Apéndice A

La camara Microsoft Kinect

A.1. Especificaciones técnicas

La camara Kinect es un periférico de entrada desarrollado por Microsoft para
jugar en la videoconsola Xbox 360 que salié a la venta en Noviembre de 2010. Se
trata de un controlador que tiene el propésito de ser capaz de permitir jugar a
los videojuegos sin necesidad de ninglin mando, percibiendo y reconociendo los
cuerpos de los jugadores y los movimientos que realizan, asi con reconocimiento
de voz. Para ello hace uso de dos cAmaras frontales, una convencional de RGB y
un sensor de distancia, y de una serie de micréfonos.

El sistema de percepcion de profundidad consta de tres partes béasicas: el
proyector laser de infrarrojos, el sensor CMOS y el microchip que procesa la
informacion. Fue creado y desarrollado por PrimeSense, una compania Israeli ex-
perta en innovacion. Contrariamente a lo que podriamos suponer en un principio,
no se trata de un sensor basado en tiempo de vuelo, sino que su funcionamiento
se basa en la proyeccion de un patréon de puntos pseudo-aleatorio y su lectura y
triangulacion mediante el sensor CMOS. En la seccién A.2 se entra més en detalle
en cuanto a funcionamiento del sistema.

En la Figura A.1 se puede ver con claridad las distintas partes que componen
la cAmara de forma numerada:

1. Conjunto de micréfonos. Esta compuesto por cuatro micréfonos, que permi-
ten la comunicacion con el dispositivo y darle 6rdenes al mismo. Su configu-
racion hace que sea capaz de reconocer la localizacion de donde proviene el
audio dentro de la habitacién, y estdn programados para captar y erradicar
el posible ruido de ambiente.

2. Proyector laser. Posee las siguientes propiedades [6]:

= Se trata de un laser no modulado, no produce pulsos en su salida sino
que se mantiene a nivel constante.

» La longitud de onda es de 830nm.

= Consta de un sistema de difraccion que subdivide el rayo en multiples
instancias, proyectando un patréon de puntos pseudo-aleatorio.

33

APENDICE A. LA CAMARA MICROSOFT KINECT

1.- Micréfonos
2.- Proyector laser
3.- Sensor CMOS de infrarrojos
4.- Motor de inclinacién

5.- Camara RGB

6.- Cable USB

Figura A.1: Esquema de los elementos de la Kinect

(b)

Figura A.2: (a) Emisor laser que proyecta el patron de puntos. (b) Sensor CMOS que
capta el patron emitido para calcular la profundidad

= La potencia medida a la salida de la Kinect es de 60mW. No es dani-
na para los ojos, si bien es probable que la difracciéon inducida haya
introducido pérdidas.

= Posee un estabilizador de temperatura que se encarga de mantener el
laser a temperatura constante para no alterar la longitud de onda de
salida.

3. Sensor de infrarrojos. Microsoft no ha desvelado de qué componente especi-
fico se trata. Expertos en ingenieria inversa han determinado que se trata del
sensor CMOS monocromo de 1/2"MTIMO001C12STM, de la marca Micron
(Figura A.2b). Posee las siguientes propiedades:

= Tamano de pixel: 5, 2um

34

A.1. ESPECIFICACIONES TECNICAS

» Formato de video 5:4 con resolucion SXGA 1280 x 1024 (1,3 Megapi-
xeles).

= 30 fps programables.
= Rango de temperaturas de trabajo: 0°C a 70°C

= Posee un filtro de paso de infrarrojos a la misma frecuencia del l4-
ser. Experimentos realizados con otras fuentes de luz (visible, 950nm)
producen una influencia en el sensor minima.

= Aunque se trata de un sensor de infrarrojos, se sitia en el rango de
captacion del espectro electromagnético del infrarrojo cercano (entre
780 nm y 2.500 nm, ya que mide 830 nm). Esto hace que sea totalmente
imposible medir temperaturas, al ser el rango 6ptimo utilizado por
camaras termograficas el del infrarrojo medio (en concreto, entre 3.000
nm y 14.000 nm).

» El campo de vision en horizontal de la camara es de 57° (Figura A.3)
y el rango maximo de distancia desde la camara para la captacion
de profundidad es de 0,8 metros a 4 metros, considerandose un rango
optimo de 1,2 metros a 3,5 metros. En Febrero de 2012 sali6 al mercado
una nueva Kinect disenada para usar en Windows, que amplia el rango
de cercania a 0,4 metros al poseer un «modo cercano».

Figura A.3: Campo de visién horizontal y rango de proximidad de la Kinect

» El campo de vision vertical de la caAmara estatica es de 43,5° (Figu-
ra A.4).

35

APENDICE A. LA CAMARA MICROSOFT KINECT

1.Bmy'6ft

Figura A.4: Campo de visién vertical y variacién del mismo provocada por la inclina-
ciéon del motor

4. Motor de inclinacién de la Kinect. La caAmara esta equipada con un motor
que inclina arriba o abajo la cAmara +27° para poder abarcar comodamente
el cuerpo de los usuarios sin importar la altura a la que estd situada la
camara (arriba o abajo de la television) (Figura A.4). Posee un acelerometro
que indica la inclinacién que posee en cada instante.

5. Camara RGB. Al igual que ocurria con el sensor de profundidad, se ha
conocido la identidad del componente a través de la ingenieria inversa. Es de
la misma familia, un Micron MT9M112 (Figura A.5), un sensor de imagen
CMOS System-on-Chip. Posee las siguientes caracteristicas técnicas:

» Tamano de pixel: 2,8um x 2,8um

= 1,3 Megapixeles

= Resolucién: 1.280H x 1.024V

= Filtro de color de Bayer.

= 15 fps a méxima resolucion, 30 fps a 640 x 512

= Rango de temperaturas de trabajo: -30°C a +70°C
= Soporta VGA, QVGA, CIF y QCIF

6. Cable conector USB. La conexién tanto a la consola como al ordenador se
hace mediante USB 2.0, lo cual limita en parte la cantidad de informaciéon
que se puede procesar por segundo, que tedricamente podria ascender a
60MB/s aunque suele acercarse mas a los 30MB/s. Esto hace que no se

36

A.1. ESPECIFICACIONES TECNICAS

"
“
—
~
LB
L
L
“

L

Figura A.5: Foto de la cAmara extraida de la Kinect

pueda transmitir toda la informacién de imégenes a plena resolucién y con
una tasa de fps de 30, por lo que constituye uno de los motivos por los que
la resolucion de las cAmaras no es la que finalmente llega a procesarse en el
ordenador.

Con el USB se pueden alimentar las cAmaras, si bien es cierto que el poseer
motor de inclinacién hace que la potencia aportada no sea suficiente y tenga
que contarse a su vez con una conexiéon a la red eléctrica.

Estas partes descritas se encuentran montadas dentro de una caja de plastico
negra y alargada, donde las cAmaras y el laser permanecen unidos a una placa
metalica que los mantiene situados a la distancia oportuna (Figura A.6a). Si se
doblase esa placa se alteraria la imagen de profundidad obtenida. La caja va unida
a la base mediante una barra mévil que es accionada por el motor de inclinacion.

Paralelamente a la placa metalica se sitiian dos placas con microchips que se
encargan de controlar el sistema y procesar la informacién recogida por los senso-
res (Figura A.6b). Entre ellos destaca el PS1080 SoC, el auténtico «cerebroy de
la Kinect, que se encarga de procesar la informaciéon de profundidad, ejecutando
los algoritmos necesarios dentro del propio chip, asi como la de imagen RGB y
microfonfa (Figura A.7). Cuenta con una interfaz USB 2.0 que es la que trans-
mite la informacion procesada. El procesamiento de la profundidad se hace pues,
dentro de la Kinect, y no depende de a qué esté conectada. La informacion no se
procesa en el ordenador, éste solo la lee.

Las especificaciones técnicas del microchip se muestran en la tabla A.1. Ahi
se ponen en evidencia algunas restricciones que se han visto en cuanto a los com-
ponentes, como el campo de vision, la resolucion de las imagenes de profundidad
y el rango de operacion. Los fps no se ven limitados por el chip, sino por los sen-
sores en si y la conexion USB en este caso, igual que la resolucion de la imagen
de color.

37

APENDICE A. LA CAMARA MICROSOFT KINECT

(b)

Figura A.6: a) Sensores y laser empotrados en una placa metélica. b) Placas paralelas
a la metéalica con la electréonica y microchips que controlan el dispositivo.

[
Dy I .
l."‘MDS‘ e

-

Figura A.7: Esquema de funcionamiento del PS1080

38

A2, FUNCIONAMIENTO DEL SENSOR DE PROFUNDIDAD

Especificacién técnica PS1080

Campo de vision 58° Horizontal, 45° Vertical, 70°
Diagonal

Tamario de la imagen de profun- VGA (640 x 480)

didad

Resolucion espacial en x/y a 2m 3mm

de distancia

Resolucion en Z (profundidad) a lem

2m de distancia

Frames por segundo maximos 60 fps

Rango de operacion 0.8m - 3,5m

Tamafio de la imagen de color UXGA (1600 x 1200)

Audio: Micréfonos integrados Dos micréfonos

Audio: Entradas digitales Cuatro entradas

Interfaz de datos USB 2.0

Fuente de energia USB 2.0

Consumo 2.25W

Dimensiones (Ancho x alto x es- l4dem x 3, 5em x bem

pesor)

Ambiente de uso Cerrado

Temperatura de operacion 0°C - 40°C.

Tabla A.1: Especificaciones del PS1080

Ademés, la Kinect estd equipada con un ventilador que se activa cuando la
temperatura alcanzada es mayor de 70°C (recordar que el valor maximo del rango

de operacion de los sensores ronda esa temperatura) y que se alimenta por la toma
USB.

A.2. Funcionamiento del sensor de profundidad

De todas las caracteristicas y prestaciones que tiene la Microsoft Kinect descri-
tas en la seccion A.1, una de las mas interesantes para el proyecto es la percepcion
de profundidad. Por ello, esta seccion va a comentar su funcionamiento basico y
la base matemética que hay detras de su Optica.

Las claves del funcionamiento son parcialmente desconocidas al no haberse
revelado explicitamente, pero anélisis realizados por expertos [6, 10, 9] junto con
la observacion de las patentes que PrimeSense han ido publicando en los altimos
anos dejan entrever algunos de sus secretos.

Observando las imagenes captadas por la Kinect, a priori no puede asegurarse
qué método emplea. Se sabe que dispone de un emisor laser y de un receptor
que capta las senales reflejadas del laser. Podria tratarse de un sensor de tiem-
po de vuelo (Time-Of-Flight), aquel que la distancia de la escena se determina
cronometrando el tiempo de viaje de ida y vuelta de un pulso de luz. Dado que

39

APENDICE A. LA CAMARA MICROSOFT KINECT

la luz del laser se difracta en numerosos puntos, de este modo podria obtener-
se la informacion de la escena completa. Pero el laser no emite pulsos, no esti
modulado.

La Kinect utiliza un procedimiento de luz estructurada para extraer la pro-
fundidad. El emisor emite un patréon de puntos, y la observacién por medio del
sensor de las variaciones en el patrén indican la forma y situacion de los objetos
mediante un proceso de triangulaciéon. Para realizar la triangulacion ha de haber
un previo patron de referencia.

El laser emite un rayo tinico que se divide formando el patrén, que es constante
y se proyecta en la escena. Una captura realizada por una cAmara capaz de captar
senales infrarrojas nos muestra su aspecto en la Figura A.8

Figura A.8: Captura del patréon de puntos sobre una pared

En ella se ve como el nimero de puntos es muy elevado, y su posicién no sigue
una ordenaciéon aparente, sino que parece aleatorio, pese a tratarse siempre del
mismo y ser constante. Sin embargo también se puede observar que parece que se
divide en nueve subsecciones formando una matriz 3 x 3 donde el centro de cada
una aparece ligeramente méas iluminado. Una observacion més exhaustiva permi-
te ademads ver que hay algunos puntos que estan menos iluminados con mucha
menos intensidad que otros. Se desconoce la razén por la que el patron tiene estas
caracteristicas, pueden tratarse de consecuencias derivadas del difractor emplea-
do o formar parte de una serie de «pistas» que ayudan al sistema a establecer las

40

A2, FUNCIONAMIENTO DEL SENSOR DE PROFUNDIDAD

correlaciones para la triangulacion.

(a) ol e R

Figura A.9: Distorsion del patron al introducir un objeto en escena. a) Pared sin nada.
b) Se ha situado un libro delante de la pared

El patron de referencia se obtiene capturando un plano a una distancia co-
nocida del sensor, y permanece almacenado en la memoria desde el proceso de
fabricacion de la cAmara. Cuando un patron de puntos se proyecta hacia un objeto
cuya distancia al sensor es mayor o menor que la del plano de referencia, el patron
se distorsiona desde el punto de vista del sensor, ocasionandose desplazamientos
de los puntos en la direcciéon de la linea que une el proyector laser con la caAmara
infrarroja. Esto se ilustra en la Figura A.9, donde se ve como se distorsiona el
patrén proyectado sobre la pared sin nada delante al introducir un libro en la es-
cena. Si pensamos en la pared como el plano de referencia, se ve como el patron,
proyectado por el laser desde la derecha, se desplaza en la zona del libro hacia el
lado derecho produciéndose una especie de sombra a la izquierda del libro, puesto
que el sensor capta la imagen desde la izquierda y los rayos se ven interceptados
y no llegan a la zona oscura. El principio de funcionamiento general de la Kinect
es similar, solo que en vez de la pared es un plano precargado en la memoria a
una distancia determinada.

Para contemplar y medir los desplazamientos en los puntos que permiten eje-
cutar la triangulacion ha de establecerse una correlacion entre los puntos de la
imagen captada y el patron de referencia. Se desconocen los detalles exactos de
funcionamiento de la misma, pero en esencia parece basarse en una busqueda por
secciones de la imagen y una comparacion posterior hasta encontrar puntos que
sean coincidentes en ambos patrones. Una vez encontrada alguna coincidencia se
procede a ir agrandando la region mirando los pixeles colindantes y presuponiendo
que las diferencias en cada superficie no son muy grandes. Se sigue aumentando
la regiéon hasta el momento en que ocurren grandes variaciones en todas las di-
recciones que hagan pensar que se trata de una region distinta. Se deja de mirar
en esa region y se toma otro punto coincidente. Pese a la complejidad del proceso
la Kinect es capaz de computarlo de forma rapida.

Para describir el proceso matematico de obtencion de distancias nos apoyamos
en la Figura A.10. En ella se ve la relacion triangular entre el punto del objeto a

41

APENDICE A. LA CAMARA MICROSOFT KINECT

tratar k visto desde el sensor relativo al plano de referencia y la disparidad medida
d. Se considera el origen de las coordenadas tridimensionales situado en la caAmara
infrarroja, con el eje Z ortogonal al plano de la imagen y dirigido al objeto y el eje
X en la linea base b que une la cAmara con el proyector perpendicular al anterior.

o Plano de referencia
'S

: A k Plano del objeto
R
1 T P i
! |
'y
! |
! |
! |
[

Z,y !
! |
! |
. |
' I
! |
! |
Yoy
v ¥

f | C (Céamara de infrarrojos) L (Proyector laser)
1
1

i A
eI el B >
a b

Figura A.10: Esquema de la triangulaciéon empleada para obtener el valor de profun-
didad desde la disparidad captada por el sensor

En el esquema se ha situado el plano del objeto a una distancia Z; menor que
la distancia del plano de referencia Z,. Por tanto, al proyectarse el patron desde
L, el punto proyectado que en el plano de referencia visto por C se situaba en
o, ahora se situard en k, al haber ahora un objeto delante. Desde C' se percibe
como un desplazamiento en el eje X a la derecha de magnitud D. Si se hubiese
considerado el objeto més lejano al plano de referencia, el desplazamiento hubiese
sido hacia la izquierda.

Lo que mide y registra el sensor no es directamente la distancia D del espacio
del objeto, sino la disparidad d. Para cada punto k& se mide dicho pardmetro y se
obtiene un mapa de disparidad. Observando los tridngulos que forman la imagen
obtenemos:

D Z,— %
A (A1)
yZ
d D
- = A2
P (42

42

A2, FUNCIONAMIENTO DEL SENSOR DE PROFUNDIDAD

Donde Zj, la distancia (profundidad) del punto k del objeto, es la variable
que se quiere obtener; b es la longitud de la base entendida como la distancia
entre la cdmara y el proyector; f es la distancia focal del sensor infrarrojo; D es
la distancia real de desplazamiento del punto k£ en el espacio del objeto y d es la
disparidad observada en el espacio de la imagen. Sustituyendo D de ecuacién A.2
en ecuacion A.1 y despejando se obtiene:

Zo

Lo (A.3)
1+ %d

AR

Los pardametros Z,, f y b se pueden determinar del proceso de calibracion.

La coordenada Z de cada punto junto con f definen la escala de la imagen para

ese punto. Las coordenadas planimétricas del objeto en cada punto se pueden
calcular a partir de las coordenadas de la imagen y la escala:

X, = —é(a:k — 1z, + 1)
/ (A4)

7
Y = _Tk(yk — Yo + 0y)

Donde z e y; son las coordenadas en la imagen del punto, x, e ¥y, son las
coordenadas del punto principal, es decir, del offset de la imagen y dx y dy son
las correcciones de la distorsion de la lente. Tanto los valores de offset como los
de las correcciones también se pueden obtener del proceso de calibracion.

Con los parametros de la calibracion conocidos, se puede completar la relacion
entre los puntos medidos de la imagen (x,y,d) y las coordenadas del objeto
(X,Y, Z) de cada punto. Asi se puede generar una nube de puntos de cada imagen
de disparidad.

La disparidad asi descrita es una medida de la «profundidad inversa», valores
mas grandes de la misma significan distancias mas cortas. Pero el valor de dispa-
ridad que retorna la Kinect, d’ estd normalizado con un offset segun la relacion:

d' = doyfeer — 8 (A.5)

De modo que los valores que se obtienen mediante el software si que crecen
con la distancia. Por esto, a efectos practicos, se han utilizado los valores de
disparidad normalizada d’ como si de la profundidad se tratase puesto que se
comportan de igual manera y evita la adicion de célculos extra. A través de d’ es
posible obtener mapas de disparidad donde cada punto tiene una representacién
(z,y,d"). Dichos mapas son los que se denominan habitualmente «imégenes de
profundidad» (Figura A.11).

Las imagenes de profundidad tal y como llegan al sistema después de proce-
sarse dentro de la cAmara son imagenes de 11-bits de 640 x 480. En el entorno
de trabajo aparecen como matrices cuyos pixeles tienen un valor numérico de
0 a 2 = 2047. El valor de cada elemento se corresponde con la disparidad
normalizada obtenida en cada punto. Los pixeles donde no haya informacion de
profundidad los consideraremos de valor cero, aunque en ROS lo recibamos como

43

APENDICE A. LA CAMARA MICROSOFT KINECT

Figura A.11: Mapa de disparidad (izquierda) calculado por la Kinect e imagen RGB
convencional

Not a Number. Para interpretar correctamente los valores de disparidad, estudios
detallados del proceso de calibracion de la Kinect ([10]) proporcionan los graficos
de la Figura A.12.

: L -~ Measured data |--:----
JII S Poly. fit 2nd order|

%

@
g
T

@
8
T

800+
40+

“Inverse depth” [-]

] Y S S PP T TR STRT SR EPE S 4

Size of the quantization step [mm]

600~

i i i i i i i L i i i i i i
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Distance [m]

(a)

Figura A.12: Correspondencia entre disparidad d y distancia real en metros (a). Ta-
mano de paso en milimetros entre dos valores consecutivos de disparidad en funcién de
la distancia en metros (b). Gréficas obtenidas de [10]

En la Figura A.12a se representa la relacion de los valores con las distancias
reales en metros. En el entorno de trabajo se emplean valores de disparidad entre
600 y 700, que se sitian por debajo del metro (la distancia entre la camara
y los distintos puntos de la mesa estan en ese intervalo). Por otra parte, en
la Figura A.12b se tiene idea de la precisién que se obtiene con este sensor a
diferentes distancias. La curva obtenida ha sido sometida a un anélisis de regresion
que cumple la funcion.

q(z) = 2,732 + 0,742 — 0,58[mm)| (A.6)

Asi, en los intervalos en los que se trabaja en este proyecto (0,6 — 0,9m)
obtenemos una precision de entre 0,8468 y 2,2973mm, segtin a la distancia a la

44

A.3. CONECTIVIDAD DE LA CAMARA CON EL ORDENADOR

que se encuentren los objetos. Dicha precision disminuye con la distancia, por lo
que se demuestra que la Kinect mide mejor en distancias cortas siempre y cuando
no sea inferior al limite de correcta medicion (aproximadamente 0,5m).

A.3. Conectividad de la cAmara con el ordenador

El cable que sale de la Kinect tiene una terminacion especial para conectarla a
la Xbox. No obstante se dispone de un adaptador con una terminaciéon de puerto
USB que utilizaremos para conectarla al ordenador. La energia que proporciona
el USB no es suficiente para alimentar a los sensores y el motor de inclinacion de
la caAmara, por lo que también se dispone de una conexion adicional a la corriente
eléctrica en forma de adaptador de corriente (Figura A.13).

Figura A.13: Adaptador de USB y corriente para la Kinect

La mayor parte del desarrollo llevado a cabo internacionalmente con la Kinect
se ha hecho empleando drivers y librerias para programar en C++ o C# ([6], [3]).
Por ello, en este proyecto utilizamos ROS que tiene un compilador para C-+-+
y para Python. Concretamente, se programa en C++, con el que se realiza los
algoritmos, ademas de realizar el tratamiento de imagenes con la libreria OpenCV,
la cual nos ofrece muchas posibilidades.

A.4. Imagenes RGB y de profundidad

El uso de las imagenes RGB y de profundidad constituye uno de los pilares
de este proyecto, por lo que es conveniente dejar claro en qué consisten y como
se manejan, asi como ayudar a entender la visualizacién de las mismas.

La obtencion de la imagen RGB se obtiene de la misma manera que con una
camara convencional. RGB es un modelo que permite representar cualquier color
mediante la mezcla de tres colores primarios. En este caso, y como indican las
siglas, rojo,verde y azul (Red,Green, Blue).

La obtencion de la imagenes por parte de la cAmara de infrarrojos se basa en
un sistema de luz estructurada, donde un patrén de puntos laser proyectado por
la propia camara (Figura A.14) es leido por el sensor infrarrojo y procesado por

45

APENDICE A. LA CAMARA MICROSOFT KINECT

el propio chip interno de la Kinect. En él se establece una comparacién con un
patrén a una distancia conocida y mediante triangulacion se obtienen los valores
de disparidad d en cada punto. Los valores de disparidad no se corresponden
con valores directos de distancia, el calculo de la misma requiere el conocimiento
de ciertos parametros de calibraciéon. No obstante, los valores de disparidad que
llegan a la Kinect estan normalizados y se comportan de igual manera, siendo
crecientes con la distancia.

(a) (b)
Figura A.15: Imagenes obtenida: (a) Imagen RGB (b) Imagen profundidad

Las im4genes RGB (Figura A.15a) que se obtienen son matrices 640x480 de
tres canales, donde cada canal es un color (rojo,verde o azul). Cada pixel varia
entre un valor de 0 y 255. Las imagenes de profundidad (Figura A.15b) que
se obtienen son matrices 640x480 de un solo canal. Como se observa en la figura
correspondiente, hay mas o menos intensidad de gris, dependiendo de la distancia
a la que se encuentren los objetos, pero hay zonas negras donde la cAmara no ha
podido obtener datos. Esos puntos son devueltos como NaN (Not a Number),
pero tratados posteriormente para convertirlos a un valor 0.

A.4.1. Obtencién de las imagenes RGB y de profundidad

El primer objetivo es conseguir las imagenes de profundidad y RGB para, a
partir de ellas, empezar con la deteccion de los recipientes. En un primer momento,
se pensd en utilizar el software Matlab, ya que es un entorno de simulacion mas
extendido, permitiendo la posible integraciéon en otros sistemas. Sin embargo,

46

A.4. IMAGENES RGB Y DE PROFUNDIDAD

hay una gran desventaja al utilizar este software. Tras una bisqueda exhausta de
informacion, se llegd a un punto: la imposibilidad de poder obtener los dos tipos de
imagenes (RGB y profundidad) de manera simultdnea. En una primera opcion se
intento capturar los dos tipos en Matlab por medio de archivos mez-files (Matlab
Executable). Un mez-file proporciona una interfaz entre Matlab y subrutinas
escritas en C++ que, al ser compilado, permite al c6digo que no pertenece a
Matlab ser involucrado dentro de los programas y funciones de este sistema.
De esta forma, habria que tomar primero una imagen (RGB) y posteriormente
otra (profundidad), lo que aumentaria considerablemente los tiempos al obtener
dos iméagenes consecutivas del mismo tipo (estando entre 1.2 - 1.3 segundos),
perdiendo uno de los objetivos que queremos conseguir, que es el obtener las
imagenes a tiempo real.

Para conseguir nuestro objetivo, ROS nos proporciona las herramientas ne-
cesarias, permitiendo la publicacién o subscripciéon a flujos de datos. Gracias a
los drivers de OpenNI, podemos controlar la cAmara Microsoft Kinect. Al conec-
tarnos con ella, ROS nos ofrece una cantidad de nodos a los cuales nos podemos
subscribir para poder recibir informacion de ellos, mostrandonos las opciones por
su consola al hacer la peticiéon de la lista de los nodos disponibles.

Figura A.16: Consola para el manejo de ROS con los nodos que ofrece la cdmara para
su posible subscripcion

Como vemos, hay muchas posibilidades debido a los diversos nodos que se crea
y que ROS nos ofrece: imagen de disparidad, comprimida, de color, en blanco y
negro, etc...Fin nuestro programa creamos dos subscriptores: uno para la imagen

47

APENDICE A. LA CAMARA MICROSOFT KINECT

RGB y otro para la imagen de profundidad. De esta forma, podemos obtener
el flujo de imégenes de una manera simultanea, cumpliendo uno de los objetivos
del proyecto. Concretamente, nos subscribimos al nodo /camera/rgb/imagecolor
para conseguir la imagen de la cAmara convencional, y nos subscribimos al no-
do /camera/depth/imagerect para conseguir la imagen de profundidad. ROS
también nos permite crear distintos apartados para realizar el tratamiento de
imagenes de forma simultanea. Asi, en nuestro programa, se crean dos funciones
distintas a raiz del programa principal: uno donde tratamos la imagen RGB, y
otro donde manejamos la imagen de profundidad. Todo ello dentro del mismo
proceso de toma de imagen. Asi, cada vez que llegua uno de estos frames nuevos,
son tratados para conseguir los objetivos que estamos buscando. De esta manera,
los datos se pueden tratar a la vez y conseguir que todo sea a tiempo real.
Aunque tedricamente la caAmara Microsoft Kinect trabaja a 30 frames por
segundo, su conectividad por cable USB hace que esta cifra baje hasta practi-
camente la mitad. En cada frame, el programa modifica la imagen y la muestra
en una ventana de ROS, donde visualizamos el resultado. Las ventanas son dos,
una para cada tipo de imagen y el tratamiento que le vamos dando. El tamano
de las imagenes recibidas es de 640x480. Estas son convertidas a una matriz del

entorno para poder recoger los datos y manejarlas con las herramientas tanto de
ROS como de OpenCV y C+4-+.

48

Apéndice B

Calculo analitico del plano de referencia

Para calcular el plano en tres dimensiones se necesitan las coordenadas y
distancia de al menos tres puntos pertenecientes a él. Dado que para la homografia
hay que coger cuatro puntos que no incluyan tres colineales, se utilizan esos
mismos puntos.

Tras la deteccion automatica de las esquinas, conocemos los puntos P;, P, P
y Py, de los cuales se pueden obtener, por ejemplo, los vectores U y o como:

—
U =P Py= (uy,uz, u) = (T2 — T1,Ys — Y1, 22 — 21)
(B.1)
o = PPy = (017112,713) = <x3 —T1,Y3 — Y1,%3 — 21)

Estos forman parte del plano que vamos a calcular, al igual que P;. Se supone
unto X = (z,y, z) que pertenece al plano, por lo que sabremos que el vector
P 55

€s Coplanarlo con 7 7
PX =AU + @ (B.2)

(r — 21,y —y1, 2 — 21) = Mua, ug, ug) + pu(v1, v2,v3) (B.3)
(7,9, 2) — (21,91, 21) = AMu, uz,u3) + p(vi, va, v3) (B.4)
De forma que un punto X esta en el plano si tiene solucién el sistemas:
T — T =+ v

Y — Y1 = U\ + Vaft (B.5)
Z— 21 = usA + vsp

Para ello el sistema tiene que ser compatible determinado en las incognitas A
y . Por tanto, el determinante de la matriz ampliada del sistema con la columna
de los términos independientes tiene que ser igual a cero:

r—T1 Uy U1
Yy—y uz vy | =0 (B.6)
Z—Z1 Uz U3

49

APENDICE B. CALCULO ANALITICO DEL PLANO DE REFERENCIA

Desarrollando el determinante:

Uy Vo U U1 up v _
P (x —xq1) — - (y —y1) + I (z—21)=0 (B.7)
Se obtiene:
A— U2 Vo B—_ u;y vV C - u;y vV (B 8)
Uz Vs Us Vs Uy V2 '
Sustituyendo:
Alx —z21)+Bly—m)+Cz—2)=0 (B.9)
Operando y dando a D el valor
D = —Aﬂfl - Byl - CZl (BlO)
se obtiene la ecuacion general del plano
Az +By+Cz+D =0 (B.11)

con lo cual, dando valores de 1 a 640 en x y de 1 a 480 en y se obtiene una
imagen 640 x 480 que es el plano calculado con esos cuatro puntos.

El proceso se repite tres veces més rotando los puntos de las esquinas empe-
lados, de modo que en vez de coger P, P, y P3 se prueba con Py, P3y Py; P, Py
y Py Py, P, v P,. Al final resulta el plano que menos error tiene de todas las
combinaciones.

20

Apéndice C

Calculo de homografias

C.1. Concepto de homografia

La necesidad de realizar una homografia viene dada principalmente por en-
contrar la correspondencia entre la imagen de profundidad y la imagen RGB en la
calibraciéon de la caAmara. Una homografia es una transformacién proyectiva que
permite transformar la imagen tomada a un nuevo plano donde aparece corregida
la distorsion ocasionada por la perspectiva y muestra la imagen en la situacion

ideal.

Una homografia es una aplicacion invertible, que se denomina h, que transfor-
ma puntos situados en un plano a otro de modo que la colinealidad se mantiene.
Es decir, si tres puntos de un plano estan contenidos en una linea, lo siguen
estando en el plano transformado. Mas precisamente:

Una homografia (o proyectividad) es una aplicacion invertible h desde P? a
si misma tal que tres puntos x1, xo y x3 coinciden en la misma linea si y so6lo si
h(z1), h(xe) y h(z3) también lo hacen.

Una definicion equivalente en forma algebraica es la siguiente:

una aplicacion h: P? — P? es una homografia si y solo si existe
una matriz H no singular 33 que para cada punto de P? representado
como vector de coordenadas homogéneas x se cumple que h(x) = Hz.

Que un punto del espacio bidimensional esté descrito en coordenadas homo-
géneas significa que estd definido por tres coordenadas. De tal modo un punto
de dimensiones (z,y) se representa por (&, w) donde por simplicidad se con-
sidera en una primera instancia que w = 1. Dado que estamos trabajando con
coordenadas homogéneas, la matriz H también lo serd. Al igual que ocurre con la
representacion homogénea de un punto, solo el ratio entre los elementos de la ma-
triz es significante, luego por haber 8 ratios independientes entre los 9 elementos

de H, hay 8 grados de libertad a la hora de calcular la matriz.

Sabiendo eso, se puede realizar la transformacion proyectiva de las coordena-
das de un punto p(z,y) a un punto p'(2’,y’). La soluciéon no homogénea es:

51

APENDICE C. CALCULO DE HOMOGRAFIAS

, Ty huw A+ hioy 4 hs
T T haz + hay 4 b
x3 31T + N32Yy + N33

. :37_/2 _ ho1x + haoy + hos
xh hg1T + haoy + has

(C.1)

De modo que se generan dos ecuaciones por cada punto p(x,y). Si se conoce el
punto p'(2',y’) Gnicamente se tienen como incognitas del sistema a los elementos
de la matriz H. Siendo que dicha matriz tiene inicamente ocho grados de libertad,
teniendo cuatro puntos conocidos en ambas proyecciones se pueden obtener las
ocho ecuaciones necesarias para resolver y calcular H. La tnica restriccion a tener
en cuenta es que esos cuatro puntos han de estar en una «posicion general», es
decir, que entre ellos no haya tres alineados en ningin caso.

Una vez obtenida H se puede invertir para pasar indistintamente de un plano
a otro.

C.2. Procedimiento

Como se ha visto en el subapartado anterior, se necesita calcular la matriz H.
Hay muchos algoritmos para ello, el que se va a comentar es el de transformacion
linear directa (Direct Linear Transformation algorithm, o DLT) [27].

Ello requiere partir de un conjunto de cuatro puntos que se conoce que se
corresponden en ambos planos proyectivos, x; <+ x;. La transformacion la da la
ecuacion x; = Hx;, como ya se ha comentado. Esta ecuaciéon se puede expresar
como el producto vectorial tal como x; x Hx; = 0.

La j-ésima fila de la matriz H se llamar& h/T, tal que:
thXz'
Hx; = [h*'x, (C.2)
hgTXi

Escribiendo x; = (2, 3}, w})T, el producto vectorial se puede dar como:

yih3Tx, — wh?Tx;
/ r "L 1T 11, 3T
x; x Hx; = | yh'"'x;, —wh’x; (C.3)
y'h*'x; — wh'"x;

Y dado que h’"x; = xh’ para j = 1, ..., 3, da un conjunto de tres ecuaciones
de los términos de H:

0" —wix! yx! h!

—wix? 07 —zlxT h? | =0. (C.4)
I T ' T T 3

—YiX; TiX; 0 h

52

C.2. PROCEDIMIENTO

Que tiene la forma A;h = 0, donde A; es una matriz 3x9 y h es un vector de
9 componentes que forman la matriz H.

h! hi hy hs
h=|{ 02 |, H=1|h hs he (C.5)
h3 hy hs hg

Donde h; es el i-ésimo elemento de h.

De las tres ecuaciones obtenidas, solo dos de ellas son linealmente indepen-
dientes, por lo que, como ya vimos, es necesario usar cuatro puntos para obtener 8
ecuaciones que nos permitan calcular la H completa. Se puede eliminar la tercera
fila de la ecuacion (C.4) y obtener:

hl
0" —ux! oyt
Lt of e || 22 =0 (C.6)
177 177 h

que origina una matriz A; de dimensiones 2x9.

23

APENDICE C. CALCULO DE HOMOGRAFIAS

54

Apéndice D

Android

D.1. ;Qué es Android?

Android es un sistema operativo pensado inicialmente para maéviles. Sin em-
bargo, lo que le hace diferente es que esta basado en Linux, un nicleo de siste-
ma operativo libre, gratuito y multiplataforma.Este sistema permite programar
aplicaciones en una variaciéon de Java, proporcionando las interfaces necesarias
para desarrollar aplicaciones que accedan a las distintas funciones del teléfono
(GPS, llamadas, agenda, etc...) de una forma muy sencilla mediante este lengua-
je orientado a objetos. Esta sencillez, junto con las herramientas de programacion
gratuitas, hace que haya una gran cantidad de aplicaciones disponibles, ya que
cualquier usuario puede actuar como desarrollador de aplicaciones para luego
funcionar sobre este sistema operativo.

Una de las mejores caracteristicas es que es completamente libre. No hay que
pagar nada por programar en este sistema, ni para incluir en ningin dispositivo
que lo tenga (moviles, tablets, ordenadores). Por ello, es muy popular entre fa-
bricantes y desarroladores, ya que los costes para lanzar una aplicacién son muy
bajos. Cualquiera puede bajarse el codigo fuente, modificarlo, inspeccionarlo o
compilarlo. Esto proporciona seguridad a los usuarios, ya que algo que es abier-
to permite detectar fallos mas rapidamente. Y también a los fabricantes, ya que
pueden adaptar mejor el sistema operativo a los terminales.

La estructura del sistema operativo Android se compone de aplicaciones que
se ejecutan en un framework Java de aplicaciones orientadas a objetos sobre el
ntcleo de las bibliotecas de Java en una maquina virtual Dalvik con compilacion
en tiempo de ejecucion. Las bibliotecas escritas en lenguaje C incluyen un ad-
ministrador de interfaz gréafica (surface manager), un framework OpenCore, una
base de datos relacional SQLite, una Interfaz de programacion de API grafica
OpenGL ES 2.0 3D, un motor de renderizado WebKit, un motor grafico SGL,
SSL y una biblioteca estandar de C Bionic. El sistema operativo esta compuesto
por 12 millones de lineas de codigo, incluyendo 3 millones de lineas de XML, 2.8
millones de lineas de lenguaje C, 2,1 millones de lineas de Java y 1,75 millones

%)

APENDICE D. ANDROID

de lineas de C-+--.

D.1.1. Historia

Inicialmente, fue desarrollado por Android Inc., y cuando atin era desconocido,
fue comprado por Google en 2005. Hasta noviembre de 2007 sélo hubo rumores,
pero en esa fecha se lanz6 la Open Handset Alliance, que agrupaba a muchos
fabricantes de teléfonos méviles, chipsets y Google y se proporcioné la primera
version de Android, junto con el SDK para que los programadores empezaran a
crear sus aplicaciones para este sistema. Google liberd la mayoria del codigo de
Android bajo la licencia Apache, una licencia libre y de cédigo abierto.

Aunque los inicios fueran un poco lentos, debido a que se lanz6 antes el sis-
tema operativo que el primer movil, se ha colocado rapidamente como el sistema
operativo para moviles més vendido del mundo, alcanzando su auge en 2010. Las
unidades vendidas de teléfonos inteligentes con Android se ubican en el primer
puesto en los Estados Unidos, en el segundo y tercer trimestres de 2010, con
una cuota de mercado de 43,6 % en el tercer trimestre. A nivel mundial alcanzo
una cuota de mercado del 50,9 % durante el cuarto trimestre de 2011, mas del
doble que el segundo sistema operativo (i0S de Apple, Inc.) con més cuota. En
la actualidad, Android ha transcendido los teléfonos moéviles para trascender a
dispositivos mas grandes, como las tablets, ordenadores, e incluso consolas de
juego.

and>0ID

Figura D.1: Diferentes dispositivos donde android ya esta disponible

o6

D.1. ;QUE ES ANDROID?

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Activity Manager Manager [System

Telephony Rescurce Location Notification

Package Manager Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQLite Core Libraries
Framework

OpenGL | ES FreeType WWebKir Mathire

SGL ssL libe

LiNUX KERNEL

Display
Driver

Flash Memory Binder (IPC)

Camera Driver D iees =

Audio Power

Keypad Driver 'WiFi Driver s Management

Figura D.2: Esquema de la arquitectura Android

D.1.2. Arquitectura Android

= Aplicaciones: Este nivel contiene, tanto las incluidas por defecto de An-
droid como aquellas que el usuario vaya anadiendo posteriormente, ya sean
de terceras empresas o de su propio desarrollo. Todas estas aplicaciones
utilizan los servicios, las API y librerias de los niveles anteriores.

= Framework de aplicaciones: Representa fundamentalmente el conjunto
de herramientas de desarrollo de cualquier aplicaciéon. Toda aplicacion que se
desarrolle para Android, ya sean las propias del dispositivo, las desarrolladas
por Google o terceras compaiias, o incluso las que el propio usuario cree,
utilizan el mismo conjunto de API y el mismo framework, representado por
este nivel.

= Librerias: La siguiente capa se corresponde con las librerias utilizadas
por Android. Estas han sido escritas utilizando C/C-+-+ y proporcionan a
Android la mayor parte de sus capacidades més caracteristicas. Junto al
ntcleo basado en Linux, estas librerfas constituyen el corazéon de Android.

= Tiempo de ejecucion de android: Al mismo nivel que las librerias de
Android se sitta el entorno de ejecucion. Este lo constituyen las Core Li-

braries, que son librerias con mulititud de clases Java y la maquina vistual
Dalvik.

= Nicleo Linux: Android utiliza el ntucleo de Linux 2.6 como una capa de
abstraccion para el hardware disponible en los dispositivos moéviles. Esta ca-
pa contiene los drivers necesarios para que cualquier componente hardware

o7

APENDICE D. ANDROID

pueda ser utilizado mediante las llamadas correspondientes. Siempre que un
fabricante incluye un nuevo elemento de hardware, lo primero que se debe
realizar para que pueda ser utilizado desde Android es crear las librerias de
control o drivers necesarios dentro de este kernel de Linux embebido en el
propio Android.

D.1.3. Caracteristicas

» Diseno de dispositivo: La plataforma es adaptable a pantallas de ma-
yor resolucion, VGA, biblioteca de graficos 2D, biblioteca de graficos 3D
basada en las especificaciones de la OpenGL ES 2.0 y diseno de teléfonos
tradicionales.

= Almacenamiento: SQLite, una base de datos liviana, que es usada para
propoésitos de almacenamiento de datos.

= Conectividad: Android soporta las siguientes tecnologias de conectivi-
dad: GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi, LTE,
HSDPA, HSPA+, NFC y WiMAX.

= Mensajeria: SMS y MMS son formas de mensajeria.

» Navegador web: El navegador web incluido en Android estd basado en el
motor de renderizado de cédigo abierto WebKit, emparejado con el motor
JavaScript V8 de Google Chrome.

= Soporte multimedia: Android soporta los siguientes formatos multime-
dia: WebM, H.263, H.264 (en 3GP o MP4), MPEG-4 SP, AMR, AMR-WB
(en un contenedor 3GP), AAC, HE-AAC (en contenedores MP4 o 3GP),
MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG, GIF y BMP.

= Soporte para hardware adicional: Android soporta cidmaras de fotos, de
video, pantallas tactiles, GPS, acelerémetros, giroscopios, magnetoémetros,
sensores de proximidad y de presion, sensores de luz, gamepad, termémetro,
aceleracion por GPU 2D y 3D.

= Entorno de desarrollo: Incluye un emulador de dispositivos, herramientas
para depuracion de memoria y analisis del rendimiento del software.

s Multi-tactil: Android tiene soporte nativo para pantallas capacitivas con
soporte multi-tactil que inicialmente hicieron su apariciéon en dispositivos
como el HTC Hero. La funcionalidad fue originalmente desactivada a nivel
de kernel (posiblemente para evitar infringir patentes de otras companias).
Mas tarde, Google publicé una actualizaciéon para el Nexus One y el Moto-
rola Droid que activa el soporte multi-tactil de forma nativa.

s Bluetooth

o8

D.1.

.QUE ES ANDROID?

Videollamada

Multitarea: Multitarea real de aplicaciones esta disponible, es decir, las
aplicaciones que no estén ejecutandose en primer plano reciben ciclos de
reloj.

Caracteristicas basadas en voz: La busqueda en Google a través de
voz estd disponible como .Prtrada de Buasqueda'"desde la version inicial del
sistema.

Tethering: Android soporta tethering, que permite al teléfono ser usado
como un punto de acceso alambrico o inalambrico (todos los teléfonos desde
la version 2.2, no oficial en teléfonos con version 1.6 o inferiores mediante
aplicaciones disponibles en Google Play.

29

APENDICE D. ANDROID

60

Apéndice E

ROS

:::ROS.org

ROS (Robot Operating System, o Sistema Operativo Robotico en espafiol)
es un framework para el desarrollo de software para robots que provee la fun-
cionalidad de un sistema operativo en un clister heterogéneo. Provee librerias y
herramientas para ayudar a los desarrolladores de software a crear aplicaciones
para robots. También provee abstraccion de hardware, controladores de disposi-
tivos, librerias, herramientas de visualizacion, comunicacién por mensajes, admi-
nistracion de paquetes y mas. ROS esta bajo la licencia open source, BSD.ROS
se desarroll6 originalmente en 2007 bajo el nombre de switchyard por elL.abora-
torio de Inteligencia Artificial de Stanford para dar soporte al proyecto del Robot
con Inteligencia Artificial de Stanford . Desde 2008, el desarrollo continta pri-
mordialmente en Willow Garage, un instituto de investigacion robo6tico con mas
de veinte instituciones colaborando en un modelo de desarrollo federado. ROS
provee los servicios estandar de un sistema operativo tales como abstraccion del
hardware, control de dispositivos de bajo nivel, implementacion de funcionalidad
de uso comun, paso de mensajes entre procesos y mantenimiento de paquetes.
Esta basado en una arquitectura de grafos donde el procesamiento toma lugar en
los nodos que pueden recibir, mandar y multiplexar mensajes de sensores, con-
trol, estados, planificaciones y actuadores, entre otros. La libreria esta orientada
para un sistema UNIX (Ubuntu (Linux) es el sistema soportado aunque también
se estd adaptando a otros sistemas operativos como Fedora, Mac OS X, Arch,
Gentoo, OpenSUSE, Slackware, Debian o Microsoft Windows considerados como
experimentales). Se puede programar en C++ o Python, a través de una serie de
modulos.

ROS tiene dos partes bésicas: la parte del sistema operativo, ros, como se ha
descrito anteriormente y ros-pkg, una suite de paquetes aportados por la contri-
bucion de usuarios (organizados en conjuntos llamados pilas o en inglés stacks)

61

APENDICE E. ROS

que implementan la funcionalidades tales como localizacion y mapeo simultaneo,
planificacion, percepcion, simulacion, etc. ROS es software libre bajo términos de
licencia BSD. Esta licencia permite libertad para uso comercial e investigador.
Las contribuciones de los paquetes en ros-pkg estdn bajo una gran variedad de
licencias diferentes.

En este proyecto, se va a utilizar la parte de vision robética, que es la que nos

va a proporcionar los nodos para poder conseguir las imégenes de profundidad y
de RGB.

Las areas que incluye ROS son:

= Un nodo principal de coordinacion.

= Publicacién o subscripcion de flujos de datos: imagenes, estéreo, laser, con-
trol, actuador, contacto, etc.

= Multiplexacion de la informacion.
» Creacién y destruccion de nodos.

= Los nodos estéan perfectamente distribuidos, permitiendo procesamiento dis-
tribuido en miiltiples nucleos, multiprocesamiento, GPUs y clisteres.

= Login.
s Pardmetros de servidor.

= Testeo de sistemas.
Las areas que incluiran las aplicaciones de los paquetes de ROS son:

= Percepcion

» Identificacion de Objetos

= Segmentacion y reconocimiento
= Reconocimiento facial

= Reconocimiento de gestos

= Seguimiento de objetos

= Fgomocion

= Comprension de movimiento

» Estructura de movimientos (SFM)

62

Visién estéreo: percepcion de profundidad mediante el uso de dos cAmaras
Movimientos

Robots moviles

Control

Planificacion

Agarre de objetos

63

APENDICE E. ROS

64

Apéndice F

Transmisiéon de datos y protocolos de co-
municacion

F.1. Meétodo de transmision de datos: Sockets

Socket, como su propio nombre indica (enchufe) es un método de comunicacion
entre un servidor y un cliente. De esta forma, dos programas pueden intercam-
biarse un flujo de datos de una forma fiable y ordenada. Gracias a ellos, se forma
una especie de canal de conexién, que constituye el mecanismo para la entrega
de paquetes de datos. Aunque existen varios tipos, nos centramos en los sockets
de TCP/IP, que ofrece los protocolos de TCP y UDP.

Figura F.1: Situacién de los sockets en capas

La forma en la que intercambian informacion es muy similar al proceso de
lectura y escritura de un fichero. Asi, lo que queramos mandar es lanzado por el
socket, de salida, mientras que la informacion es recibida por el socket destino.

65

APENDICE F. TRANSMISION DE DATOS Y PROTOCOLOS DE
COMUNICACION

Un socket se identifica siempre por la direccion IP y por el niimero de puerto,
que debemos especificar al principio del programa. De esta forma, quedan iden-
tificados el socket origen y el socket destino. La particularidad que tienen frente
a otros mecanismos de comunicacion entre procesos (IPC - Inter-Process Com-
munication) es que posibilitan la comunicacién aun cuando ambos procesos estén
corriendo en distintos sistemas unidos mediante una red. De hecho, el API de
sockets es la base de cualquier aplicacion que funcione en red puesto que ofrece
una libreria de funciones bésicas que el programador puede usar para desarrollar
aplicaciones en red. Por esta razon, los sockets ofrecen la mejor solucién para
realizar la comunicacion entre dos lenguajes de programacion distintos como son
C++ y Android.

Los sockets para TCP /IP permiten la comunicacion de dos procesos que estén
conectados a través de una red TCP/IP. En una red de este tipo, cada maquina
estd identificada por medio de su direcciéon TP que debe ser Gnica. Sin embargo,
en cada maquina pueden estar ejecutandose miltiples procesos simultaneamente.
Cada uno de estos procesos se asocia con un numero de puerto, para poder asi
diferenciar los distintos paquetes que reciba la méquina.

Es importante mencionar que a la aplicacion creada en Android para el dispo-
sitivo, hay que darle unos permisos a la hora de poder comunicarse, para poder
acceder al Wi-fi y a internet. Estos permisos son los siguientes:

android.permission. ACCESS WIFI STATE: Permite a las aplicaciones ac-
ceder a la informacién referente a las redes Wi-Fi.

» android.permission. INTERNET: Permite a las aplicaciones abrir redes de
sockets para la comunicacion.

» android.permission. ACCESS NETWORK STATE: Permite a las aplica-
ciones acceder a la informacion sobre las redes.

= android.permission. CHANGE WIFI_MULTICAST STATE: Permite a las
aplicaciones entrar en el modo Wi-Fi multidifusion.

F.2. Protocolos de comunicacion

Como hemos mencionado anteriormente, los dos protocolos méas usados son
TCP y UDP, siendo los dos pertenecientes a la capa de transporte. En el caso de
los sockets, estos son nombrados Socket Stream si se trata del protocolo TCP, o
Socket Datagram si se trata del protocolo UDP.

A grandes rasgos, las caracteristicas del protocolo TCP son las siguientes:

s Protocolo orientado a conexién

= Secuenciado

66

F.2. PROTOCOLOS DE COMUNICACION

= Sin duplicacién de paquetes

s Libre de errores

De esta forma, proporciona un transporte fiable de informacién entre aplica-
ciones, realizando retransmisiones ante la pérdida de paquetes y asegurando que
los paquetes llegan de forma ordenada, ya que, como su propio nombre indica
(Transmission Control Protocol) el propio protocolo realiza las tareas de control.
Sin embargo, esta fiabilidad repercute en la eficiencia del sistema, disminuyén-
dola, ya que para poder gestionar todas las tareas anteriores se tiene que anadir
mucha informacion a los paquetes que se quieren enviar. Como estos paquetes
que se quieren enviar tienen un tamano maximo, cuanta mas informaciéon sobre
el protocolo tengamos que anadir, menor espacio para la informacion til podre-
mos disponer. De hecho, el segmento TCP tiene una sobrecarga de 20 bytes en
cada segmento, mientras que UDP solo anade 8 bytes.

Por otro lado, las caracteristicas del protocolo UDP son las siguientes:

No orientado a conexién

Flujo de datos bidireccional

Los paquetes no tienen por qué llegar ordenados

Puede haber pérdidas de paquetes o llegar con errores

La transmision que proporciona UDP no es del todo fiable, ya que apenas ana-
de la informacién necesaria al paquete para la comunicacion extremo a extremo.
Lo utilizan aplicaciones como NFS o para copiar ficheros entre ordenadores remo-
tos, pero sobre todo se emplea en la transmisién de audio y video, o para tareas
de control a través de una red. Es el mejor protocolo para realizar programas que
requieran transmitir a tiempo real, ya que no produce retardos para establecer la
conexion, no necesita mantenerse en estado de conexion y por lo tanto no reali-
za un seguimiento de estos datos. De esta manera, una aplicacion con protocolo
UDP es capaz de soportar méas clientes activos que en una aplicaciéon con TCP.
Se podria decir que sirve como "multiplexor/demultiplexor"para enviar y recibir
datagramas, usando puertos para dirigir los datagramas como se muestra en la
Figura F.2.

Por todas las caracteristicas que se han explicado, el protocolo que mejor se
adapta a lo que queremos hacer es el protocolo UDP, ya que en nuestro proyecto
va a ser necesario transportar imagenes y transmitir flujos de datos a tiempo real.
El uso de UDP es utilizado siempre cuando resulta mas importante transmitir con
velocidad que garantizar el hecho de que lleguen absolutamente todos los bytes.

67

APENDICE F. TRANSMISION DE DATOS Y PROTOCOLOS DE

COMUNICACION
proceso 1 proceso 2 sees proceson
puerto x puerto y - puerto z

UDP : demultiplexor de puerto

P

Figura F.2: Esquema del socket actuando como multiplexor/demultiplexor

F.3. Comunicacion: Servidor

De una forma resumida y concisa, el servidor es el programa que permanece
pasivo a la espera de que alguien solicite conexioén con él, normalmente, para
pedirle algin dato. Cliente es el programa que solicita la conexiéon para, normal-
mente, pedir datos al servidor. El servidor serd programado en el PC en lenguaje
C-++, mientras que el cliente se va a programar en Android. En nuestro caso, al
tratarse de una comunicacién UDP, no se realiza una conexién permanente, sino
que el servidor esperard un paquete del cliente, recogiendo la direccion IP de la
que proviene, para poder responder a ese terminal.

Los pasos que debe seguir un programa servidor son los siguientes:

Abrir un socket con la funcion socket().

Asociar el socket a un puerto con bind().

Leer mensaje con recufrom().

Responder mensaje con sendto().

F.3.1. Abrir socket

Se abre el socket de la forma habitual, con la funcion socket(). Esto simple-
mente nos devuelve un descriptor de socket, que todavia no funciona ni es util.
Este descriptor es usado para poder asociar después a la comunicacién.

F.3.2. Asociar el socket con un puerto

Con el sistema operativo Ubuntu, se disponen de 65536 puertos para hacer
conexiones con sockets, numerados de 0 a 65535. Sin embargo, del 0 al 1023 estan
reservados al sistema. Por ello, tenemos que escoger un puerto que vaya del 1024

68

F.3. COMUNICACION: SERVIDOR

al 65536. En nuestro caso, el puerto elegido es el 7000, aunque le podriamos haber
asignado cualquier otro.

Una vez hemos abierto un socket, se utiliza la funcion bind(), que sirve para
comunicar al sistema operativo que puerto es el que queremos utilizar para la
transmision. Para decir que puerto queremos coger, tenemos dos opciones. Una
de ellas es indicar directamente cudl es el puerto que queremos utilizar. La otra
es indicar con permisos de root en el fichero /etc/services el puerto que queremos
atender, y darle un nombre a este puerto. De esa forma, el sistema operativo
sabria que ese puerto esté reservado. Sin embargo, por simplicidad utilizaremos la
primera opcién, indicando directamente el puerto por el que queremos realizar la
comunicacion, que debera ser el mismo que indicaremos en la aplicacion Android.

De esta forma tenemos los parametros definidos para comenzar la comunica-
cion. Primero, debemos de recibir la peticion del cliente que se quiere conectar al
servidor. Posteriormente, una vez que sepamos con quién nos vamos a comunicar,
podemos realizar la comunicaciéon bidireccional.

F.3.3. Recibir mensaje en el servidor

Para recibir mensajes del servidor, la funcién para los sockets UDP es recv-
from(). Esta funcion es "bloqueante", por lo que el programa se queda esperando
a recibir una peticién y no continua. Esto supone un problema, ya que la toma
de imagenes debe de ser continua, y no puede haber nada en el programa que
bloquee la llegada de frames. Por ello, la soluciéon pasa por realizar dos procesos:
un proceso que toma las imagenes tanto de profundidad como RGB, mientras
que el otro proceso es el que haria de servidor. De esta forma, aunque el proceso
del servidor se quede bloqueado esperando la llegada de un socket, el proceso de
toma de imagenes es continuo y nunca deja de tomar los frames necesarios para
realizar la deteccién y seguimiento de los recipientes. Aunque debemos tener en
cuenta que hay que tener datos en comiin entre estos dos procesos, como las ima-
genes v la potencia que le pasemos cada vez que variemos el fuego de uno de los
recipientes.

La imagen RGB que nosotros construimos para pasar al dispositivo moévil se
trata en el mismo proceso de toma de imégenes, ya que a cada imagen que se toma
de la camara, ésta es tratada y mostrada por una ventana. Asi que debe haber
una comunicacion entre los dos procesos, de tal forma que cuando el proceso del
servidor necesite la imagen, el proceso de toma de imégenes se la entregue para
su posterior envio.

Para crear otro proceso en C++ hay dos opciones: o crear un proceso hijo
(fork) o crear un hilo (thread). En un primer momento se prob6 a crear un
proceso hijo mediante la funciéon fork, sin embargo, esta opcién fue desechada
ya que, aunque el hijo hereda las mismas variables que el padre, cada uno las
modifica de forma individual. Por ejemplo, si una variable es cambiada de valor
por el hijo, en éste proceso tendra un nuevo valor, sin embargo en el proceso padre

69

APENDICE F. TRANSMISION DE DATOS Y PROTOCOLOS DE
COMUNICACION

no habréa variado.

Por ello, la solucién por la que se opta es realizar un hilo, a través de la funcién
thread. De esta forma, podemos compartir variables y matrices, permitiendo una
comunicacion entre el proceso de toma de imagenes y el servidor, de tal forma
que cualquiera de los dos pueda estar al tanto de las potencias y las imagenes.

A la funcion recufrom(), le pasamos una estructura vacia, pero que es de vital
importancia: struct sockaddr. Esta estructura recoge los datos del cliente que nos
ha enviado el mensaje. De esta forma, podemos identificar al otro programa y
responderle, produciendo asi la comunicaciéon bidireccional.

Si queremos identificar errores, esta funcion nos devuelve -1 en caso de que se
haya producido un error. Sin embargo, si funciona correctamente, nos devuelve
el nimero de bytes leidos.

F.3.4. Respuesta al cliente

A la hora de responder al cliente, la funcion utilizada es sendto(). Esta funciéon
admite los mismos parametros que la funcion recofrom(), aunque como es obvio,
la estructura sockaddr no esta vacia, sino que contiene los datos que ha recibido
del cliente.

Al igual que recufrom() devuelve un -1 en caso de error, devuelve el nimero
de bytes escritos en el caso de que la comunicacién haya sido correcta.

F.4. Comunicacion: Cliente

El cliente se va a programar en Android. Esta aplicacion necesita conocer desde
un primer momento la direccion del servidor y el puerto de comunicacion, para
asi poder enviarle un paquete de tal forma que éste conozca de donde proviene el
paquete y enviarle una respuesta.

Los pasos a seguir son los siguientes:

Creaciton del socket

Creacion del paquete de datagrama, ya sea para recibir o para enviar.

Enviar paquete

Recibir paquete

F.4.1. Creacibén socket

En un primer lugar, se utiliza la funcion Datagram socket para crear un socket
que permita la comunicacién, tanto para enviar como para recibir. En este caso,

70

F.4. COMUNICACION: CLIENTE

no hay que pasarle ningtin parametro, sélo abrirlo, ya que la direcciéon del servidor
y el puerto de comunicacion se indican cuando se crea el paquete que vamos a
enviar.

F.4.2. Creacién paquete

Aunque el concepto es el mismo tanto para la creacion de un paquete para
enviar datos como para recibirlos, hay diferencias entre uno y otro. Para la crea-
cion de los paquetes UDP, se utiliza la funcion Datagram Packet, tanto para el
envio como para recibir.

En el caso del paquete a enviar hay que introducirle varios parametros. En
primer lugar, se introduce el array de bytes que se quiere enviar y su longitud. Y
posteriormente, se le indica la direccion del servidor y el puerto por donde se va
a producir la comunicacion. De esta manera, el paquete se envia al servidor, que
escucha por el puerto establecido en comiin, y que recoge la direccion del cliente,
para posteriormente enviarle informaciéon a esa misma direccion.

En el caso del paquete recibido, simplemente se le indica el buffer donde
almacenar la llegada de datos y la longitud del mismo.

F.4.3. Enviar paquete

A la hora de enviar un paquete de datagrama, utilizamos la funcién soc-
ket.send(), siendo socket el nombre con el que hayamos llamado en un principio
a nuestro socket, e introduciéndole el nombre del paquete que hemos creado para
el envio.

F.4.4. Recibir paquete

En el caso de la recepcion, utilizamos socket.receive(), introduciéndole el pa-
quete que hemos creado para recibir la informacion. Aunque hemos utilizado un
paquete para la recepcion, hay que tener en cuenta que los datos se encuentran
almacenados en el buffer que hemos creado.

Sin embargo, en este caso nos surge un problema. Al igual que ocurre con
el servidor programado en C++, la funciéon receive es bloqueante, por lo que
el programa no avanza si se queda bloqueada. En Android, si hay una funcion
bloqueante en la parte principal de una actividad, el programa deja de responder.
Por lo tanto, se crea un thread que separe el proceso cliente de la actividad
principal, para que asi pueda operar de una forma secundaria manteniendo la
parte principal del programa sin ninguna funcién que la pueda bloquear. Para
hacer cambios en la interfaz de esa actividad, utilizaremos un handler, funcion
que permite comunicar este proceso creado para el cliente con la parte principal

71

APENDICE F. TRANSMISION DE DATOS Y PROTOCOLOS DE
COMUNICACION

de la actividad. Esto sirve de mucha utilidad a la hora de poder mostrar la imagen
de la placa en el dispositivo.

72

Apéndice G

Métodos de deteccion

Para la detecciéon de contornos existen una variedad de métodos. Los més
utilizados son el método de Sobel[19], el de Prewitt[20], el de Roberts|21] o el
de Canny|22]. Los tres primeros se basan en los distintos niveles de grises que
hay en una imagen de blanco y negro. Aplicando mascaras de convoluciéon a la
imagen, se resaltan los cambios bruscos en la intensidad, lo que se corresponderéa
con los contornos que realmente estamos buscando.Cada uno tiene sus ventajas
y desventajas.

G.1. Meétodo de Roberts

El método de Roberts utiliza una mascara méas sencilla. Presenta como gran
desventaja que considera muy pocos pixeles de entrada para hacer la aproxima-
cion, lo que provoca que sea muy sensible al ruido y nos permite solamente marcar
los puntos de borde, es decir, su localizacion, pero no la orientacion de los mismos.
No obstante, esta misma desventaja lo convierte en un operador muy simple que
trabaja muy bien con imégenes binarias y con una gran velocidad de cémputo.

Ventajas:

= Buena respuesta en bordes horizontales y verticales.
= Buena localizacion.

= Simpleza y rapidez de calculo.
Desventajas:

= Mala respuesta en bordes diagonales.
= Sensible al ruido.

= Empleo de méascaras pequenas.

73

APENDICE G. METODOS DE DETECCION

= No da informacion acerca de la orientacion del borde.

= Anchura del borde de varios pixeles.

G.2. Método de Sobel

El método de Sobel utiliza la misma mascara que Prewitt, sin embargo, el rui-
do es menor ya que posee un suavizado que reduce el ruido, permitiendo mejores
medidas. Sobel es el operador usado més comunmente y en la practica propor-
ciona una buena deteccion de bordes diagonales.

Ventajas:

= Buena respuesta en bordes horizontales y verticales.
= Diversidad de tamanos en las méascaras.

= Proporcionan un suavizado ademas del efecto de derivacion

Desventajas:

Mala respuesta en bordes diagonales.

Lentitud de calculo.

No da informacién acerca de la orientacion del borde.

= Anchura del borde de varios pixeles.

G.3. Meétodo de Prewitt

El método de Prewitt utiliza una méascara mas compleja que el de Roberts,
por lo que aunque no sea tan rapido computacionalmente, permite unos mejores
resultados en la deteccion de los bordes. A diferencia del operador de Sobel, el
operador de Prewitt proporciona una mejor deteccion de los bordes verticales y
horizontales en comparacion con los bordes diagonales. No obstante, en la practica
no se aprecia una gran diferencia entre ambos.

Ventajas:

= Buena respuesta en bordes horizontales y verticales.
= Poco sensible al ruido.

= Proporciona la magnitud y direcciéon del borde.

74

G.4. METODO DE CANNY

Desventajas:

= Mala respuesta en bordes diagonales.
= Lentitud de célculo.

= Anchura del borde de varios pixeles.

G.4. Método de Canny

En 1986, Canny propuso un método para la deteccion de bordes que ofrecia
mejores resultados que los métodos vistos anteriormente aunque presentaba una
mayor complejidad computacional.

El método de Canny se basa en tres criterios principales:

= El criterio de detecciéon, que expresa el hecho de evitar la eliminacion de
bordes importantes asi como no suministrar falsos bordes.

= El criterio de localizacion, que establece que la distancia entre la posicién
real y la posicion localizada para el borde debe ser minimizada.

= El criterio de respuesta tinica, que establece la necesidad de que el detector
retorne un tnico punto por cada punto de borde verdadero. Esto implica
que el detector no debe encontrar miultiples pixeles de borde donde solo
existe uno.

Uno de los métodos relacionados con la deteccion de bordes es el uso de la
primera derivada, que utiliza el valor cero en todas las regiones donde no varia
la intensidad y tiene un valor constante en toda la transicién de intensidad. Por
lo tanto, un cambio de intensidad se manifiesta como un cambio brusco en la
primera derivada, caracteristica que es utilizada para detectar un borde, y en la
que se basa el algoritmo de Canny.

El algoritmo de Canny consta de tres grandes pasos:

= Obtencidn del gradiente: Para la obtencion del gradiente, lo primero que
se realiza es la aplicacion de un filtro gaussiano a la imagen original con el
objetivo de suavizar dicha imagen y conseguir la eliminacion del ruido que
pueda existir. Sin embargo, hay que tener cuidado de no aplicar un suavi-
zado excesivo, puesto que se podrian perder ciertos detalles de la imagen y
provocar que el resultado final no fuese el esperado. Una vez que se suaviza
la imagen, para cada pixel se obtiene la magnitud y modulo(orientacion)
del gradiente, obteniendo asi dos imagenes.

6]

APENDICE G. METODOS DE DETECCION

= Supresién no maxima al resultado del gradiente: Las dos imagenes
generadas en el paso anterior sirven de entrada para generar una imagen
con los bordes adelgazados. El procedimiento es el siguiente: se consideran
cuatro direcciones identificadas por las orientaciones de 0°, 45°, 90° y 135°
con respecto al eje horizontal. Para cada pixel se encuentra la direcciéon que
mejor se aproxime a la direcciéon del angulo de gradiente. Posteriormente se
observa si el valor de la magnitud de gradiente es mas pequeno que al menos
uno de sus dos vecinos en la direcciéon del angulo obtenida en el paso anterior.
De ser asi, se asigna el valor 0 a dicho pixel, en caso contrario se asigna el
valor que tenga la magnitud del gradiente. La salida de este segundo paso
es una imagen con los bordes adelgazados después de realizarse la supresion
no méaxima de puntos de borde.

= Histéresis de umbral a la supresién no maxima: La imagen que ha
sido obtenida en el paso anterior suele contener maximos locales creados por
el ruido. Una solucién para eliminar dicho ruido es la denominada histéresis
del umbral. El proceso de histéresis consiste en tomar la imagen obtenida en
el paso anterior, obtener la orientacion de los puntos de borde de la imagen
y tomar dos umbrales de forma que el primero sea més pequeno que el
segundo. Para cada punto de la imagen se debe localizar el siguiente punto
de borde no explorado que sea mayor que el segundo valor de umbral. A
partir de dicho punto, se siguen las cadenas de maximos locales conectados
en ambas direcciones perpendiculares a la normal del borde siempre que
sean mayores que el primer valor de umbral. De esta forma, se marcan
todos los puntos explorados y se almacena la lista de todos los puntos en el
contorno conectado. Es de este modo como se logra eliminar, con este paso,
las uniones en forma de Y de los segmentos que confluyen en un determinado
punto.

Como conclusion, se puede indicar que el algoritmo de Canny tiene como
principal ventaja su gran adaptabilidad para poder ser aplicado a diversos tipos
de imégenes, ademés de no disminuir su rendimiento ante la presencia de ruido en
la imagen original. Sin embargo, tiene como desventaja el hecho de que al realizar
el suavizado de la imagen se pueden difuminar ciertos bordes aunque con eso se
consiga reducir el ruido.

Este algoritmo es uno de los mejores métodos para la deteccion de bordes, el
cual aplica métodos de diferencias finitas basado en la primera derivada y cuya
popularidad se debe, ademéas de a sus buenos resultados, a su sencillez, la cual
que permite una gran velocidad de procesamiento al ser implementado.

76

