the definitions of the variables and the error

terms. We include also t in all three models, to account for possible learning effects

and time trends in the experiments.

Table 4.9 summarizes the regression results. The coefficients for C and U describe

the changes in the dependent variables due to competition for common inventory and

due to market uncertainty when the forecast information is transmitted, respectively.

We observe that in the first model both coefficients are positive and statistically

significant (p < 0.01), suggesting that both competition for common inventory and

market uncertainty lead to higher forecast distortion and more specifically to fore-

cast inflation. We also note that the effect of competition for common inventory is

much more pronounced than that of market uncertainty (the coefficient of C is more

than 50% higher than that of U). We observe that the impact of these factors is

negative but not statistically significant in the second model. Because the difference

Qjt −Q(θ̂)jt is in the majority of cases negative (the CP sets inventory less than the

suggested as optimal had she believed the signals sent are true), negative coefficient

of the treatment effects imply that the CP discounts more the reported information

when there is competition for common inventory and when demand uncertainty is

present. Even though a negative directional result suggests that the CP trusts less

the reported information for determining system inventory when there is competition

for common inventory and market uncertainty, we find no statistical support for this.
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Variable Definition

Dependent Variables

θ̂it − θit Difference between the average reported signal and the signal observed by

retailer type i in round t (i = 1, 2)

Qjt −Q(θ̂)jt Difference between the (Total) Order Quantity placed by CP j in round t and

the quantity suggested as optimal, if the CP believed the reported signals.

Ekt System efficiency under Case k in round t, k ∈ {R1DU , R2DU , R2DK}

Treatment dummies

C Indicator variable for competition for common inventory;

C=1 if the data are from Case R2DU or Case R2DK and 0 otherwise

U Indicator variable for demand uncertainty when information is transmitted;

U=1 if the data are from Case R1DU or Case R2DU and 0 otherwise

Other Independent variables

t Round, t=1,2...30

Dkt Total Demand in round t under Case k, k ∈ {R1DU , R2DU , R2DK}

Error terms

�it Independent error across retailer “types” and periods

ωj Individual specific error for CPs

ejt Independent error across (Total) Order Quantity decisions

vkt Independent error across cases (treatments) and periods

Table 4.8: Variable Definition in Equations (4.6)—(4.8)
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We note from the responses of the subjects to the post-experiment survey that the

average CP’s level of trust to the reported information was similar in all cases (4, 3.6

and 3.8 for cases R1DU , R2DU and R2DK respectively, on a scale from 1 to 5).

Estimate (Standard error)

Variable θ̂it − θit Qjt −Q(θ̂)jt Efficiency (%)

Intercept −8.226** (2.547) 14.470 (13.197) 0.908 ** (0.026)

C 15.920** (1.920) −17.633 (10.25 ) −0.089 ** (0.020)

U 9.801** (1.567) −9.307 (10.872) −0.035 * (0.014)

t −0.199* (0.081) −0.340** ( 0.119) 0.002 * (0.001)

D - - 0.0003** (0.00006)

*p < 0.05 and **p < 0.01.

Table 4.9: Impact of competition and market uncertainty on truth-telling, trusting
and efficiency

Next, we examine the impact of treatment effects on cooperation and system effi-

ciency. We find statistically significant evidence that system efficiency decreases with

competition (almost by 1%) and market uncertainty (less than 0.5%) on average.

This is expected as both these two factors lead to an average increase in forecast

distortion, while the CP fails to account adequately for it, but keeps his level of trust

almost unchanged (according to post-experiment survey answers). System profits

decrease because the decision to set the common inventory is based on less accurate

information. It is worth mentioning though, that average efficiency in all cases is very

high (above 93.5%). Last, we note the significant coefficients for t in all regressions

indicate that retailers tend to inflate less their forecasts over time, the CP discounts

more the received signals and sets a quantity closer to the system optimal and system

efficiency increases over time.
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What is the value of information transmission and does the benefit of risk

pooling exist under information asymmetry?

In this section we first investigate what is the value of communication among the

supply chain parties, even if information transmitted is not fully reliable. For this

reason, we compare system profits under each case to profits had the CP ignored the

signal(s) sent by the retailer(s). We compute the system profits had the CP set the

inventory optimally based only on her knowledge about the mean demand in each

region and the distribution of signals and market uncertainty, if any. The realized av-

erage experimental profits under each treatment were 15.6%, 27.0% and 23.1% higher

than the computed profits with no information transmission, for case R1DU , R2DU

and R2DK , respectively. We have evidence that there is significant value in supply

chain communication, even when parties do not fully cooperate. This observation is

consistent with the finding that the demand signal transmitted is partially informa-

tive and the CP that sets inventory partially incorporates it in her decision to set

common inventory.

We also examine if the risk pooling benefits of centralization survive information

asymmetry when information transmission is not fully reliable. For this reason, we

compare the average profits of retailer 1 under case R1DU (n = 1) and under case

R2DU (n = 2). Under both these cases, by design, retailer 1 sees the same demand

streams while market uncertainty after information transmission suggests that there

may be benefits from demand risk pooling when n = 2 and common inventory is held

centrally. We observe, instead, that the average, over all rounds, experimental profits

of retailer 1 are lower under case R2DU than that under case R1DU ($6,353 versus

$6,362). Additionally, we compare the average profits per round of retailer 1 under

case R1DU and case R2DU and we cannot reject that they are not different (two-

sided Wilcoxon rank test). This is consistent with the finding that system efficiency

decreases when there is competition for common inventory. Even if inventory pooling

increases expected profits under common knowledge (e.g., from $6,539 to $6,684 for

retailer 1) the actual benefits under information asymmetry may be inexistent or even
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negative due to a decrease in cooperation and quality of information the inventory

decision is based on.

In short, our experimental results suggest that there is value in information trans-

mission, in all cases studied, even when theory predicts completely uninformative

communication between the parties (case R2DU). Other things being equal (i.e.,

number of retailers, market uncertainty) it is always beneficial to allow communica-

tion between the more informed retailer(s) and the CP who sets inventory. On the

other hand, we observe that the increase in information distortion, when we move

from a single retailer to two retailers setting, out-weights the benefit of demand un-

certainty pooling. Our results suggest that when it comes to deciding on inventory

pooling in practice, supply chain parties should be aware that pooling may not always

be a beneficial strategy under information asymmetry among players.

4.6 Concluding remarks

In this chapter, we study whether demand forecast sharing between retailers, who

are better informed about local demand, and the central planner, who sets common

system inventory, is reliable both in theory and in practice. We want to further

investigate the influence of supply chain environmental factors on trust and perfor-

mance. These factors include the number of retailers, market uncertainty, and level

of automation.

We find that in the communication game between a single retailer and a benevolent

CP, truthful information sharing and full trust is an equilibrium. However, when

we consider multiple retailers, players’ incentives do not coincide and therefore a

truthful information sharing equilibrium is not sustainable, unless market uncertainty

is resolved before information transmission (i.e., demand uncertainty is zero after local

market signal is received by the retailer). The difference between individually and

system-wide optimal inventory quantity is attributed to two factors: a) a retailer

has partial information about total demand and therefore different belief about its
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distribution and b) the expected ratio of a retailer’s own demand to total demand

in case of shortage and in case of surplus may not be equal. Furthermore, we find

that as the size of the coalition approaches infinity, truth-telling becomes sustainable

again. Most importantly though, the results of our extensive numerical analysis show

that the difference between the optimal inventory quantity from the point of view

of a retailer and that of the system is extremely small. This implies that players’

incentives are not far apart and information distortion could be in practice minimal.

Our experimental results suggest that a continuum of trust exists both when pecu-

niary incentives are aligned and misaligned. Experimental data refutes the extreme

theoretical cases of fully trustworthy or fully not trustworthy retailers, but it sug-

gests a directional shift of information reliability consistent with theory. To be more

specific, both competition for common inventory and forecast uncertainty harm truth-

telling, trust and cooperation (measured by the resulting system efficiency). Despite

the fact that information is not fully reliable, in all our cases, the value of communi-

cation was significant. On the other hand, we observed that actual inventory pooling

benefits may be inexistent or even negative due to a decrease in cooperation and

quality of information the inventory decision is based on.
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Chapter 5

Forecast Information Sharing and

the Order Quantity Decision:

Impact of Inventory Ownership

5.1 Introduction

In the previous chapter, we show that when retailers compete for common inventory

they will have, in general, an incentive to misreport private information about their

local demands to the decision maker who sets total inventory, as long as demand

forecasts are not perfectly accurate (part of demand uncertainty remains unresolved

when the communication takes place). In this chapter, adopting a similar information

structure setting, we study the role of inventory ownership on individual players’

incentives. We compare the resulting inventory levels in the system under local and

central decision making, when each unit of inventory in the system, even if held

centrally, belongs to a specific retailer. We also study, if in such a setting of allocation

“guarantees”, through dedicated inventories, credible information sharing between

players forms an equilibrium.

To do so, we model a profit-maximizing firm that sells its product in two horizontal

markets (e.g., geographical regions) that are subject to demand uncertainty. The firm
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has to decide on its inventory structure that determines who makes the inventory

quantity decisions for each market. In all cases, inventory for both regions is held

centrally. But for each region, a separate dedicated inventory quantity is held. In

other words, each unit of inventory in the system belongs to a specific market, even

before demand is known. After local demands are realized and before inventory is

sent to each market, we allow for change of inventory ownership between regions. In

such a setting, a minimum quantity of inventory allocation is guaranteed for each

market in case of shortage, and a maximum quantity is guaranteed in case of surplus.

Compared to the proportional rule studied in chapter 4, this allocation rule reduces

uncertainty for locations in regards to their final allocation. With the proportional to

realized demands allocation there is neither maximum nor minimum (other than zero)

quantity that a location can be allocated. This will depend not only on final demand

realizations but also on the total inventory set by the CP based on her beliefs about

demand (that in turn may depend on overoptimistic or very pessimistic forecasts from

other locations).

As in the previous chapter, our model differentiates between demand information

that is available to all (e.g., past sales data) and local knowledge that is available

only to the regional managers (e.g., “feel” about the market, knowledge about trends

in colors, styles, sizes, etc.). Local knowledge can be communicated efficiently to the

central decision maker (without cost) but maybe untruthfully if the regional managers

have an incentive to do so. We assume that each region is a separate business unit

(local profit maximizer).

We focus on the impact of who holds the right to manage inventory (to determine

the inventories to be held centrally) on supply chain players’ incentives and strategic

interaction. We employ a game theoretical model of information sharing to explore (a)

how the placement of inventory decision rights (central versus regional) influences the

total inventory level, and (b) whether a transfer pricing mechanism can be designed
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that incentivizes regional managers to truthfully share their local knowledge about

demand in their regions.

5.2 The setting

We consider two distinct locations (geographical regions), indexed i, j = 1, 2, that face

stochastic demands and hold stocks at a central location (newsvendor type problem).

Each regional manager gains more knowledge about his local demand as time unfolds,

which is captured through a demand signal. The demand at each region is given by

di = µi + θi + �i (as described in section 3.2).

We consider two inventory arrangements: locally managed inventory (LMI) where

inventory decision making is done locally and central planer managed inventory (CPMI),

where the right to decide the level of inventory is transferred to the central planer.

Under both arrangements, inventory is held at a central location until regional de-

mands are realized; we separate the ownership (with decision rights) and the location

of inventories in the system. We use the notion of claims (see Anupindi et al, 2001) [2]

that establish ownership for each unit of inventory in the system, regardless of its lo-

cation. The claims give the units’ owner ex ante decision rights regarding its level

and ex post decision rights regarding its usage.

Under LMI, each regional manager (RM) determines and owns the quantity to be

held centrally for him (dedicated inventory). In other words, the regional manager

has a claim to the units of inventory held for him in the central warehouse. After

demands are realized, a region’s local demand that exceeds its available stock at the

central location is satisfied using excess stocks, if any, belonging to the other region.

Under CPMI inventory arrangement, the central planner (CP) solicits local demand

information from the regional managers (RMs) and sets the inventory quantity that

maximizes total system profit. We consider the case where the CP holds for each

region a dedicated inventory quantity. The sum of these quantities maximizes total

expected profit for the system, given the belief of the CP about regional demands.
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Regional managers know the way their inventory is calculated as a function of the

CP’s beliefs. To be more specific, to study the information sharing game between

RMs and the CP under CPMI, we assume a certain partition of the expected profit

maximizing total inventory quantity into dedicated regional inventories. This allows

us to study how the behavior of RMs changes with inventory “guarantees”. Inventory

is shipped to each region after local demands are realized. We allow for “change of

ownership” of regional stocks. In other words, each retailer is guaranteed its dedicated

inventory quantity if needed, but change of inventory ownership is allowed, after

demand uncertainty is resolved, to balance supply and demand in different regions

(exactly as in RM case).

We note that the inventory arrangement and the inventory claims regime are

all agreed ex ante, before RMs receive their private information. It is a “contract”

signed under symmetric information. However, the decision on total inventory is

taken under asymmetric information. This is the interim stage of the game. Under

LMI, when RMs determine their inventories they have incomplete information. Each

RM has received his demand signal but he does not know the precise characteristics

(demand signal received) of the other player. Market uncertainty is still unresolved

for both players (�i’s are random). Similarly, under CPMI, the CP has incomplete

information when setting inventories, as she does not observe local demand signals.

The allocation of inventory (final shipments to regional markets) is done ex post,

under perfect information; market uncertainty is realized and local demands become

common knowledge to all players. Figure 5-1 presents the events and their timing

under the two inventory decision arrangements.

For comparison purposes, we use the two extreme cases (benchmarks): pure decen-

tralized inventory structure where regional managers do not cooperate in managing

their inventories and central decision making with complete information (demand sig-

nals are common knowledge to all players). In all cases, the CP is benevolent in the

sense of total system profit maximizer.
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Figure 5-1: The timing of events in the information sharing game with common
inventory

We compare the resulting inventory levels and the profit levels of the regions and

system as a whole under each inventory arrangement, taking into account players’

strategic interaction.

5.3 Locally Managed Inventory (LMI)

A setting lying in between decentralized inventory structure and complete inventory

pooling is the one where inventory decisions are made separately by retailers but the

allocation of excess stocks is postponed to after the local demands are realized.

Under LMI, RMs, after receiving their demand signal (θi), place an initial order to

the CP qi (we denote q
a

i
as qi to simplify the notation here, given that regions place

no second order in the central warehouse after demands are realized). The inventory

quantity that is held in the central warehouse (Q) is the sum of the individual orders

(sourced from an un-capacitated external supplier), as in chapter 3. After demands
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are realized (di’s), the CP sends inventory to the regions (αi) based on the realized

local demands. If for one region the inventory held is lower than its realized demand,

excess inventory held for the other region, if any, can be sent to satisfy its extra

demand. This is the case of decentralized inventory decision making with more ac-

curate information about local demands and shipping (allocation) postponement to

after demands are realized. Compared to the pure decentralized inventory structure,

the optimal inventory orders from each region, taken unilaterally, are affected by the

possibility of claims transfer after regional demands become known.

Define x
+ = max{x, 0}. Then, the transfer of inventory claims from region i to

region j, τij, is given by the lower of two magnitudes, the excess need (dj − qj)+ at

region j, and the excess stock (qi − di)+ under the ownership of location i.

τij = min[(dj − qj)
+
, (qi − di)

+] (5.1)

Then, allocation that each location gets after demand realizations are observed is

given by:

αi = qi + τji − τij (5.2)

Given the allocation, sales at region i are,

si = min(αi, di) = min(qi, di) + τji (5.3)

while the unsold stock owned by location i is

oi = (αi − di)
+ = (qi − di − τij)

+ (5.4)

and the unmet demand is

ui = (di − αi)
+ = (di − qi − τji)

+ (5.5)
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Please note that transfer of inventory claims happens at a unit cost c. Both lo-

cations get every unit of inventory at a wholesale price c, analogous to the settings

analyzed in previous chapters. We therefore assume, for the time being, that the

profit generated by each unit sale is earned by the region where the sale takes place

(in section 5.6 we relax this assumption).

Consider a location i that receives a signal θi. Following the same notation as in the

previous chapter, we denote by d̃i the demand at location i after θi has been realized;

a random variable with mean µi + θi. Let qi : [θi, θi] → [0, q] be the inventory choice

function and qi(θi) the inventory choice of location i under the realization θi. We

assume an upper bound q = µi+ θi+ �i+µj + θj + �j since an inventory choice above

the upper bound of the total demand at both locations increases cost at location i

without changing expected revenue from sales. Furthermore, inventory choices are

non-negative.

The expected profit at location i, under realization θj, is:

π
LMI

i
(qi, qj, θi, θj) = E�i,�j

[pmin(d̃i,αi)− cαi]

= E�i,�j
[psi − c(τji − τij)]− cqi

(5.6)

We take the first-order derivative of the expected profit at location i, for a specific

realization of θj, and by rearranging the terms we get:

∂π
LMI

i
(qi, qj, θi, θj)

∂qi
= p(1− Pr[d̃i < qi]− Pr[qi < d̃i < qi + qj − d̃j])

− c(1− Pr[qi < d̃i < qi + qj − d̃j]− Pr[qi + qj − d̃j < d̃i < qi])

(5.7)

The intuition behind is that one additional inventory unit held for location i will

generate one more unit of sales at location i, unless there is local inventory surplus

(di < qi), or the sale would have been realized despite local inventory shortage,
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through a transfer of claim from location j (when qi < di < qi + qj − dj). This

additional sale will generate a revenue p. To hold an additional unit of inventory

for location i, an additional cost of c (wholesale price) is incurred unless this unit

would have been a claim transfer from location j to i and a cost of c would have

been incurred in anycase (whenever qi < di < qi + qj − dj). Also, the cost c for this

additional unit is not incurred by location i whenever this extra unit is not needed

at location i but needed at location j and the claim is transferred (which happens

whenever demand exceeds effective supply at location j, i.e., qi + qj − dj < di < qi).

The difference between the marginal revenue and the marginal cost of an additional

unit held for location i gives its net marginal benefit.

Following the analysis of Rudi et al. (2001) [46] we define:

ηi(qi, θi) = Pr[d̃i < qi]

βi(qi, qj, θi, θj) = Pr[qi + qj − d̃j < d̃i < qi]

γi(qi, qj, θi, θj) = Pr[qi < d̃i < qi + qj − d̃j]

If the joint distribution over demand is continuously differentiable, the above

probability functions will be continuous as well. The profit maximizing inventory

choice of location i, as a function of the received signals θi and θj and the quantity

set by location j, is given by

ηi(qi, θi) +
p− c

p
γi(qi, qj, θi, θj)−

c

p
βi(qi, qj, θi, θj) =

p− c

p
(5.8)

Regional manager i knows though only his received signal θi and the distribution

of θj. Therefore, his expected profit, over all possible types θj, is

π
LMI

i
(qi, qj, θi) = E�i,�j ,θj

[psi − c(τji − τij)]− cqi (5.9)
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His best response, as a function of qj(θj) and his signal θi is denoted by ρ
LMI

i
and

given by

ρ
LMI

i
(θi, qj) = argmax

qi

�

θj

(E�i,�j
[psi − c(τji − τij)]− cqi)dFj(θj) (5.10)

The first order derivative of the expected profit function is given by

∂π
LMI

i
(qi, qj, θi)

∂qi
=

∂

∂qi

�

θj

(E�i,�j
[psi − c(τji − τij)]− cqi)dFj(θj)

=

�

θj

∂

∂qi
(E�i,�j

[psi − c(τji − τij)]− cqi)dFj(θj)

=

�

θj

[p(1− Pr[d̃i < qi]− Pr[qi < d̃i < qi + qj(θj)− d̃j])

− c(1− Pr[qi < d̃i < qi + qj(θj)− d̃j])

+ cPr[qi + qj(θj)− d̃j < d̃i < qi])]dFj(θj)

= p(1− Pr[d̃i < qi]− Eθj
Pr[qi < d̃i < qi + qj(θj)− d̃j])

− c(1− Eθj
Pr[qi < d̃i < qi + qj(θj)− d̃j]− Eθj

Pr[qi + qj(θj)− d̃j < d̃i < qi])

(5.11)

The first equation holds because the function under the expectation over θj is in-

tegrable and has a bounded derivative. So, it satisfies the Lipschitz condition of

order one, and hence the expectation and the derivative can be interchanged (see

Glasserman, 1994) [24].

The second derivative of the expected profit function of region i is

∂
2
π
LMI

i
(qi, qj, θi)

∂q
2
i

= −
�

θj

[pui + (p− c)(g2
ij
− g

1
ij
) + c(b2

ij
− b

1
ij
)]dFj(θj) (5.12)

where, letting φx denote the probability density function associated with the random

variable x, we define

ui = φ
d̃i
(qi)

g
2
ij
= Pr[d̃i > qi]φd̃i+d̃j |d̃i>qi

(qi + qj)
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g
1
ij
= Pr[d̃i + d̃j < qi + qj|d̃i > qi]φd̃i

(qi)

b
2
ij
= Pr[d̃i < qi]φd̃i+d̃j |d̃i<qi

(qi + qj)

b
1
ij
= Pr[d̃i + d̃j > qi + qj|d̃i < qi]φd̃i

(qi)

The integrand in (5.12) is a non negative function (see Rudi et al, 2001) [46], leading

to the concavity of the expected profit function of region i in its own inventory choice.

Defining

βi(qi, qj, θi) = Eθj
Pr[qi + qj(θj)− d̃j < d̃i < qi]

γi(qi, qj, θi) = Eθj
Pr[qi < d̃i < qi + qj(θj)− d̃j]

the profit maximizing inventory choice for retailer i satisfies the equation

ηi(qi, θi) +
p− c

p
γi(qi, qj, θi)−

c

p
βi(qi, qj, θi) =

p− c

p
(5.13)

This defines a reaction function ρ
LMI

i
(θi, qj) for location’s i optimal inventory, given

the received signal θi and the inventory choice function of location j, qj(θj). Con-

cavity of the expected profit function also ensures that the solution of this equation

is unique. This means that each location has a unique best response (ρLMI

i
) to the

other location’s inventory choice, given its type. Moreover, the next Proposition

states that this best response function is increasing in the demand signal received

(type of location i).

Proposition 5.1 : Each location i’s best response to the quantity set by the other

location is increasing in its signal θi (i.e., its type).

All proofs are in the Appendix B.3.

The next theorem shows that in the case of information asymmetry and local

decision making, a pure strategy Bayesian Nash equilibrium exists. A Bayesian equi-

librium is a pair of strategies (qLMI

i
(·), qLMI

j
(·)) such that, for each player i and every

possible value of θi, strategy q
LMI

i
(θi) maximizes πLMI

i
(qi, gLMI

j
(θj), θi).

102



Theorem 5.1 : For 0 < c < p, a pure strategy Bayesian Nash Equilibrium exists.

Any pair of functions (qLMI

i
(θi), qLMI

j
(θj)) that satisfy (5.14) for i = 1, 2 is a Bayesian

Nash equilibrium:

ηi(q
LMI

i
(θi), θi) +

p− c

p
Eθj

[γi(q
LMI

i
(θi), q

LMI

j
(θj), θi, θj)]

− c

p
Eθj

[βi(q
LMI

i
(θi), q

LMI

j
(θj), θi, θj)] =

p− c

p
(5.14)

According to Theorem 5.1, finding an equilibrium in this game requires solving 2 in-

tegral equations simultaneously with variable limits. Solving the system of equations

to obtain a closed form solution is not possible. Using Proposition 5.1, we know that

the optimal inventory choice is monotonic as well. We continue by characterizing the

functional form of the optimal inventory choice, as a function of the received signal.

Proposition 5.2 : In all equilibria, the inventory choice function of location i is linear

in its own received signal and more specifically of the form q
LMI

i
(θi) = µi + θi + δi.

It is interesting to note that if the received signal increases by x units, the optimal

inventory choice at location i will increase by the same amount. The received signal

determines the mean demand at location i and it is incorporated in location’s optimal

inventory choice as it is (one-to-one relationship), no matter its magnitude (e.g.,

regardless of whether it is low or high).

In addition, multiplying equilibrium conditions by fi(θi) and integrating both sides

over θi we get that

E[ηi(qi, θi)] +
p− c

p
E[γi(qi, qj, θi, θj)]−

c

p
E[βi(qi, qj, θi, θj)] =

p− c

p
(5.15)

From (5.15) we see that under information asymmetry, the optimality conditions

for a Bayesian Nash equilibrium is the same as the one under full information where

the corresponding probabilities of inventory shortage and surplus are calculated over

all possible demand signal realizations.
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Note that the equilibrium functions described in Theorem 5.1 may result in mul-

tiple equilibria that involve different inventory choice functions for each player. In

our setting, the two locations have the same revenue and price parameters. If we

additionally assume that demand at each location, before the signal transmission,

follows the same distribution (i.e., the average market size at each location is the

same (µi = µj) and signal and market uncertainty at each location follow the same

distribution (fi(·) = fj(·), gi(·) = gj(·)), then we can focus on symmetric equilibria,

defined as follows:

Corollary 5.1 : The symmetric Bayesian Nash equilibrium (qLMI(θ1), qLMI(θ2)) sat-

isfies condition (5.16) for all θi.

ηi(q
LMI(θi), θi) +

p− c

p
Eθj

[γi(q
LMI(θi), q

LMI(θj), θi, θj)]−

c

p
Eθj

[βi(q
LMI(θi), q

LMI(θj), θi, θj)] =
p− c

p
(5.16)

5.4 Central Planner Managed Inventory (CPMI)

Under CPMI, inventory decisions are made centrally to maximize total profits. RMs

receive their demand signal and send a report to the CP (communicate a demand

forecast). The demand signal each RM receives for his region at the beginning of

the selling season is private knowledge. Therefore, RMs can choose to communicate

their signal truthfully or not. The CP in turn may use this information to determine

inventory levels (q1, q2) to maximize the sum of profits across locations, based on

her beliefs about local demands. This is a case of centralized decision making with

demand information asymmetry and information sharing (maybe non-credible) in the

form of demand forecasts.

The allocation dynamics are similar to the LMI case. Inventory held in the system

(Q = q1 + q2) is in the form of dedicated inventory for each region but held centrally.

After the CP makes the inventory decision, demands are realized (di’s) and inventory
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is allocated according to the established policy. Each RM i is guaranteed qi if di ≥ qi

and cannot be allocated more than qi if di < qi. To be more specific, the final

allocation that region i gets (αi) is given by equation (5.2), where τij is defined as

in (5.1). Hence, it satisfies the following relationships; αi ≤ qi if di < qi, αi ≥ qi if

di > qi, αi = qi if di = qi and αi + αj = qi + qj.

The expected value of total profits across the two locations, denoted as ΠCPMI , for

given θi’s, is given by:

ΠCPMI(qi, qj, θi, θj) = pE�i,�j
min[(d̃i + d̃j), (qi + qj)]− c(qi + qj)

= E�i,�j
[pmin(di,αi)− cαi + pmin(dj,αj)− cαj]

= E�i,�j
[psi − c(τji − τij)]− cqi + E�i,�j

[psj − c(τij − τji)]− cqj

= pE�i,�j
(si + sj)− c(qi + qj)

(5.17)

By taking the derivative of the CP’s profit function and collecting the terms we

have.

∂ΠCPMI(qi, qj, θi, θj)

∂qi
= p(1− Pr[d̃i < qi]− Pr[qi < d̃i < qi + qj − d̃j]

+ Pr[qi + qj − d̃j < d̃i < qi])− c

(5.18)

The intuition parallels that of the Locally Managed Inventory with the main differ-

ence that the marginal unit generates revenue p when it is used to cover either excess

demand at location i (that happens with probability (1 − Pr[d̃i < qi] − Pr[qi < d̃i <

qi + qj − d̃j]) as in the LMI case) or excess demand at j (which happens when there

is excess stock in i and shortage in j, i.e., when qi + qj − d̃j < d̃i < qi). Furthermore,

the marginal cost is c with probability 1 (no matter whether or where it is sold).
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By setting (5.18) to zero we get the first order necessary optimality condition for

qi, i = 1, 2. Therefore, the profit-maximizing inventory choices needs to satisfy, for

i = 1, 2, the condition (we later show that this condition is also sufficient)

ηi(qi, θi) + γi(qi, qj, θi, θj)− βi(qi, qj, θi, θj) =
p− c

p
(5.19)

We note that of the left side condition (5.19) can be re-written as:

ηi + γi − βi = Pr[d̃i < qi] + Pr[qi < d̃i ∩ qi + qj > d̃i + d̃j]− Pr[d̃i < qi ∩ qi + qj < d̃i + d̃j]

= Pr[d̃i < qi ∩ qi + qj > d̃i + d̃j] + Pr[qi < d̃i ∩ qi + qj > d̃i + d̃j]

= Pr[d̃i + d̃j < qi + qj]

(5.20)

In other words, condition (5.19) for i and j, boils down to the single optimality

condition

Pr[d̃i + d̃j < Q] =
p− c

p
(5.21)

where Q = q1 + q2. This is the well known newsvendor critical fractile optimality

condition, with demand being the sum of local demands. Because the expected profit

is concave in Q, it is also concave in qi (composition of a concave function with an

affine function). Therefore, first-order conditions (5.21) and (5.19) are sufficient for

optimality. In the case of CPMI, what matters is the total inventory held centrally

because (a) retailers are identical in their cost/revenue parameters and (b) inven-

tory is held centrally and sent to retailers after demands are realized (there are no

transshipment costs). Q
CPMI that maximizes system profits satisfies the optimality

condition (5.21); QCPMI = µi+µj+θi+θj+(Gi◦Gj)−1(p−c

p
). Therefore, the inventory

choices (qCPMI

i
, q

CPMI

j
) that the CP can make to maximize total profits, are infinite.

Any combination of qi, qj that satisfies qi + qj = Q
CPMI is an optimal solution from

the system’s perspective.
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For expositional purposes, we plot total profits as a function of q1 and q2, for the

case where p = 2, c = 1 (i.e., critical fractile is 0.5), the average demand in each

market is 10 units, θ1 + θ2 = 0 and market uncertainty in each region is independent

and distributed normally, with mean 0 and variance 2 (Figure 5-2). In this case it is

optimal from a total profit perspective to set QCPMI = 20. As we observe from the

figure, any combination qi and qj that adds up to 20 units maximizes the expected

profit function.

Figure 5-2: Total Expected Profit as a function of q1 and q2

For given θi’s, qCPMI

i
can take any value in the interval [0, QCPMI ]. This implies,

that before inventory is decided by the CP, and most importantly when information

transmission takes place, there are no minimum or maximum inventory guarantees

for retailer i. Since there is no unique optimal solution (qCPMI

i
, q

CPMI

j
), retailers

cannot infer the inventory choices of the CP, given her beliefs about local demands.
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To overcome this issue, we need to specify how the CP decides inventory ownership

of QCPMI units between the two locations. For the rest of the chapter, where we

study the information sharing game between locations and the CP, we assume that

q
CPMI

i
= µi + b(θi) + s, ∀i, where b(θi) denotes the belief of the CP about θi and

s =
(Gi◦Gj)−1( p−c

p
)

2 . Please note that s can be either positive or negative, depending

on the critical ratio.

5.4.1 Is truth-telling an equilibrium?

When all parties have the same information about demand (common knowledge set-

ting), in the case of CPMI where inventory decisions are centrally coordinated, by

definition the aggregate profits across locations are maximized. But under information

asymmetry, is this still the case? When the CP solicits private demand information

from the RMs and then she sets the inventory quantities (qCPMI

i
, q

CPMI

j
) to maximize

system profits, would RMs have an incentive to truthfully communicate their demand

information?

To answer this question, we first study whether the incentives of a RM and the CP

coincide under common knowledge (all players know the demand signal realization in

both regions). In other words, given θi and θj, we compare q
LMI

i
(qj) to q

CPMI

i
(qj).

For notational convenience, for the rest of the section we denote βi(qi, qj, θi, θj) and

γi(qi, qj, θi, θj) by βi and γi, respectively.

Proposition 5.3 : For given θi, θj, qCPMI

i
�= q

LMI

i
, ∀ qj and i = 1, 2, unless γi

βi

=

p−c

c
for some qj, where the probabilities βi and γi are evaluated at (qCPMI

i
, qj) and

q
CPMI

i
= Q

CPMI − qj.

Proposition 5.3 states that locally and centrally optimal inventory choice for region

i, given the inventory of region j, will be different, unless the probability that excess

demand at region i can be covered by excess inventory at region j over the probability

that excess supply at region i can be used to satisfy excess demand at region j equals
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the markup (profit margin as a percentage of the cost). Both these probabilities are

evaluated at the inventory choice qi that maximizes aggregate profits, given inventory

for region j.

It is therefore implied that if each regional manager had the right to set his own

inventory, knowing both his demand signal and that of the other location, he would

have chosen a different quantity than the one the CP will set for him. Keeping qj fixed,

q
CPMI

i
does not maximize RMi’s profit as by definition that quantity is qLMI

i
given

by equation (5.8). This result is similar to the case of proportional allocation under

common knowledge (Lemma 4.1). In both cases, when demand signals are common

knowledge, the quantity that a retailer / regional manager prefers is different to the

one that maximizes system profits, unless special conditions happen to hold.

Corollary 5.3 : Under common knowledge, if RMs had the right to decide their

inventories, none of the centrally chosen inventory choices (qCPMI

i
, q

CPMI

j
) that max-

imize system profits would form an equilibrium, unless γi

βi

= γj

βj

= p−c

c
evaluated at

some (qCPMI

i
, q

CPMI

j
).

To see this, let us assume that qCPMI

j
(qi) = q

LMI

j
(qi) for some qi. That would mean

that the CP chooses an inventory quantity for region j so that its regional expected

profit is maximized, given the inventory choice for location i. The inventory choice of

the CP for region i, in turn, needs to be such that the aggregate profits are maximized

(qCPMI

i
= Q

CPMI − q
LMI

j
). But according to proposition 5.3, for any given qj (and

thus also qj = q
LMI

j
), the quantity that maximizes the expected profit of region i

is different than the quantity that maximizes system profits (qLMI

i
�= q

CPMI

i
) unless

γi

βi

= p−c

c
. The same argument holds for the second region. In short, central optimal

inventory choices will coincide with local choice equilibrium quantities under common

knowledge if and only if cost and demand parameters are such that equate left-hand

sites of Equations (5.8) and (5.19) for i = 1, 2.
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But when regional manager i reports his local demand information (sends a signal

θ̂i), he knows θi but not θj. Therefore he cannot directly compare qLMI

i
to q

CPMI

i
, had

both players had the same information. Regional manager i does not know q
CPMI

i
, no

matter the reporting strategy of the other regional manager and the CP’s beliefs given

the reporting strategy. To study the information sharing game between a regional

manager and the central planner, we assume that among the infinitely many optimal

inventory choices given her demand beliefs, the CP sets qCPMI

i
= µi + b(θi) + s, for

i = 1, 2.

We next study whether truth-telling and trusting can form an equilibrium. Suppose

that location i sends a signal θ̂i, which may or may not be the same as his true signal

θi, but location j transmits his true demand signal and the central planner believes

that both locations transmit their true demand signals. As the next proposition

shows, retailer i will have, in general, an incentive to report his demand signal falsely.

Proposition 5.4 holds for any q
CPMI

i
that depends on b(θi).

Proposition 5.4 : When regional manager j truthfully reports his demand signal and

the central planner trusts the received information, regional manager i has an incen-

tive to falsely report his demand signal, unless γi(qi,θi)
β(qi,θi)

= p−c

p
evaluated at qCPMI

i
(θi).

Having analyzed regional managers’ inventory choices given their information ver-

sus inventories that maximize aggregate profits, we show that truthful information

sharing of private demand information will not maximize, in general, the expected

profits of regional managers (unless special conditions happen to hold). Therefore,

reliable information sharing will not be a sustainable equilibrium in this setting as

the next theorem formally states.

Theorem 5.2 : Let φ(θ̂i|θi) denote regional manager’s i reporting strategy given θi,

(qi(θ̂i), qj(θ̂j)) the inventory choices (to be held centrally) of the CP for regions i and

j respectively and b(θ|θ̂) the central planner’s posterior belief about θ after observing

θ̂. Then,
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- φ(θ̂|θ) = θ

- (qi(θ̂i, θ̂j), qj(θ̂j, θ̂j)) = (qCPMI

i
(θ̂i), qCPMI

j
(θ̂i))

- b(θ|θ̂) = θ̂

do not constitute a perfect Bayesian equilibrium. A perfectly informative Bayesian

equilibrium of forecast sharing where regional managers share truthfully their pri-

vate demand information and the CP trusts the information received and exactly

incorporates it in her inventories choices does not exist.

On the other extreme, it is easy to show that an uninformative (babbling) equilib-

rium exists (as in all cheap talk games). In this equilibrium, each regional manager’s

reported forecast θ̂i is independent of θi. The CP does not update her beliefs about

local demands after receiving the forecasts. She determines the system optimal quan-

tities based on her initial knowledge about the distribution of θi’s.

5.5 Numerical analysis

To complement our analytical findings, we continue by conducting numerical analysis

to compare optimal inventory choices, and the corresponding expected profits, under

LMI and CPMI when there is information asymmetry and unreliable demand fore-

cast sharing. We then compare the results to the case where the CP has the same

knowledge with RMs about local demands (she knows local demand signals) and to

the pure decentralized case (two separate newsvendors that keep their inventories

separately and no transshipment policy is in place).

Numerically solving for the equilibria defined by the integral equations (5.15) re-

quires discretizing the distributions of θi’s to n points and solving 2 · n equations

simultaneously. If we restrict ourselves to symmetric equilibria, the system of equa-

tions reduces to n but computing the equilibria remains computationally challenging.

Furthermore, when we move to the discrete case, as the number of types increases,

the problem of estimating the probability of their realization also increases. For these

reasons, in inventory management games with incomplete information it is advisable
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to limit the number of types to a small number in order to successfully solve the

problem and obtain useful insights [58].

Thus, for the numerical analysis, we just consider two types of possible demand

signals, “Low” and “High”. We assume that θi can take only two values, θH with

probability λ and θL with probability 1 − λ and that they are independent across

locations. Because of independence Pr[θj = θL|θi = θL] = Pr[θj = θL|θi = θH ] = 1−λ

and Pr[θj = θH |θi = θL] = Pr[θj = θH |θi = θH ] = λ. We denote the inventory choice

of player i that receives θL by qi(θL) = qiL, for i = 1, 2. Similarly, qi(θH) = qiH . The

expected payoff for each player as a function of his type is:

π
LMI

1L (q1L, q2(θ2)) = (1− λ)πLMI

1L (q1L, q2L; θ2L) + λπ
LMI

1L (q1L, q2H ; θ2H)

π
LMI

1H (q1H , q2(θ2)) = (1− λ)πLMI

1H (q1H , q2L; θ2L) + λπ
LMI

1H (q1H , q2H ; θ2H)

π
LMI

2L (q1(θ1), q2L) = (1− λ)πLMI

2L (q1L, q2L; θ1L) + λπ
LMI

2L (q1H , q2L; θ1H)

π
LMI

2H (q1(θ1), q2H) = (1− λ)πLMI

2H (q1L, q2H ; θ1L) + λπ
LMI

2H (q1H , q2H ; θ1H)

(5.22)

To determine the Bayesian Nash equilibrium under LMI in this case, we need to

solve the following system of four nonlinear equations with four unknowns:

∂

∂q1L
π
LMI

1L (q1L, q2(θ2)) = (1− λ) ∂

∂q1L
π
LMI

1L (q1L, q2L; θ2L) + λ
∂

∂q1L
π
LMI

1L (q1L, q2H ; θ2H)

∂

∂q1H
π
LMI

1H (q1H , q2(θ2)) = (1− λ) ∂

∂q1H
π
LMI

1H (q1H , q2L; θ2L) + λ
∂

∂q1H
π
LMI

1H (q1H , q2H ; θ2H)

∂

∂q2L
π
LMI

2L (q1(θ1), q2L) = (1− λ) ∂

∂q2L
π
LMI

2L (q1L, q2L; θ1L) + λ
∂

∂q2L
π
LMI

2L (q1H , q2L; θ1H)

∂

∂q2H
π
LMI

2H (q1(θ1), q2H) = (1− λ) ∂

∂q2H
π
LMI

2H (q1L, q2H ; θ1L) + λ
∂

∂q2H
π
LMI

2H (q1H , q2H ; θ1H)

(5.23)

where ∂

∂qiL
π
LMI

iL
(qiL, qjL; θjL) is given by (5.7) where θi = θL, θj = θL, qi = qiL and

qj = qjL and ∂

∂qiL
π
LMI

iL
(qiL, qjH ; θjH) is given by (5.7) where θi = θL, θj = θH , qi = qiL

and qj = qjH . Similarly, for ∂

∂qiH
π
LMI

iH
(qiH , qjL; θjL) and

∂

∂qiH
π
LMI

iH
(qiH , qjH ; θjH), with

the difference that θi = θH , for i = 1, 2.

We compute explicit solutions for the case where demand at the two locations is

distributed independently or Cov(θi, θj) = 0, Cov(�i, �j) = 0 , for i, j = 1, 2 and

i �= j and Cov(θi, �j) = 0, for i, j = 1, 2. It is also assumed that retailers are
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symmetric in their cost parameters. Suppose average demand at each location, before

the market signal, is 10 units (µ1 = µ2 = 10). Demand signals at location i and j

are independent draws from the same discrete distribution: θL = −2, θH = 2, with

λ = 0.5. Market uncertainty at each location is distributed normally, with mean 0

and standard deviation 2. In other words, each region, before the local demand signal

is revealed, faces demand di ∼ N(8, 22) with probability 0.5 and di ∼ N(12, 22) with

probability 0.5. After receiving a demand signal at the beginning of the selling season,

RM i knows that the demand at his region is normally distributed with mean 10+ θi

and standard deviation 2 (d̃i ∼ N(10 + θi, 22)). The belief of RM i about demand at

region j does not change, as it is common knowledge to all players that demands in

the two regions are independent.

The resulting equilibrium inventories under LMI and the expected profits are com-

puted for different pairs of cost / price parameters (the corresponding critical ratios

are 0.25, 0.5 and 0.75). We report the values for location i, as the resulting equilib-

rium is symmetric (Table 5.1). In the same table we report the separate newsvendors

optimal quantities - without unilateral transfer rights - (qNV

i
) and the expected profit

in that case (πNV

i
), for comparison purposes.

qLMI
i π

LMI
i qNV

i π
NV
i

Critical ratio θL θH θL θH θL θH θL θH

p=2, c=1.5 (cr=0.25) 7.15 11.15 3.10 5.10 6.65 10.65 2.73 4.73

p=2, c=1 (cr=0.50) 8.00 12.00 6.87 10.87 8.00 12.00 6.40 10.40

p=2, c=0.5 (cr=0.75) 8.85 12.85 11.10 17.10 9.35 13.35 10.69 16.69

Table 5.1: Optimal inventory choices under LMI: (qLMI

i
(θi) = (qiL, qiH))

Equilibrium inventory quantities are increasing in the received signal and the differ-

ence in the optimal inventory choice equals the difference in the received signal (in all
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three cases qLMI

i
(θH)− q

LMI

i
(θL) = θH − θL). This is consistent with Proposition 5.2

for the continuous case. Expected profit is higher when the received signal is “High”

because average demand at location i is higher while demand variability remains un-

changed. Compared to the simple newsvendor inventory quantities, the possibility

of inventory rebalancing after demands are realized may lead to lower (when the

cr=0.75) or higher inventory (when cr=0.25), but in all cases increases region’s ex-

pected profit. The result is analogous to the case of locally held inventories with the

option of transshipments after demands are revealed.

We compute (qiL, qiH) for different values of λ, and we observe that the optimal

strategy q
LMI

i
(θi) (for given critical fractile) does not depend on the probability that

the other location will face low or high demand; it remains unchanged for any λ ∈

(0, 1). This is because of the one-to-one relationship between the optimal inventory

choice and the received signal. More specifically, for the continuous case we have

shown that the optimal strategy of location i is of the form q
LMI

i
(θi) = µi + θi + δi

(Proposition 5.2). Equilibrium results in Table 5.1 suggest that this holds also for

the discrete case with two types. When qjH − qjL = θH − θL, it is easy to show

that ∂

∂qiL
π
LMI

iL
(qiL, qjL; θjL) = ∂

∂qiL
π
LMI

iL
(qiL, qjH ; θjH) and ∂

∂qiH
π
LMI

iH
(qiH , qjL; θjL) =

∂

∂qiH
π
LMI

iH
(qiH , qjH ; θjH). Hence, λ plays no role for the solution of the system of

equations (5.23) that determines the optimal inventory choice function of location i.

We proceed by studying the boundary cases where λ = 0 and λ = 1. In these

cases, each regional manager knows with certainty the type of the other player. In

other words, there is common knowledge about regional demand distributions and

the setting is similar to the one considered in Rudi et al. (2001) [46]. Table 5.2

presents the optimal inventory choice of location i q
LMI

if
(θi, θj) = (qf

iL
(θj), q

f

iH
(θj)), as

a function of its received signal and the demand (signal) of location j.

It is interesting to notice that location i’s optimal inventory choice does not de-

pend on the signal received at location j (qf
iL
(θj = L) = q

f

iL
(θj = H) and q

f

iH
(θj =

L) = q
f

iH
(θj = H)). The signal at location j determines its mean demand and the
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q
f

iL
q
f

iH

Critical ratio θj = L θj = H θj = L θj = H

p=2, c=1.5 (cr=0.25) 7.15 7.15 11.15 11.15

p=2, c=1 (cr=0.50) 8.00 8.00 12.00 12.00

p=2, c=0.5 (cr=0.75) 8.85 8.85 12.85 12.85

Table 5.2: Optimal inventory choices under LMI and common knowledge

regional manager at j adequately accounts for it by adjusting his dedicated inven-

tory. According to our analytical and numerical results, the probability that location

j will have high / low demand signal does not affect the optimal inventory strategy

of location i. Furthermore, the optimal quantity at location i, as a function of its

demand signal, is the same under common knowledge and information asymmetry

(qLMI

i
(θi) = q

LMI

if
(θi)). This means that, under LMI, information asymmetry does

not create additional system inefficiency. Each regional manager has the necessary

information to decide optimally on his inventory level.

The quantity δi depends on both locations’ market uncertainty and the critical

fractile but not on the average demand at location j. This is in contrast to the

numerical results obtained under common inventory and proportional allocation. In

chapter 4 we showed that the reporting strategy of a retailer may change based on

his received signal when the average market size of the other player is high (Figure

4-2 b). Figure 5-3 shows (qiL, qiH) and their difference for various levels of market

uncertainty (σ�i
= σ�j

), when cr=0.75.

Next, we compare expected total inventory in the system under LMI (E[QLMI ] =

E[qLMI

1 + q
LMI

2 ]) against the inventory that the CP would set (CPMI) when she

does not update her belief about local demands based on the forecasts sent by RMs

(QCPMI). The CP ignores the received information in the uninformative commu-
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Figure 5-3: qLMI

i
(θH)− q

LMI

i
(θL) as a function of market uncertainty

nication equilibrium detected in section 5.4.1 and bases her inventory decision on

her prior information about local demands; di ∼ N(8, 22), with probability 0.5 and

di ∼ N(12, 22) with probability 0.5, for i = 1, 2. In addition, we use as benchmark

the case where the CP knows local demand signal realizations when she sets invento-

ries (E[QCPMI

f
]) (this case also represents the truth-telling / trusting situation). We

compute average total inventory and expected profits. The results are presented in

Table 5.3. In Table 5.4 we report inventory choices for each location, based on the

true or reported signal, under these three inventory decision making regimes.

LMI CPMI CPMI full info

Critical ratio E[QLMI ] E[ΠLMI ] Q
CPMI E[ΠCPMI ] E[QCPMI

f
] E[ΠCPMI

f
]

p=2, c=1.5 (cr=0.25) 18.30 8.20 17.73 7.42 18.09 9.25

p=2, c=1 (cr=0.50) 20.00 17.74 20.00 16.77 20.00 17.74

p=2, c=0.5 (cr=0.75) 21.70 28.20 22.26 27.42 21.91 28.21

Table 5.3: Comparison of total inventory and expected profits under LMI, CPMI and
CPMI with full information
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q
LMI

i
q
CPMI

i
q
CPMI

if

Critical ratio θL θH θ̂L θ̂H θL θH

p=2, c=1.5 (cr=0.25) 7.15 11.15 8.86 8.86 7.05 11.05

p=2, c=1 (cr=0.50) 8.00 12.00 10.00 10.00 8.00 12.00

p=2, c=0.5 (cr=0.75) 8.85 12.85 11.13 11.13 8.95 12.95

Table 5.4: Comparison of local inventory under LMI, CPMI and CPMI with full
information

When the CP can see local demand forecasts with the same level of detail and

accuracy as RMs, local decision making results, on average, in higher than optimal

inventories in the system when the critical fractile is 0.25 and lower than optimal

when the critical fractile is 0.75. On the other hand, average inventory when each

regional manager behaves as an independent newsvendor, is higher than the system

optimal (if inventory ordering decisions had been coordinated by a central planner

and unit transfers had been allowed) for critical ratios above 0.5 (22.70 versus 21.91

for cr=0.75). So, E[qNV

i
+ q

NV

j
] > E[QCP

f
] > E[qLMI

i
+ q

LMI

j
] for cr> 0.5. The

reverse ordering holds for critical fractile below 0.5 (E[qNV

i
+ q

NV

j
] < E[QCP

f
] <

E[qLMI

i
+ q

LMI

j
] for cr<0.5). The possibility to cover excess demand by inventory

from another location or to send excess stock at another location, incentivizes a

regional manager to order a lower than centrally optimal quantity when the cost of

the product is high and a higher than centrally optimal quantity when the cost is low.

We continue by comparing the resulting inventories when the CP has less infor-

mation about local demands (she bases her inventory decision on her original beliefs

about demands (demand signals at the beginning of the period are ignored). In our

numerical examples, in that case, the resulting inventory is lower than that under

complete information when the critical ratio is low and higher when the critical ratio
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is high. This is due to higher uncertainty that the CP faces when she does not know

the signal realizations but only their distribution and it is the reason why in all cases

expected profits are lower than those under common knowledge.

Comparing local decision making with better local demand information to central

(coordinated) decision making with less accurate information, we observe that the

directional results of inventory comparisons depend on the critical fractile. For low

critical fractiles, LMI will lead to higher inventories, on average, than CPMI. For high

critical fractile, the reverse is true; inventories under LMI are lower than those under

CPMI. We expect this directional comparison to be true in general, because of the

reference point CPMI with complete information.

In all three cases, average inventory is 20 units (mean demand) when the critical

ratio is 0.5, but, as expected, the average profits differ under each scenario. The

highest total expected profit is achieved under central decision making and complete

demand information. In our examples, local decision making based on better local

demand information performs better than central decision making with less accurate

demand knowledge. This need not always to be the case: the directional results

when comparing expected profits under LMI and CPMI, independent of the optimal

critical fractile, will depend on the amount and accuracy of information that is locally

available (variability of the distribution of θi’s). In our examples, the value of local

information (that is lost when we move to CPMI) is higher than the value of inventory

coordination achieved under central decision making.

It is interesting to notice than when the critical ratio is 0.5, locally optimal, un-

der partial information, and system optimal, under complete information, inventory

choices coincide, not only in expectation but under all instances. This is because

when the critical ratio is half, demand uncertainty does not play a role in inventory

decisions; it is always optimal to order the average demand (even when players are

asymmetric). Each regional manager knows his signal when he sets inventory for

his location and the CP, who sets inventory for both locations, knows both signals.
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Hence, their optimal inventory choices coincide. This result sheds light to when there

is misalignment of incentives between regional managers and the CP; when the critical

fractile is different than 0.5 and RMs have private information about their regional

demands, the difference between locally and centrally optimal inventory quantities

may result in unreliable information sharing. The next question that we would like

to answer is whether a transfer pricing mechanism exists that leads to an alignment

of incentives and therefore induces reliable information sharing between the players.

That is the topic of the next section.

5.6 Coordinating transfer prices

In the previous section, change of inventory ownership, after demands are realized,

costs the region that gets the additional unit c and generates revenue c respectively

to the region that gives the unit. It is therefore implicitly assumed that a profit

margin (p − c) is earned by the market where the sale took place, no matter if the

product unit sold was initially owned by the other location. In addition, the location

that gives out one unit of excess inventory to the market that is stocked out recovers

the full procurement cost c. In this section we study the case where when a unit of

excess inventory owned by location i is used to cover excess demand at location j,

the additional revenue from the sale p is split arbitrarily between the two locations.

Is there a way to split the additional revenue so that truthful demand information

sharing is induced?

To model this situation, we denote by cij the price location i charges location j for

a unit sold at j that was owned initially by location i. Location j finds it profitable

to use an excess unit initially owned by i to generate a sale at market j when the

latter is stocked out, only when cij < p. After demands are realized, region i is willing

to ”sell” to region j any excess units as long as cij > 0. In other words, change of

ownership from market i to market j is mutually profitable only whenever there is
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excess demand at location j and excess supply at location i. In this case, location i

gains from the additional sale cij and location j gains p− cij.

In such a setting, under LMI, the expected profit of region i, as a function of

inventory quantities, for given θi and θj, is given by the expression:

π
LMI

i
(qi, qj, θi, θj) = E�i,�j

[psi + cijτij − cjiτji]− cqi (5.24)

By taking the derivative with respect to qi we get:

∂π
LMI

i
(qi, qj, θi, θj)

∂qi
= p(1− Pr[d̃i < qi]− Pr[qi < d̃i < qi + qj − d̃j])

+ cji Pr[qi < d̃i < qi + qj − d̃j]

+ cij Pr[qi + qj − d̃j < d̃i < qi]

− c

(5.25)

The first term is the expected additional revenue from having one more inventory

unit available at site i, as in expression (5.7). The difference with (5.7) is that now an

additional cost c is incurred with probability 1, while the additional second and third

term denote the savings from not transferring one unit from market j (that happens

if there is excess demand at i and inventory surplus at j) and the revenue cij from

selling one unit to region j (that happens when there is inventory surplus at i while

shortage at j).

Following the same notation, the first-order sufficient optimality condition, for re-

gion i, after demand signals are realized, becomes:

ηi(qi, θi) +
p− cji

p
γi(qi, qj, θi, θj)−

cij

p
βi(qi, qj, θi, θj) =

p− c

p
(5.26)

Under CPMI, optimality conditions (5.24) do not change. From a central planner’s

perspective, it does not matter how profit is split between the two regions.
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Does it exist a pair of transfer prices between the two markets that could induce

truthful sharing of private demand information between RMs and the central planner

that sets inventories? To answer this, we are looking for transfer prices that align

individual and system incentives; which make the optimal quantities set by the CP

to simultaneously satisfy the individual optimality conditions of the RMs. In other

words, we are looking for transfer prices that under LMI would result in inventory

equilibrium quantities equal to the quantities chosen by the CP as total profit maxi-

mizing.

Theorem 5.3 : For a given pair of received signals (θi, θj), there exist transfer prices

cij, for i, j = 1, 2 that align individual locations’ and company’s incentives. These are

given by

cij = (
βjγi − βiβj

γiγj − βiβj

)p (5.27)

where these probabilities are evaluated at a chosen (qCPMI

i
, q

CPMI

j
).

Theorem 5.3 implies that there are infinitely many pairs of transfer prices that

achieve alignment of incentives. For a any pair (qCPMI

i
, q

CPMI

j
) chosen by the CP, such

that qCPMI

i
+q

CPMI

j
= Q

CPM , a unique set of transfer prices can be calculated. These

transfer prices make system optimal inventory choices also optimal for individual

locations. However, the CP does not know ex-ante Q
CPM , because she does not

know the demand signal realizations. She can only credibly commit to inventory

choices that maximize individual and system profits, given the transfer prices set.

In other words, we model the case where individuals locations report their demand

signals to the CP considering the direct effect on inventories and not the indirect one

on transfer prices between locations. Inventory choices of the CP are system wide

and locally optimal, given the transfer prices set after information transmission. But

would locations have an incentive to misreport reported signals in order to influence

the transfer prices set by the CP? That would depend on the mechanism used to

split QCPMI ownership between the two locations (as a function of reported demand
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signals) which in turn would determine the corresponding transfer prices. We consider

it an interesting extension for future work.

5.7 Concluding remarks

In this chapter we compare local to central inventory decision making, when the latter

is based on less accurate demand information. We also study whether under central

inventory coordination, truthful information sharing is expected between regional

managers that have better information about their local demands and the central

planner that sets inventory. Compared to chapter 4, we consider the case where a

scheme with inventory guarantees is in place through dedicated inventories for each

region.

Under LMI, each region determines its inventory that is held centrally before the

beginning of the selling season. When we consider two inventory locations, a pure

strategy Bayesian equilibrium exists. In all equilibria, the inventory choice of a lo-

cation is increasing monotonically in its received signal (i.e., in its average demand).

Under CPMI, what matters for the CP is the total inventory held for both locations

and not how this is split between them. Hence, when each regional manager sends

his demand information to the CP, he cannot anticipate her inventory choice for his

region. We show though, that under common knowledge, the system optimal quantity

cannot be split between the two regions (dedicated inventories) so that local and sys-

tem incentives are aligned, unless special conditions happen to hold. Furthermore, we

show that truth-telling and trusting do not, in general, constitute a Perfect Bayesian

equilibrium under information asymmetry.

We proceed by doing numerical analysis to compare the resulting inventories and

the expected profits under LMI and CPMI (considering the babbling equilibrium).

In our numerical examples, when the critical fractile is below 0.5, LMI results in

higher inventories, on average, than CPMI (and than system optimal inventory under

common knowledge). When the critical fractile is above 0.5, the directional results
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are reverse. Also, we show that, unlike CPMI case, regional demand information

asymmetry does not create any additional system inefficiency under LMI. Regarding

expected profits, no inferences can be made; which decision making arrangement is

preferred will depend on the relative value of local information compared to that of

central coordination of inventory choices. Last, even if it is easy to show that a pair of

prices, for unit ownership transfers between locations, exists that aligns central and

local incentives under common knowledge, it remains an open question if or how such

a system could be implemented by the CP, under CPMI and asymmetric information,

to incentivize local managers to report truthfully their demand information.
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Chapter 6

Conclusions and Discussion

In this thesis, we studied the issue of demand information sharing – forecasts and

realized demands – within an inventory pooling coalition. Even though the value

of information is a topic well-studied in operations and supply chain management

literature, it is usually assumed that information sharing, when it happens, is done in

a credible way. On the other hand, many well-documented failures in businesses are

due to misreporting of private information, such as order exaggeration in anticipation

of inventory shortage or overoptimistic soft orders that never materialize. We focus

our work on whether reliable demand information sharing occurs between retailers and

a benevolent central planner (CP) who coordinates ordering and inventory allocation

within an inventory pooling coalition. Retailers do not compete for demand but they

may compete for inventory. Each retailer has some private information about demand

in his region due to his proximity to the market, that may transmit truthfully or not

to the central planner.

First, we study analytically the impact of various allocation mechanisms on the

ordering behavior of retailers, after total inventory quantity in the central warehouse

is set. To do so, we first show that when allocation is based on realized demands (i.e.,

realized demands become common knowledge to all players), all allocation rules con-

sidered, i.e., proportional, linear and uniform are efficient (they exclude wastage) and

Pareto optimal. But when realized demands in each region remain private knowledge
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to the retailers, the allocation rule employed plays an important role. Only under

a uniform allocation rule, retailers will report their true needs by placing a final or-

der equal to their realized demand. This result is analogous to the typical capacity

rationing case, even if in the setting under consideration (a) the allocation is deter-

mined after demand uncertainty is resolved and (b) each retailer may receive both

below or above his final order. The main difference is that uniform allocation based

on final orders is both truth inducing and Pareto optimal in our case. In the capacity

rationing case, uniform allocation is not Pareto optimal, because it is not individu-

ally responsive, a necessary condition for Pareto optimality. We further propose a

modified uniform allocation rule that not only is Pareto optimal and truth inducing,

but also it guarantees each retailer a profit higher than what he would have earned

in a pure decentralized system, under any demand realization.

Next, we proceed by studying analytically and experimentally demand forecast

sharing between retailers and the CP who solicits this information to set total in-

ventory. Realized demands become common knowledge when allocation takes place

and we focus on the game of demand signal (forecast) reporting to influence the in-

ventory held in the system. We consider the game where a proportional (to local

realized demand) allocation mechanism is employed: a mechanism widely used in

practice with several attractive properties. Using game theoretical models, we find

that when there is unresolved demand uncertainty when communication takes place,

truth-telling and trusting do not form a Perfect Bayesian equilibrium. In addition,

under an automated inventory system that takes as input the forecasts reported by

the retailers and orders the optimal inventory level for the whole coalition, a pure

strategy Bayesian Nash equilibrium among retailers does not exist. We then study,

in a controlled laboratory environment that simulates the supply chain setting into

consideration, the impact of a) competition for common inventory and b) market

uncertainty on information distortion, trust and supply chain efficiency. Our results

suggest that a continuum of trust exists both when pecuniary incentives are aligned

or misaligned, refuting the extreme theoretical cases of fully trustworthy or fully non-
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trustworthy retailers. Further, we find that both competition for common inventory

and forecast uncertainty harm significantly truth-telling and cooperation among sup-

ply chain parties. That’s why, inventory pooling under information asymmetry may

have negative results despite demand risk aggregation. Even if information was not

fully reliable, the value of communication was significant in all our experiments.

Last, we study the impact of inventory ownership on the incentives of the players

to truthfully share their forecasts. We find that dedicated inventories do not induce

truth-telling either. When we consider two separate locations that locally decide on

their level of inventories and take into account the possibility of inventory ownership

transfers after demands are realized, there is a unique Bayesian Nash equilibrium.

The optimal inventory choice of a location is increasing in its received demand signal.

When the CP makes the ordering decision, what matters is only the total inventory

held. Unless special conditions happen to hold, it cannot be split between the two

locations, before demand is realized, in a way that local and system incentives are

aligned. We numerically compare resulting inventories and profits under local deci-

sion making with more accurate information versus central decision making where

coordination of orders is achieved. We find that when the critical fractile is high, cen-

tral decision making results in higher inventories while the reverse is true when the

critical fractile is low. Expected profit directional comparisons depend on the value

of local information that is lost when we move to the central decision making versus

the additional value of inventory coordination (in the the babbling equilibrium).

This work has several limitations given the analytical complexity of the problem.

We study separately the inventory allocation game when final demands are not known

to the central planner and that of demand forecast information sharing to influence

the inventory level of the coalition. It remains an open question what the interactions

would be when both issues are considered together. For example, if the final allocation

is tied to the forecast reported, how would the dynamics of forecast information
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sharing change? What would be the impact on retailers’ ordering behavior and would

the final allocation be efficient?

There are several interesting extensions of this thesis. To begin with, we could

further explore the impact of behavioral factors in the demand forecast sharing game.

When the inventory is common, it is interesting to investigate how the size of the

pooling coalition and that of retailers affects trusting relationships. Furthermore, we

would like to study whether the level of trustworthiness of retailers changes when

there is a guarantee about how their forecasts are used for setting the common in-

ventory level. We consider this an interesting question with potentially very relevant

managerial implications. As future research, we are planning to run additional treat-

ments where the number of retailers increases to 3 and 4, the CP is automated and

retailers are non-identical. It would be also interesting to experimentally study how

inventory ownership impacts retailers’ forecast reporting strategy. Even if dedicated

inventories do not align individual and system pecuniary incentives, would reduced

uncertainty with regards to the final allocation increase retailers’ trustworthiness and

enhance cooperation?

A second topic of interest is to study through behavioral experiments the impact

of allocation mechanisms on retailers’ ordering behavior to shed light on potentially

“missing” components in this interaction. Do equilibrium concepts, which assume

that players are perfectly rational, substantially exaggerate retailers’ tendency to

strategically order more / less than what they need? Under which allocation mecha-

nisms is order distortion more pronounced?

Another path of future research is to study demand information sharing in an

inventory pooling coalition and focus on the behavioral implications when placing

soft orders versus sharing demand forecasts. We consider again that each retailer has

better demand information due to his proximity to the market and he shares it (maybe

untruthfully) with the CP either with the form of forecast sharing (sending his demand

signal) or with the form of a non-binding order before demand is realized. How
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inventory levels and profits compare under these two different ways of information

sharing?

A different supply chain setting where demand forecast information sharing plays a

crucial role is that of supplier –manufacturers / retailers context. When the upstream

player is a separate business unit with her own profit margin, how do the dynamics of

communication change? How the issues of trust and trustworthiness impact strategic

information transmission and inventory (or capacity) choice and/or allocation, in a

supplier – multiple retailers context is still an open question.

A final interesting extension for future work is to study, both analytically and ex-

perimentally, the dynamics of communication and information sharing - final demand

or forecasts - in multi-period problems. When repeated interactions are considered,

under what conditions may truth-telling/trust form a sustainable equilibrium? Do

relational contracts (e.g., based on trigger strategies) induce cooperation? In multi-

period games, many additional issues may also play an important role, e.g., feedback

and learning, reputation considerations, possibility of punishment of untruthful be-

havior, trust in long-term relationships.
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Appendix A

Notation

Symbol Definition

Common parameters

n number of retailers

µi Average demand at location i (a positive constant), i = 1...n

θi Demand signal retailer i receives at the beginning of the period

(private information about the demand within his region): a zero

mean r.v.

Fi(·) Cumulative distribution of θi

θi, θi Minimum and maximum possible values of θi respectively

�i Market uncertainty within retailer’s i region: a zero mean r.v.

Gi(·) Cumulative distribution of �i

�i, �i Minimum and maximum possible values of �i respectively

di Demand within retailer’s i region: a r.v. defined as the sum of three

components: di = µi + θi + �i

p Unit selling price

c Unit procurement cost
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Symbol Definition

Chapter 3

q
a

i
Initial order of retailer i to the warehouse (before market uncer-

tainty is resolved)

q
b

i
Fnal order of retailer i to the warehouse (after market uncertainty

is resolved)

Q Total inventory that is held centrally (Q =
�

i
q
a

i
)

α Allocation (final) to retailers vector

di Demand (realization) at location i

Chapter 4

θ̂i Report of his signal retailer i sends to the CP (or inputs to the

inventory system)

d̃i Demand within retailer’s i region after he observes his signal θi: a

r.v. with mean µi + θi

Li(·) Cumulative distribution of d̃i

d̂i Demand within retailer’s i region, according to the central system,

when retailer i inputs θ̂i: a r.v. with mean µi + θ̂i

Di Total demand from the point of view of retailer i after he receives

his signal θi

D̂ Total demand according to the central system after retailers input

their signals, i.e. D̂ =
�

d̂i

Q Total common inventory in the system

Q
i

f
Optimal common inventory from the point of view of retailer i when

demand signals are common knowledge

Q
CP

f
System optimal common inventory when demand signals are com-

mon knowledge

αi(d, Q) The allocation of common inventory that retailer i gets after de-

mands are realized: a r.v. defined as αi(d, Q) = di�
n

i=1 di
Q
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Symbol Definition

ᾱi(d, Q) The r.v. for the allocation that retailer i will get after demands

are realized, after retailer i has received his demand signal, i.e.:

ᾱi(d, Q) = d̃i

Di

Q

Chapter 5

τij Units claims transferred from region i to region j after demands

are realized

qi Inventory held centrally that belongs to region i (region i’s inven-

tory claims)

q
LMI

i
(θi) Profit maximizing inventory choice of location i as a function of its

signal, under Locally Managed Inventory (LMI)

ρ
LMI

i
(θi, qj) Best response function of region i as a function of its signal and the

inventory choice of region j

Q
CPMI(θi, θj) Profit maximizing total inventory choice of the CP under Central

Planner Managed Inventory (CPMI)

q
CPMI

i
Inventory for location i (decided by the Central Planner) under

(CPMI)

cij Price location i charges location j for one unit of inventory transfer

after demand realizations

Table A.1: Summary of notation
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Appendix B

Proofs

B.1 Proofs of chapter 3

Proof of Proposition 3.1

(a) By definition, a Pareto mechanism is the solution to the following problem:

max
�

n

i
πi(αi, di)

subject to:
�

n

i=1 αi = Q

The Lagrange function of the problem is: Λ(αi, di,λ) =
�

n

i=1 πi(αi, di)+λ(
�

n

i=1 αi−

Q) and by taking the first derivatives, the solution needs to satisfy:

∂πi(αi,di)
∂αi

+ λ = 0 ∀i and
�

n

i=1 αi −Q = 0

(b) First we prove that if an allocation is not efficient it is not Pareto optimal

(efficiency is necessary condition for Pareto optimality):

Case 1:
�

n

i=1 di ≤ Q and αi < di for some i.
�

n

i=1 αi = Q implies that ∃j such that

αj > dj. If we decrease αj by δ > 0 and increase αi by the same amount, total system

profit will increase by δp.

Case 2:
�

n

i=1 di ≥ Q and αi > di for some i.
�

n

i=1 αi = Q implies that ∃j such that

αj < dj. If we decrease αi by δ > 0 and increase αj by the same amount, total system

profit will increase by δp.
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Then, we show that efficiency implies Pareto optimality (sufficient condition):

When
�

n

i=1 di ≤ Q, efficiency implies that αi ≥ di ∀i. Because the profit function of

retailer i is not differentiable at αi = di, we define efficiency as αi ≥ di + � where � is

an infinitesimally small positive number. Then, ∂πi(αi,di)
∂αi

= −c ∀i ⇒ the allocation

is Pareto optimal. When
�

n

i=1 di > Q, efficiency implies that αi ≤ di − � ∀i. Then,
∂πi(αi,di)

∂αi

= p− c ∀i ⇒ the allocation is Pareto optimal. �

Proof of Proposition 3.2

For identical retailers, when
�

n

i=1 di > Q, and di increases, ∂Π
∂αi

= 0 subject to
�

n

i=1 αi = Q. This is because ∂πi(αi,di)
∂αi

= p − c remains constant and therefore the

optimality condition ∂πi(αi,di)
∂αi

= ∂πj(αj ,dj)
∂αj

∀i, j still holds and so does the optimal

allocation. Similarly, when
�

n

i=1 di < Q and di decreases,
∂Π
∂αi

= 0 (∂πi(αi,di)
∂αi

= −c is

constant as well) and optimal allocation does not change. �

Proof of Proposition 3.3

The expected profit of retailer i is: πCK

i
(qa

i
) = pE�i,�−i

min[di,αi]− cαi. Given the

demand vector d and total inventory Q, it can be rewritten as:

π
CK

i
(qa

i
|d, Q) = −cq

a

i
+pmin[di,αi(di, qai , Q)]−c[αi(di, qai , Q)−q

a

i
]++c[qa

i
−αi(di, qai , Q)]+

By definition min(di, qai ) ≤ αi(di, qai , Q) ≤ max(di, qai ). We consider two cases:

Case 1: di ≤ q
a

i
⇒ di ≤ αi ≤ q

a

i
. In this case:

π
DP

i
(qa

i
) = −cq

a

i
+ pdi + c(qa

i
− αi) ≥ −cq

a

i
+ pdi = π

D

i
(qa

i
) Case 2: di > q

a

i
⇒

q
a

i
≤ αi ≤ di. In this case:

π
DP

i
(qa

i
) = −cq

a

i
+pαi− c(αi− q

a

i
) = (p− c)qa

i
+(p− c)(αi− q

a

i
) ≥ (p− c)qa

i
= π

D

i
(qa

i
).

The result of the proposition follows immediately. �

Proof of Proposition 3.4

For a given Q and a vector of demand realizations d, either
�

n

i=1 di > Q or
�

n

i=1 di < Q. Because demand distributions are continuous Pr[
�

n

i=1 di = Q] = 0.

136



Let’s consider the case where
�

n

i=1 di > Q. Then αi(qb
∗

i
(di), qb

∗
−i
(d−i)) < di for some

i. For q
b
∗
(d) to be a dominant equilibrium, i must always maximize his profits by

ordering q
b
∗

i
(di). We show this is not the case for q

b

i
(di) = di under proportional

or linear allocation rule. Under both these mechanisms, αi(qbi , q
b

−i
) is continuous

and increasing in q
b

i
. Thus there exists an � > 0 such that αi(qbi (di), q

b

−i
(d−i)) <

αi(qbi (di) + �, q
b

−i
(d−i)) < di. As profit is increasing in αi for αi < di, truth-telling

cannot be optimal. Similar argument holds for the case where
�

n

i=1 di < Q. �

Proof of Proposition 3.5

Following Sprumont’s (1991) general proof [52], we consider an arbitrary retailer

i ∈ n with demand di:

Case 0: q
b∗
i
(di) +

�
j �=i

q
b

j
(dj) = di +

�
j �=i

q
b

j
(dj) = Q and the retailer orders his

demand.

Case 1: qb∗
i
(di) +

�
j �=i

q
b

j
(dj) > Q. Retailer i might have an incentive to lie only if

di > αi(qb∗i (di), qb−i
(d−i)) =

1
n̂
(Q−

�
n

j=n̂+1 q
b

j
).

- If he reports some q
b

i
≥ q

b∗
i
(di) = di, he gets again 1

n̂
(Q−

�
n

j=n̂+1 q
b

j
), so there is no

improvement.

- if he reports qb
i
< q

b∗
i
(di) = di, there are two cases:

a) if
�

n

i=1 q
b

i
> Q, he gets min{qb

i
,

1
n̂� (Q−

�
n

j=n̂�+1 q
b

j
)}, where n̂� is the largest integer

such that αn̂�(qb
, n̂

�) ≤ q
b

n̂� when retailer i orders qb
i
. If the retailer places qb

i
>

1
n̂
(Q−

�
n

j=n̂+1 q
b

j
), then n

� = n and he gets 1
n̂
(Q−

�
n

j=n̂+1 q
b

j
), so there is no improvement.

If qb
i
<

1
n̂
(Q −

�
n

j=n̂+1 q
b

j
), then 1

n̂� (Q −
�

n

j=n̂�+1 q
b

j
) > 1

n̂
(Q −

�
n

j=n̂+1 q
b

j
). But then

min{qb
i
,

1
n̂� (Q−

�
n

j=n̂�+1 q
b

j
)} = q

b

i
<

1
n̂
(Q−

�
n

j=n̂+1 q
b

j
) and the retailer is worse off.

b) if
�

n

i=1 q
b

i
< Q, then he will receive max{qb

i
,

1
n−n̂� (Q −

�
n̂
�

j=1 q
b

j
)}. This cannot be

larger than min{qb∗
i
,
1
n̂
(Q−

�
n

j=n̂+1 q
b

j
)}. Otherwise, the equations:

min{qb∗
i
(di),

1
n̂
(Q−

�
n

j=n̂+1 q
b

j
)}+

�
n

j=1,j �=i
min{qb

j
,
1
n̂
(Q−

�
n

j=n̂+1 q
b

j
)} = Q and

max{qb
i
,

1
n−n̂� (Q−

�
n̂
�

j=1 q
b

j
)}+

�
n

j=1,j �=i
max{qb

j
,

1
n−n̂� (Q−

�
n̂
�

j=1 q
b

j
)} = Q

imply that for some j �= i, max{qb
j
,

1
n−n̂� (Q−

�
n̂

j=1 q
b

j
)} < min{qb

j
,
1
n̂
(Q−

�
n

j=n̂+1 q
b

j
)},
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hence q
b

j
< q

b

j
(contradiction).

Case 3: qb∗
i
(di) +

�
j �=i

q
b

j
(dj) < Q. Similar argument as in Case 2 holds. �

Proof of Proposition 3.6

First we prove that truth telling (placing a final order equal to the realized demand)

is a dominant strategy equilibrium under a modified uniform allocation rule (the proof

is similar to the case of a uniform allocation rule). Consider an arbitrary retailer i ∈ n

with demand di:

Case 0: q
b∗
i
(di) +

�
j �=i

q
b

j
(dj) = di +

�
j �=i

q
b

j
(dj) = Q and the retailer orders his

demand.

Case 1: qb∗
i
(di) +

�
j �=i

q
b

j
(dj) > Q. Retailer i might have an incentive to lie only if

di > αi(qb∗i (di), qb−i
(d−i)) =

1
n̂
(Q−

�
n̂

j=1 q
a

j
−

�
n

j=n̂+1 q
b

j
) = Ai

- If he reports some q
b

i
≥ q

b∗
i
(di) = di, he gets again Ai, so there is no improvement.

- if he reports qb
i
< q

b∗
i
(di) = di, there are two cases:

a) if
�

n

i=1 q
b

i
> Q, he gets min{qb

i
, A

�
i
}, where A�

i
= 1

n̂� (Q−
�

n̂
�

j=1 q
a

j
−
�

n

j=n̂�+1 q
b

j
) and

n̂
� is the largest integer integer such that A�

i
≤ q

b

n̂� when retailer i orders qb
i
. But in

order to have A
�
i
> Ai, he should order qb

i
< Ai. He would thus be worse off.

b) if
�

n

i=1 q
b

i
< Q, then he will receive max{qb

i
, B

�
i
}, where B

�
i
= q

a

i
− 1

n−n̂� (
�

n̂
�

j=1 q
b

j
+

�
n

j=n̂�+1 q
a

j
−Q) and n̂

� is the largest integer integer such that B�
i
≤ q

b

n̂� when retailer

i orders qb
i
. This cannot be larger than min{qb∗

i
, Ai}. Otherwise, the equations:

min{qb∗
i
(di), Ai}+

�
n

j=1,j �=i
min{qb

j
, Aj} = Q and

max{qb
i
, B

�
i
}+

�
n

j=1,j �=i
max{qb

j
, B

�
j
} = Q

imply that for some j �= i, max{qb
j
, B

�
j
} < min{qb

j
, Aj}. But by definition, Aj ≥ B

�
j

hence q
b

j
< q

b

j
(contradiction).

Case 3: qb∗
i
(di) +

�
j �=i

q
b

j
(dj) < Q. Similar argument as in Case 2 holds. Then, it is

easy to see that this allocation excludes wastage when all retailers order their realized

demands and that also satisfies condition (3.7). So, the result follows directly from

Propositions 3.2 and 3.3. �
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B.2 Proofs of chapter 4

Proof of Lemma 4.1

When the CP knows the realized demand signals, she sets QCP

f
(given by equation

(4.5)) that minimizes the coalition’s expected overage and underage cost, and satisfies

the necessary and sufficient condition:

(p− c) Pr[
n�

i=1

d̃i > Q
CP

f
(θ)] = cPr[

n�

i=1

d̃i < Q
CP

f
(θ)] (B.1)

We define the random variable r̃i = d̃i�
n

i=1 d̃i
with known cdf Φi(·) and pdf φi(·).

Then, α̃i = r̃iQ. Under symmetric information, the expected profit of each retailer i,

can be rewritten as:

πi(Q,θ) = E[pmin[d̃i, α̃i(d, Q)]− cα̃i(d, Q)]

= pEmin[d̃i, α̃i(d, Q)]− cE[α̃i(d, Q)]

= pE[d̃i − (d̃i − α̃i(d, Q)+]− cE[α̃i(d, Q)]

= pE[d̃i]− pE[d̃i − α̃i(d, Q)]+ − cE[α̃i(d, Q)]

= pE[d̃i]− cE[d̃i] + cE[d̃i]− pE[d̃i − α̃i(d, Q)]+ − cE[α̃i(d, Q)]

= (p− c)E[d̃i] + cE[d̃i − α̃i(d, Q)]− pE[d̃i − α̃i(d, Q)]+

= (p− c)E[d̃i] + cE[d̃i − α̃i(d, Q)]+ + cE[d̃i − α̃i(d, Q)]− − pE[d̃i − α̃i(d, Q)]+

= (p− c)E[d̃i] + cE[d̃i − α̃i(d, Q)]+ − cE[α̃i(d, Q)− d̄i]
+ − pE[d̃i − α̃i(d, Q)]+

= (p− c)E[d̃i]− [(p− c)E[d̃i − α̃i(d, Q)]+ + cE[α̃i(d, Q)− d̃i]
+]

(B.2)

Given that (p−c)E[d̃i] is a constant, retailer imaximizes his expected profit when he

minimizes his expected overage and underage cost Ci(Q) = (p− c)E[d̃i− α̃i(d, Q)]++

cE[α̃i(d, Q)− d̃i]+. Taking the derivative of retailer’s i cost function with respect to

Q we get:
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dCi

dQ
= (p− c)

dE[d̃i − α̃i(d, Q)]+

dQ
+ c

dE[α̃i(d, Q)− d̃i]+

dQ

= (p− c)Ed[d̃i − α̃i(d, Q)]+

dQ
+ cEd[α̃i(d, Q)− d̃i]+

dQ

= (p− c)E[d[d̃i − α̃i(d, Q)]+

dα̃i(d, Q)

dα̃i(d, Q)

dQ
] + cE[d[α̃i(d, Q)− di]+

dα̃i(d, Q)

dα̃i(d, Q)

dQ
]

(B.3)

The second equality holds because the function under the expectation is integrable

and has a bounded derivative. So, it satisfies the Lipschitz condition of order one,

and hence the expectation and the derivative can be interchanged (see Glasserman

1994). Let 1ω be the indicator function of the event ω; i.e. 1ω = 1 if the event ω is

true and 1ω = 0 otherwise. Using the indicator function we get

dCi

dQ
= (p− c)E[1

d̃i>α̃i(d,Q)(−1)
dα̃i(d, Q)

dQ
] + cE[1

d̃i<α̃i(d,Q)1
dα̃i(d, Q)

dQ
]

= −(p− c)E[1
d̃i>α̃i(d,Q)

d̃i�
n

i=1 d̃i

] + cE[1
d̃i<α̃i(d,Q)

d̃i�
n

i=1 d̃i

]
(B.4)

But

E[1
d̃i>α̃i(d,Q)

d̃i�
n

i=1 d̃i

] = E[1
d̃i>α̃i(d,Q)

d̃i�
n

i=1 d̃i

|1
d̃i>α̃i(d,Q) = 1]Pr[1

d̃i>α̃i(d,Q) = 1]

+ E[1
d̃i>α̃i(d,Q)

d̃i�
n

i=1 d̃i

|1
d̃i>α̃i(d,Q) = 0]Pr[1

d̃i>α̃i(d,Q) = 0]

= E[ d̃i�
n

i=1 d̃i

|d̃i > α̃i(d, Q)] Pr[d̃i > α̃i(d, Q)]

(B.5)

Similarly,

E[1
d̃i<α̃i(d,Q)

d̃i�
n

i=1 d̃i

] = E[ d̃i�
n

i=1 d̃i

|d̃i < α̃i(d, Q)] Pr[d̃i < α̃i(d, Q)] (B.6)
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Therefore, the first-order necessary optimality condition of Q for retailer i is given

by equating the derivative (B.4) to 0 and rearranging the terms:

(p−c) Pr[d̃i > α̃i(d, Q)]E[ d̃i�
n

i=1 d̃i

|d̃i > α̃i(d, Q)] = cPr[d̃i < α̃i(d, Q)]E[ d̃i�
n

i=1 d̃i

|d̃i < α̃i(d, Q)]

(B.7)

Under the proportional allocation rule:

Pr[d̃i > α̃i(d, Q)] = Pr[
d̃i�
n

i=1 d̃i

Q < d̃i] = Pr[
n�

i=1

d̃i > Q] (B.8)

It is easy to show that d
2
Ci

dQ2 > 0. The FOC can be rewritten as

dCi

dQ
= −(p− c)

�
µi+θi+�i

r̃iQ

� 1

0

r̃iΛi(r̃i, d̃i)dr̃idd̃i + c

�
r̃iQ

µi+θi+�i

� 1

0

r̃iΛi(r̃i, d̃i)dr̃idd̃i

where Λi denotes the joint pdf of φ(r̃i) and li(d̃i).

The second order derivative is

d
2
Ci

dQ2
= p

� 1

0

r̃
2
i
Λi(r̃i, r̃iQ)dr̃i > 0

Therefore, the optimal total inventory Q
i

f
from the point of view of retailer i is

the solution to the equation :

(p−c) Pr[
n�

i=1

d̃i > Q
i

f
]E[ d̃i�

n

i=1 d̃i

|d̃i > α̃i(d, Q
i)] = cPr[

n�

i=1

d̃i < Q
i

f
]E[ d̃i�

n

i=1 d̃i

|d̃i < α̃i(d, Q
i)]

(B.9)

Conditions (B.1) and (B.9) are equivalent iff E[ d̃i�
n

i=1 d̃i
|d̃i > α̃i(d, Qi)] = E[ d̃i�

n

i=1 d̃i
|d̃i <

α̃i(d, Qi)] which is equivalent to E[ d̃i�
n

i=1 d̃i
|
�

n

i=1 d̃i > Q
i

f
] = E[ d̃i�

n

i=1 d̃i
|
�

n

i=1 d̃i < Q
i

f
]

under the proportional allocation rule. This completes the proof. �

Proof of Theorem 4.1

We denote by d̂i the random variable with mean µi+θ̂i, support [µi+θ̂i+�i, µi+θ̂i+�i]

and known density function. We define D̂ =
�

n

i=1 d̂i. The quantity set by the system
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is the unique solution of the equation:

(p− c) Pr[D̂ > Q
CP (θ̂)] = cPr[D̂ < Q

CP (θ̂)] (B.10)

We define the random variable r̄i =
d̃i

d̃i+
�

j �=i
dj

with known cdf Φ̄i(·) and pdf φ̄i(·).

Then, ᾱi = r̄iQ . The expected profit of each retailer i, can then be rewritten as:

πi(Q,θ) = E[pmin[d̃i, ᾱi(d, Q)]− cᾱi(d, Q)]

= (p− c)E[d̃i]− [(p− c)E[d̃i − ᾱi(d, Q)]+ + cE[ᾱi(d, Q)− d̃i]
+]

(B.11)

Following the same steps as in the proof of Lemma 4.1, the first-order necessary

and sufficient optimality condition of Q for retailer i is:

(p− c) Pr[d̃i > ᾱi(d, Q)]E[ d̃i
Di

|d̃i > ᾱi(d, Q)] = cPr[d̃i < ᾱi(d, Q)]E[ d̃i
Di

|d̃i < ᾱi(d, Q)]

(B.12)

Under the proportional allocation rule:

Pr[d̃i > ᾱi(d, Q)] = Pr[
d̃i

Di

Q < d̃i] = Pr[Di > Q] (B.13)

Therefore, the optimal total inventory Q
i from the point of view of retailer i is

the solution to the equation :

(p− c) Pr[Di > Q
i]E[ d̃i

Di

|d̃i > ᾱi(d, Q
i)] = cPr[Di < Q

i]E[ d̃i
Di

|d̃i < ᾱi(d, Q
i)] (B.14)

Conditions (B.10) and (B.14) are not equivalent, and hence Q
CP �= Q

i, unless
� �

d̃i>ᾱi

r̄iΓ(r̄i, d̃i)dr̄idd̃i = Pr[D̂ > Q
i]E[r̄i]. This completes the proof. �

Proof of Theorem 4.2

�

θ−i

E�[Pi(Q(θ̂i, θ̂
∗
−i
(θ−i)), (θi, θ−i)]f(θ−i)ddθ−i = πi(Q(θ̂i, θ̂

∗
−i
(θ−i)), θi) (B.15)

From Theorem 4.1, there exists a unique Qi(θi) that maximizes (4.3) (the solution of
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the equation (B.14)). In an automated inventory system, QCP (θ̂) = K+θ̂i+θ̂−i, where

K =
�

n

i=1 µi+(G1◦G2...◦Gn)−1(p−c

p
). Because ∂Q

CP

∂θ̂i
= 1, the best response function

of retailer i is given by θ̂
∗
i
(θi, θ̂−i) = Q

i(θi) − K − θ̂−i. The best response function

of θ̂i, for given θi, is continuous and decreasing in θ̂−i. But, players’ best response

functions do not cross because they don’t satisfy the condition | dθ̂
∗
i

dθ̂−i

||dθ̂
∗
−i

dθ̂i
| < 1. For

example, we consider the case of two retailers, i and j. The best response function of

each retailer has slope -1 and a different intercept (Qi−K and Q
j −K). Hence, they

are parallel; they will have a common point iff θi = θj (leading to infinite number

of equilibria). But since θ
�
i
s are continuous, Pr[θi = θj] = 0. Consequently, the best

response functions do not cross and a Bayesian Nash equilibrium does not exist. �

Proof of Theorem 4.3

Given the belief that b(θ|θ̂) = θ̂, the central planer’s strategy to set Q(θ̂) =
�

n

i=1(µi+ θ̂i)+(G1 ◦G2...◦Gn)−1(p−c

p
) is best response because it is the quantity that

maximizes her expected profit. When the CP is fully trusting, her ordering behavior

is identical to that of an automated inventory system. From Theorem 1, the quantity

that maximizes retailer’s i expected profit may be different from Q(θ̂). In that case,

retailer i will have an incentive to report θ̂i �= θi (even when φ(θ̂−i|θ−i) = θ−i) and

influence Q(θ̂), because dQ(θ̂)

dθ̂i
= 1. In other words, the reporting strategy φ(θ̂i|θi) = θi

is not optimal. Therefore, retailer i has an incentive to deviate. Also, given retailers’

reporting strategy, the CP’s updated belief b(θ|θ̂) = θ̂ is not rational. �

Proof of Lemma 4.2

Let D−i =
�

j �=i
dj, F

�
(n−1) and f

�
(n−1) the cdf and the pdf of D−i respectively.

Then,

lim
n→+∞

E[ d̃i
Di

|d̃i < ᾱi(d, Q)] = lim
n→+∞

�
Q

0

�
Q−t

0
d̃i

d̃i+t
li(d̃i)f

�
(n−1)(t)dtdd̃i

Pr[d̃i < ᾱi(d, Q)]
(B.16)
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where Q is a function of n (QCP (n)). But, limn→+∞ Pr[d̃i < ᾱi(d, Q)] = Pr[d̃i <

ᾱi(d, Q)] = C, where C is a constant depending on the strategy of the CP and

independent of n, e.g. for QCP (θ), Pr[d̃i < ᾱi(d, Q)] = p

c
. But,

�
Q

0

�
Q−t

0

d̃i

d̃i + t
li(d̃i)f

�
(n−1)(t)dtdd̃i ≤

� ∞

0

� ∞

0

d̃i

d̃i + t
li(d̃i)f

�
(n−1)(t)dtdd̃i

≤
� ∞

0

� ∞

0

d̃i

t
li(d̃i)f

�
(n−1)(t)dtdd̃i

=

� ∞

0

d̃ili(d̃i)(

� ∞

0

f

�
(n−1)(t)

t
dt)dd̃i

= E[d̃i]
� ∞

0

f

�
(n−1)(t)

t
dt

(B.17)

Hence,

limn→∞ E[ d̃i
Di

|d̃i < ᾱi(d, Q)] ≤ limn→∞ E[d̃i]
�∞
0

1
t
f

�
(n−1)(t)dt = E[d̃i] limn→∞

�∞
0

1
t
f

�
(n−1)(t)dt.

But, limn→∞
�∞
0

1
t
f

�
(n−1)(t)dt =

�∞
0 limn→∞

1
t
f

�
(n−1)(t)dt, if (a) 1

t
f

�
(n−1)(t) is Rie-

man integrable and (b) f
�

(n−1)(t) converges uniformly to f̄ as n → ∞. 1
t
f

�
(n−1)(t)

is continuous and therefore Rieman integrable. It remains to show part (b) is true.

We assume that sup{f �
�

(n−1)(t)|t ≥ 0} → 0 as n → ∞, i.e. f
�
�

(n−1)(t) ex-

ists and f

�
(n−1) becomes sufficiently flat when n → ∞. Let ξn : R → R with

ξn(t) =
1
t
f

�
(n−1)(t). Then,

d

dt
ξn(t) =

d

dt
f

�
(n−1)(t)t− f

�
(n−1)(t)

t2
(B.18)

Setting the derivative to 0, we get: f �
�

(n−1)(t∗)t∗ − f

�
(n−1)(t∗) = 0. Then, ξn(t∗) =

f

�
(n−1)(t∗)
t∗ = f

�
�

(n−1)(t∗). ξn−1(∞) = 0 and by assumption ξn−1(0) = 0.Then, t∗ is

the value that yields the sup{ξn(t∗)}. By definition,

ξn(t) ≤ sup{ξn(t)|t ≥ 0} = fn(t
∗) = f

�
�

(n−1)(t∗) → 0 as n → ∞ (B.19)

144



Hence, sup{|ξn(t) − 0| | t ≥ 0} → 0 as n → ∞ and therefore ξn(t) converges

uniformly to ξ(t) = 0. Therefore,

lim
n→∞

� ∞

0

1

t
f

�
(n−1)(t)dt =

� ∞

0

lim
n→∞

1

t
f

�
(n−1)(t)dt = 0 (B.20)

Similarly, we can prove that limn→+∞ E[ d̃i
Di

|d̃i > ᾱi(d, Q)] = 0. This completes the

proof. �

Proof of Theorem 4.4

a) When n → ∞, from Lemma 4.2, E[ d̃i
Di

|d̃i < ᾱi(d, Q)] = E[ d̃i
Di

|d̃i > ᾱi(d, Q)] = 0.

Hence, the optimality condition (B.14) of retailer i, ∀i, holds for any Q. If all retailers

report φ(θ̂i|θi) = θi, the resulting system inventory is QCP =
�

n

i=1(µi + θ̂i) + (G1 ◦

G2...◦Gn)−1(p−c

p
) that satisfies (B.10). Therefore, none of the retailers has an incentive

to deviate by misreporting his true signal.

b) Given that b(θ|θ̂) = θ̂, the CP orders the system profit maximizing quantity:

Q = (µi + θ̂i) + (G1 ◦ G2... ◦ Gn)−1(p−c

p
). This quantity satisfies the optimality

condition (17) of any retailer i. Thus, retailer i has no incentive to deviate from

reporting φ(θ̂i|θi) = θi. Given retailers’ best reporting strategy, the CP’s updated

belief b(θ|θ̂) = θ̂ is rational. �

Proof of Theorem 4.5

a) When φ(θ̂i|θi) = θi ∀i, each retailer gets αi = di. This is the quantity that

maximizes his profit and therefore retailer i has no incentive to deviate by distorting

his reported signal.

b) Given that b(θ|θ̂) = θ̂, the CP believes that retailer’s i demand is µi + θ̂i.

So, setting Q =
�

n

i=1 di =
�

n

i=1(µi + θ̂i) is best response from the CP to the re-

ported signals θ̂i’s because it maximizes her profit. When the central planner is

fully trusting, and retailer i reports φ(θ̂i|θi) = θi, he will get an allocation αi(Q) =
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µi+θi�
n

i=1(µi+θi)

�
n

i=1(µi + θ̂i) =
µi+θi�

n

i=1(µi+θi)

�
n

i=1(µi + θi) = µi+ θi = di (assuming that the

other retailers are following the same strategy). Therefore, retailer i has no incentive

to unilaterally distort his reported signal. Given retailers’ best response reporting

strategy, the CP’s updated belief b(θ|θ̂) = θ̂ is rational. �

146



B.3 Proofs of chapter 5

Proof of Proposition 5.1

Let the best response functions for location i at θi and at θi + δ for a given δ > 0 be

qi = ρ
LMI

i
(θi, qj) and q

�
i
= ρ

LMI

i
(θi + δ, qj), respectively. These are the solutions to

the following equations:

�

θj

p(1− Pr[�i < qi − µi − θi]− Pr[qi − µi − θi < �i < qi + qj − µj − θj − �j − µi − θi])

− c(1− Pr[qi − µi − θi < �i < qi + qj − µj − θj − �j − µi − θi]

− Pr[qi + qj − µj − θj − �j − µi − θi < �i < qi])dFj(θj) =
p− c

p

(B.21)

�

θj

p(1− Pr[�i < q
�

i
− µi − θi − δ]

− Pr[q
�

i
− µi − θi − δ < �i < q

�

i
+ qj − µj − θj − �j − µi − θi − δ])

− c(1− Pr[q
�

i
− µi − θi − δ < �i < q

�

i
+ qj − µj − θj − �j − µi − θi − δ]

− Pr[q
�

i
+ qj − µj − θj − �j − µi − θi − δ < �i < q

�

i
])dFj(θj) =

p− c

p

(B.22)

Taking the difference between (B.21) and (B.22) (and substituting d̃j = µj+θj+�j)

we get:

�

θj

(p(−Pr[�i < qi − µi − θi] + Pr[�i < q
�

i
− µi − θi − δ]

− Pr[qi − µi − θi < �i < qi + qj − d̃j − µi − θi]

+ Pr[q
�

i
− µi − θi − δ < �i < q

�

i
+ qj − d̃j − µi − θi − δ])

− c(−Pr[qi − µi − θi < �i < qi + qj − d̃j − µi − θi]

+ Pr[q
�

i
− µi − θi − δ < �i < q

�

i
+ qj − d̃j − µi − θi − δ]

− Pr[qi + qj − d̃j − µi − θi < �i < qi]

+ Pr[q
�

i
+ qj − d̃j − µi − θi − δ < �i < q

�

i
]))dFj(θj)) = 0

(B.23)
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We note that for q
�
i
= qi+ δ, equality (B.23) holds. Thus, there exists a best response

function that is increasing in location i’s signal. Combined with that each location

has a unique best response to the other location’s quantity, we conclude that each

location i’s best response to qj is increasing in its type θi.�

Proof of Theorem 5.1

In Bayesian games with continuous strategy spaces and continuous types, a pure

strategy Bayesian Nash equilibrium exists if (a) strategy sets and type sets are com-

pact and (b) payoff functions are continuous and concave and in own strategies [21].

By assumption, strategy and type spaces consist of closed and bounded single inter-

vals. Therefore, they are nonempty, convex and compact and condition (a) is satisfied.

The expected profit at location i is continuous and twice differentiable in qi and qj

(note that the functions ηi(qi, θi), βi(qi, qj, θi, θj) and γi(qi, qj, θi, θj) are continuous,

monotonic and differentiable in qi and qj). The expected profit at i is also concave

in qi (Eq. 5.12) and thus condition (b) is satisfied as well. The second part of the

theorem directly follows from the definition of a Bayesian Nash equilibrium. �
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Proof of Proposition 5.2

The derivative of Equation (5.11) with respect to θi is given by:

∂
2
π
LMI

i

∂qi∂θi
=

∂

∂θi

�

θj

(p(1− Pr[d̃i < qi])− (p− c) Pr[qi < d̃i < qi + qj(θj)− d̃j]

+ cPr[qi + qj(θj) + d̃j < d̃i < qi]− c)dFj(θj)

=

�

θj

pgi(qi − µi − θi)− (p− c)(gi(qi − µi − θi)

Pr[�i + �j < qi + qj(θj)− θi − θj − µi − µj|�i > qi − µi − θi]

− Pr[�i > qi − µi − θi]φ�i+�j |�i>qi−µi−θi
(qi + qj(θj)− θi − θj − µi − µj))

+ c(−gi(qi − µi − θi) Pr[�i + �j > qi + qj(θj)− θi − θj − µi − µj|�i < qi − µi − θi]

+ Pr[�i < qi − µi − θi]φ�i+�j |�i<qi−µi−θi
(qi + qj(θj)− θi − θj − µi − µj)

=

�

θj

(pai + (p− c)(g2
ij
− g

1
ij
) + c(b2

ij
− b

1
ij
))dFj(θj)

(B.24)

Using the Implicit function theorem, for given qj, we get:

∂q
LMI

i
(θi)

∂θi
) = −

∂
2
π
LMI

i
(qi,qj ,θi)

∂qi∂θi

∂2πLMI

i
(qi,qj ,θi)

∂q
2
i

= 1 (B.25)

Therefore q
LMI

i
(θi) = θi + δ

�
i
where δ

�
i
is a constant. We can re-write q

LMI

i
(θi) =

µi + θi + δi. �
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Proof of Proposition 5.3

It is sufficient to show that the optimality conditions (5.8) and (5.19) are not

equivalent, unless γi(qi,qj ,θi,θj)
βi(qi,qj ,θi,θj)

= p−c

c
at (q∗

i
, qj). Let’s assume that for some qj, qLMI

i
=

q
CPMI

i
= q

∗
i
. That means that

ηi(q
∗
i
, θi) +

p− c

p
γi(q

∗
i
, qj, θi, θj)−

c

p
βi(q

∗
i
, qj, θi, θj) =

ηi(q
∗
i
, θi) + γi(q

∗
i
, qj, θi, θj)− βi(q

∗
i
, qj, θi, θj)

⇒

c · γi(q∗i , qj, θi, θj) = (p− c) · βi(q
∗
i
, qj, θi, θj)

(B.26)

For γi(q∗i , qj, θi, θj) �= 0 and βi(q∗i , qj, θi, θj) �= 0, condition (B.26) reduces to
γi(qi,qj ,θi,θj)
βi(qi,qj ,θi,θj)

= p−c

c
. Otherwise, equation (B.26) is infeasible, and � qj such that

q
CPMI

i
= q

LMI

i
. �

Proof of Proposition 5.4

Because retailer j follows his equilibrium strategy of reporting the truth, θ̂j = θj.

Similarly, because the central planner follows her equilibrium strategy in response to

the received signals, b(θi|θ̂i) = θ̂i and b(θj|θ̂j) = θ̂j = θj. Hence, total inventory is

given by: QCPMI = µi + µj + θ̂i + θj + (Gi ◦Gj)−1(p−c

p
). More specifically, qCPMI

i
=

µi + θ̂i + s and q
CPMI

j
= µj + θj + s. Probability ηi(qi, θi) does not depend on θj.

Substituting q
CPMI

j
in probability βj(qi, qj, θi, θj), we observe that it does not depend

on θj, when retailer j reports his true signal and the CP believes him.

βi(qi, q
CPMI

j
, θi, θ̂j) = Pr[qi, q

CPMI

j
− dj < d̃i < qi]

= Pr[qi + µj + θj + s− µj − θj − �j < d̃i < qi]

= Pr[qi + s− �j < d̃i < qi]

(B.27)

Similarly ,

γi(qi, q
CPMI

j
, θi, θ̂j) = Pr[qi < d̃i < qi + s− �j] (B.28)
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We note, that the inventory dynamics under CPMI and LMI are the same (only

the decision rights and hence the information set the decision is based on differ).

Therefore, the optimality condition (5.13) characterizes the inventory choice that

maximizes regional manager’s i expected profit under CPMI, given his information

about demand. We see, that the condition is independent of θj when RM j tells the

truth and the CP believes it and acts optimally upon it.

We define βi(qi, qCPMI

j
, θi, θ̂j) = βi(qi, θi) and γi(qi, qCPMI

j
, θi, θ̂j) = γi(qi, θi). Hence,

RM i’s optimal inventory choice coincides with that of the CP iff

γi(qi, θi)

βi(qi, θi)
=

p− c

c
(B.29)

at q
CPMI

i
= µi + θi + s. Because ∂q

CPMI

i

θ̂i
= 1 �= 0, RM i will have an incentive to

report θ̂i �= θi unless (B.29) holds. �

Proof of Theorem 5.2

The central planer’s strategy to choose (qCPMI

i
(θ̂i), qCPMI

j
(θ̂j)), as defined in propo-

sition 5.4, given the belief b(θ|θ̂) = θ̂ is best response because expected aggregate

profits are maximized. If regional managers send the real demand signal and the

CP trusts the information received and incorporates it in her ordering decisions, she

will make inventory choices that will not in general maximize the expected profit of

a regional manager (Proposition 5.4). Thus, regional managers may have an incen-

tive to distort the information sent (unless γi(qi,θi)
βi(qi,θi)

= γj(qj ,θj)
βj(qj ,θj)

= p−c

c
evaluated at the

inventory choices (qCPMI

i
(θi), qCPMI

j
(θi)). In that case, regional manager i will have

an incentive to report θ̂i �= θi, even when φ(θ̂j) = θj because ∂q
CPMI

i

θ̂i
�= 0. In other

words, the reporting strategy φ(θ̂i) = θi is not optimal. Therefore, regional manager

i will have an incentive to deviate for certain realizations of θi. Also, given regional

managers’ reporting strategy, the CP’s updated belief b(θ|θ̂) = θ̂ is not rational. �
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Proof of Theorem 5.3

We look for cij and cji that equate conditions (5.19) and (5.13). We have a system

of two equations with 2 unknowns:

ηi +
p− cji

p
γi −

cij

p
βi = ηi + γi − βi

ηj +
p− cij

p
γj −

cji

p
βj = ηj + γj − βj

(B.30)

After some algebraic manipulation, we arrive at the solution (5.25) for i, j = 1, 2.

To prove existence of solutions such that 0 ≤ cij ≤ p, we first note that if cij = p

for i, j = 1, 2, qLMI

i
≥ q

CPMI

i
(comparing (5.19) and (5.13)). Similarly, for cij = 0,

q
LMI

i
≤ q

CPMI

i
. By continuity and because qLMI

i
increases both in cij and cji, a unique

pair of transfer prices that satisfies (B.30) exists for each pair of (qCPMI

i
, q

CPMI

j
). �
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Appendix C

Additional Numerical Analysis

Chapter 4

Information asymmetry and cr=0.75 / 0.25 For the base case and asymmetric

information, Table C.1 shows the optimal quantity for retailer 1 and the expected

system quantity had the two retailers reported the true signals when cr=0.75 and

cr=0.25. Similar to when the critical ratio is 0.5, in all instances Q1
< E[QCP ] and

the absolute difference is increasing in the signal received by retailer 1.

cr=0.75 cr=0.25

θ1 Q
1 E[QCP ] Q

1 − E[QCP ] Q
1 E[QCP ] Q

1 − E[QCP ]

-3 18.136 18.168 -0.032 15.795 15.832 -0.037

-2 19.128 19.168 -0.040 16.787 16.832 -0.045

-1 20.123 20.168 -0.045 17.782 17.832 -0.050

0 21.120 21.168 -0.048 18.778 18.832 -0.053

1 22.118 22.168 -0.050 19.777 19.832 -0.055

2 23.117 23.168 -0.051 20.776 20.832 -0.056

3 24.116 24.168 -0.052 21.775 21.832 -0.056

Table C.1: Comparison of the optimal inventory for retailer 1 and the expected
inventory in the system under truth-telling, as a function of θ1, for cr=0.75 and
cr=0.25
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Discrete uniform demand By simulating the demand distributions used in ex-

perimental treatment R2DU (discrete uniform), we compute, for different demand

signal realizations, the inventory level that maximizes the average profit of retailer

1, assuming that retailer 2 reports his true forecast and the CP trusts the received

information and optimally sets the inventory level. We employ the revenue / cost

parameters used in the experiment (p = 2 and c = 1). Table C.2 presents the results.

In all cases the difference between the quantity that retailer 1 prefers and the system

optimal is very small, less than 1%.

θ1 Q
1 E[QCP ] Q

1 − E[QCP ]

-150 352 350 2

-120 382 380 2

-100 402 400 2

-80 420 420 0

-60 440 440 0

-40 459 460 -1

-20 479 480 -1

0 499 500 -1

20 519 520 -1

40 539 540 -1

60 560 560 0

80 580 580 0

100 600 600 0

120 620 620 0

150 650 650 0

Table C.2: The inventory that maximizes average profit for retailer 1, for various
values of θ1, and the system optimal inventory level for discrete uniform demand
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Appendix D

Experiment Instructions

D.1 Handout to regional managers: Case R2DU

Experiment Instructions

Treatment 1: 2 Regional Managers, a Central Planner, Market

Uncertainty

Handout to regional managers

This is an information sharing inventory game

You are part of a supply chain of 3 people: 2 regional managers and 1 central plan-

ner. You are assigned the role of one of the two regional managers. In this task, you will

make decisions for up to bf 40 independent rounds (5 trial and up to 35 game rounds). In

each round, you will play with 2 other participants in this room (one other regional man-

ager and one central planner). At the beginning of each round all players are randomly

and anonymously assigned to a supply chain group. Your role will always be a regional

manager but you will not be assigned to the same supply chain group in consecutive rounds.

Setting

You are the manager of a regional store that sells seasonal products (e.g., holiday decora-

tions). This store is part of a network of 2 regional stores operated by a parent company.
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The company has a central planner who decides on the amount of inventory to purchase for

each product in the stores’ collection for a given season. For the purpose of this exercise

we will focus on one product. To help inform the central planner’s decision, each regional

manager provides the central planner with a demand forecast several months before the

selling season. The central planner sees this information and may use it to determine a

total order quantity for the product. The total quantity of the product is held in the parent

company’s single warehouse and shipped to the regional stores after demand is realized.

The timing of events is as follows:

Regional Demand

The product’s demand for a given season within one retail region is determined by the

sum of two components:

Regional Demand = X + Y

X is randomly generated in each round for each retail region. Each regional manager

observes the exact value of X for his (and only his) region. The other regional manager

and the central planner only know that X for any retail region is equally likely to be any

integer value between 100 and 400.

Y is also randomly generated in each round for each retail region. The regional managers

and the central planner only know that Y for any retail region is equally likely to be any

integer value between -50 and 50.
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The values of X and Y in each round are independent. They are also independent across

retail regions and rounds. Thus, if X and/or Y are large (or small) for a region in the

current round, this will not affect whether they are large (or small) in another region or in

future rounds.

Your decision

As described above, as a regional manager you have better information about your re-

gional demand because you observe the exact value of your X.

Your decision is to send a report of your information to the central planner. In each

round, you will send to the central planner a report of X for that season.

Please note that as long as your report is between 100 and 400 units, the central planner

cannot verify whether you reported your private information truthfully or not.

Central planner’s decision

The central planner sees the reports of Xs for the two regional managers and then chooses

the total order quantity to purchase for the product (common inventory for the two

regions is held centrally). The product costs $1 per unit for the central planner to purchase

from a wholesaler and is sold by the regional managers for $2 per unit.

The objective of the central planner is to maximize the companys profit, defined as the

revenue earned across all store regions minus the cost of the acquiring the product:

Companys Profit = $2 * min [Total Demand, Total Order Quantity] $1 * Total Order

Quantity

Total Demand stands for the sum of product demand across all store regions.

Your profit

As a regional manager, you will be rewarded in proportion to the local profit of your store.

For each unit you sell, your store earns $2. For each unit you receive from the company’s

warehouse, your store pays $1. Your store’s profit is calculated as follows:
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Local Profit = $2 * min [Regional Demand, Allocation] $1 * Allocation

Your Allocation is based on the total order quantity chosen by the central planner and the

ratio of your regional demand versus total demand across all regions. It is given by:

Allocation = (Regional Demand / Total Demand)*Total Order Quantity

Please note that with this allocation rule it is possible to receive a quantity below/above

your regional demand. No inventory is left at the central warehouse at the end of the season.

Example of the allocation rule

Suppose your final regional demand is 270 units and the final demand at the other re-

gional store is 330. If the total order quantity was 620 units, your allocation will be

(270/(270+330))*620= 279 units (allocation is above your demand). If instead the to-

tal order quantity had been 580 units, your allocation would be 270/(270+330))*580= 261

units (allocation is below your demand).

How you will be paid

If you follow these instructions and make good decisions you will earn a considerable

amount of money that will be paid to you in cash at the end of the session.

At the end of the experiment, your stores profit from the game rounds (the first 5 trial

rounds do not affect your profits) will be divided by 690 to determine your earnings from the

experiment. These dollar earnings will be added to your $10 participation fee and displayed

on your computer screen. The maximum amount of dollars you may receive is $20.

When you have completed all rounds of the game, you will be asked to fill out the Post-

Game survey. Then the researcher will pass by your carrel desk and you will be paid your

earnings in cash. After you have been paid, you will be free to leave.

Thank You
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D.2 Handout to central planners: Case R2DU

Experiment Instructions

Treatment 1: 2 Regional Managers, a Central Planner, Market Uncertainty

Handout to the Central Planner

This is an information sharing inventory game

You are part of a supply chain of 3 people: 2 regional managers and 1 central planner.

You are assigned the role of the central planner. In this task, you will make decisions for up

to 40 independent rounds (5 trial and up to 35 game rounds). In each round, you

will play with 2 other participants in this room (2 regional managers). At the beginning

of each round players will be randomly and anonymously assigned to a supply chain

group. Your role will always be the central planner of the supply chain group but you will

not be assigned to the same group in consecutive rounds.

Setting

You are the central planner of a company that owns a network of 2 regional stores. Each

store sells the same seasonal products (e.g., holiday decorations). You are responsible for

deciding on the amount of inventory to purchase for each product in the stores’ collection

for a given season. For the purpose of this exercise we will focus on one product. To

help inform your decision, each store manager provides you with a demand forecast several

months before the selling season. You may use this information to determine the companys

total order quantity for the product. The total order quantity of the product is held in the

company’s single warehouse and shipped to the regional stores after demand is realized.

The timing of events is as follows:
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Regional Demand

The product’s demand for a given season within one retail region is determined by the

sum of two components:

Regional Demand = X + Y

X is randomly generated in each round for each retail region. Each regional manager

observes the exact value of X for his (and only his) region. The other regional manager and

you (the central planner) only know that X for any retail region is equally likely to be any

integer value between 100 and 400.

Y is also randomly generated in each round for each retail region. The regional managers

and the central planner only know that Y for any retail region is equally likely to be any

integer value between -50 and 50.

The values of X and Y in each round are independent. They are also independent across

retail regions and rounds. Thus, if X and/or Y are large (or small) for a region in the

current round, this will not affect whether they are large (or small) in another region or in

future rounds.

Regional managers’ decision

As described above, each regional manager has better information about his regional

demand because he observes the exact value of his X.
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Each regional manager must decide what information to provide to you (the central

planner), about X. This information takes the form of a report of X for the round.

Please note that as long as the report is between 100 and 400 units, you cannot verify

whether a regional manager reported his private information truthfully or not.

The objective of each regional manager is to maximize the local profit of his store.

For each unit a store sells, the store earns $2. For each unit a store receives from the

companys warehouse, it pays $1. The profit at each store is calculated as follows:

Local Profit = $2 * min [Regional Demand, Allocation] $1 * Allocation

A store’s allocation is based on the total order quantity (your decision) and the ratio of the

store’s regional demand versus total demand across all regions:

Allocation = (Regional Demand / Total Demand)*Total Order Quantity

Total Demand stands for the sum of the product demand across all store regions. Please

note that with this allocation rule it is possible that a regional store receives a quantity

below/above its demand. No inventory is left at the central warehouse at the end of the

season.

Example of the allocation rule

Suppose the final regional demands at the two stores are 270 and 330 units respectively.

If your total order quantity was 620 units, stores will be allocated (270/(270+330))*620=

279 units, and (330/(270+330))*620= 341 units respectively (allocation is above their de-

mand). If, instead, the total order quantity had been 580 units, their allocation would be

261 and 319 units respectively(allocation is below their demand).

Your decision

Your task it to decide the total order quantity to purchase for the product. This

quantity will be held in the company’s single warehouse as common inventory for the 2

regions until regional demands are realized. The product costs $1 per unit to purchase from

a wholesaler. No additional costs are incurred in holding or shipping the product.
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Your profit

Being the central planner, you will be rewarded based on the companys total

profit that is the sum of the local profits of each store. Companys profit is defined as the

revenue earned across all store regions minus the cost of acquiring the product:

Companys Profit = $2 * min [Total Demand, Total Order Quantity] $1 * Total Order

Quantity

How you will be paid

If you follow these instructions and make good decisions you will earn a considerable

amount of money that will be paid to you in cash at the end of the session.

At the end of the experiment, your total earnings from the game rounds (the first 5

trial rounds do not affect your profits) will be divided by 1400 to determine your earnings

from the experiment. These dollar earnings will be added to your $10 participation fee and

displayed on your computer screen. The maximum amount of dollars you may receive is

$20.

When you have completed all rounds of the game, you will be asked to fill out the Post-

Game survey. Then the researcher will pass by your carrel desk and you will be paid your

earnings in cash. After you have been paid, you will be free to leave.

Thank You
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D.3 Summary sheets

Summary sheet for regional managers

Summary

Period 0: Common Information

Regional Demand = X + Y

X is equally likely to be any integer value between 100 and 400.

Y is equally likely to be any integer value between -50 and 50.

Total Demand = Regional Demand 1 + Regional Demand 2

Timing of Events

Period 1: Each Regional Manager (RM) learns the exact value of his (and only his) X.

Your decision: send to the Central Planner a report of X for your region.

Period 2: The Central Planner (CP) sees the reports and places a Total Order Quantity.

Period 3: Ys are revealed (hence Regional Demands and Total Demand are known).

Allocations are determined. Your allocation is:

Allocation = (Your Regional Demand / Total Demand)*Total Order Quantity

Profits are calculated. Your profit (=Local Profit)

Local Profit = $2* min [Regional Demand, Allocation] $1 * Allocation
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Summary sheet for central planners

Summary

Period 0: Common Information

Regional Demand = X + Y

X is equally likely to be any integer value between 100 and 400.

Y is equally likely to be any integer value between -50 and 50.

Total Demand = Regional Demand 1 + Regional Demand 2

Timing of Events

Period 1: Each Regional Manager (RM) learns the exact value of his (and only his) X.

Each RM sends to you, the Central Planner (CP), a report of X for his region.

Period 2: Your decision:You see these reports and place a Total Order Quantity.

Period 3: Ys are revealed (hence Regional Demands and Total Demand are known).

Allocations are determined and profits are calculated.

Your profit (=Company’s Profit)

Company’s Profit = $2 * min [Total Demand, Total Order Quantity] $1 * Total Order

Quantity
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Appendix E

Snapshots from the Experiment

Software

E.1 Snapshots of a retailer’s computer screen: Case

R2DU
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E.2 Snapshots of a central planner’s computer screen:

Case R2DU
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