
Apéndice A

La cámara Microsoft Kinect

A.1. Especi�caciones técnicas

La cámara Kinect es un periférico de entrada desarrollado por Microsoft para
jugar en la videoconsola Xbox 360 que salió a la venta en Noviembre de 2010. Se
trata de un controlador que tiene el propósito de ser capaz de permitir jugar a
los videojuegos sin necesidad de ningún mando, percibiendo y reconociendo los
cuerpos de los jugadores y los movimientos que realizan, así con reconocimiento
de voz. Para ello hace uso de dos cámaras frontales, una convencional de RGB y
un sensor de distancia, y de una serie de micrófonos.

El sistema de percepción de profundidad consta de tres partes básicas: el
proyector láser de infrarrojos, el sensor CMOS y el microchip que procesa la
información. Fue creado y desarrollado por PrimeSense, una compañía Israelí ex-
perta en innovación. Contrariamente a lo que podríamos suponer en un principio,
no se trata de un sensor basado en tiempo de vuelo, sino que su funcionamiento
se basa en la proyección de un patrón de puntos pseudo-aleatorio y su lectura y
triangulación mediante el sensor CMOS. En la sección A.2 se entra más en detalle
en cuanto a funcionamiento del sistema.

En la Figura A.1 se puede ver con claridad las distintas partes que componen
la cámara de forma numerada:

1. Conjunto de micrófonos. Está compuesto por cuatro micrófonos, que permi-
ten la comunicación con el dispositivo y darle órdenes al mismo. Su con�gu-
ración hace que sea capaz de reconocer la localización de donde proviene el
audio dentro de la habitación, y están programados para captar y erradicar
el posible ruido de ambiente.

2. Proyector láser. Posee las siguientes propiedades [6]:

Se trata de un láser no modulado, no produce pulsos en su salida sino
que se mantiene a nivel constante.

La longitud de onda es de 830nm.

Consta de un sistema de difracción que subdivide el rayo en múltiples
instancias, proyectando un patrón de puntos pseudo-aleatorio.

33

APÉNDICE A. LA CÁMARA MICROSOFT KINECT

Figura A.1: Esquema de los elementos de la Kinect

(a) (b)

Figura A.2: (a) Emisor láser que proyecta el patrón de puntos. (b) Sensor CMOS que
capta el patrón emitido para calcular la profundidad

La potencia medida a la salida de la Kinect es de 60mW. No es dañi-
na para los ojos, si bien es probable que la difracción inducida haya
introducido pérdidas.

Posee un estabilizador de temperatura que se encarga de mantener el
láser a temperatura constante para no alterar la longitud de onda de
salida.

3. Sensor de infrarrojos. Microsoft no ha desvelado de qué componente especí-
�co se trata. Expertos en ingeniería inversa han determinado que se trata del
sensor CMOS monocromo de 1/2"MT9M001C12STM, de la marca Micron
(Figura A.2b). Posee las siguientes propiedades:

Tamaño de píxel: 5, 2µm

34

A.1. ESPECIFICACIONES TÉCNICAS

Formato de vídeo 5:4 con resolución SXGA 1280× 1024 (1,3 Megapí-
xeles).

30 fps programables.

Rango de temperaturas de trabajo: 0oC a 70oC

Posee un �ltro de paso de infrarrojos a la misma frecuencia del lá-
ser. Experimentos realizados con otras fuentes de luz (visible, 950nm)
producen una in�uencia en el sensor mínima.

Aunque se trata de un sensor de infrarrojos, se sitúa en el rango de
captación del espectro electromagnético del infrarrojo cercano (entre
780 nm y 2.500 nm, ya que mide 830 nm). Esto hace que sea totalmente
imposible medir temperaturas, al ser el rango óptimo utilizado por
cámaras termográ�cas el del infrarrojo medio (en concreto, entre 3.000
nm y 14.000 nm).

El campo de visión en horizontal de la cámara es de 57o (Figura A.3)
y el rango máximo de distancia desde la cámara para la captación
de profundidad es de 0,8 metros a 4 metros, considerándose un rango
óptimo de 1,2 metros a 3,5 metros. En Febrero de 2012 salió al mercado
una nueva Kinect diseñada para usar en Windows, que amplía el rango
de cercanía a 0,4 metros al poseer un �modo cercano�.

Figura A.3: Campo de visión horizontal y rango de proximidad de la Kinect

El campo de visión vertical de la cámara estática es de 43,5o (Figu-
ra A.4).

35

APÉNDICE A. LA CÁMARA MICROSOFT KINECT

Figura A.4: Campo de visión vertical y variación del mismo provocada por la inclina-
ción del motor

4. Motor de inclinación de la Kinect. La cámara está equipada con un motor
que inclina arriba o abajo la cámara ±27o para poder abarcar cómodamente
el cuerpo de los usuarios sin importar la altura a la que está situada la
cámara (arriba o abajo de la televisión) (Figura A.4). Posee un acelerómetro
que indica la inclinación que posee en cada instante.

5. Cámara RGB. Al igual que ocurría con el sensor de profundidad, se ha
conocido la identidad del componente a través de la ingeniería inversa. Es de
la misma familia, un Micron MT9M112 (Figura A.5), un sensor de imagen
CMOS System-on-Chip. Posee las siguientes características técnicas:

Tamaño de píxel: 2, 8µm× 2, 8µm

1,3 Megapíxeles

Resolución: 1.280H × 1.024V

Filtro de color de Bayer.

15 fps a máxima resolución, 30 fps a 640× 512

Rango de temperaturas de trabajo: -30oC a +70oC

Soporta VGA, QVGA, CIF y QCIF

6. Cable conector USB. La conexión tanto a la consola como al ordenador se
hace mediante USB 2.0, lo cual limita en parte la cantidad de información
que se puede procesar por segundo, que teóricamente podría ascender a
60MB/s aunque suele acercarse más a los 35MB/s. Esto hace que no se

36

A.1. ESPECIFICACIONES TÉCNICAS

Figura A.5: Foto de la cámara extraída de la Kinect

pueda transmitir toda la información de imágenes a plena resolución y con
una tasa de fps de 30, por lo que constituye uno de los motivos por los que
la resolución de las cámaras no es la que �nalmente llega a procesarse en el
ordenador.

Con el USB se pueden alimentar las cámaras, si bien es cierto que el poseer
motor de inclinación hace que la potencia aportada no sea su�ciente y tenga
que contarse a su vez con una conexión a la red eléctrica.

Estas partes descritas se encuentran montadas dentro de una caja de plástico
negra y alargada, donde las cámaras y el láser permanecen unidos a una placa
metálica que los mantiene situados a la distancia oportuna (Figura A.6a). Si se
doblase esa placa se alteraría la imagen de profundidad obtenida. La caja va unida
a la base mediante una barra móvil que es accionada por el motor de inclinación.

Paralelamente a la placa metálica se sitúan dos placas con microchips que se
encargan de controlar el sistema y procesar la información recogida por los senso-
res (Figura A.6b). Entre ellos destaca el PS1080 SoC, el auténtico �cerebro� de
la Kinect, que se encarga de procesar la información de profundidad, ejecutando
los algoritmos necesarios dentro del propio chip, así como la de imagen RGB y
microfonía (Figura A.7). Cuenta con una interfaz USB 2.0 que es la que trans-
mite la información procesada. El procesamiento de la profundidad se hace pues,
dentro de la Kinect, y no depende de a qué esté conectada. La información no se
procesa en el ordenador, éste sólo la lee.

Las especi�caciones técnicas del microchip se muestran en la tabla A.1. Ahí
se ponen en evidencia algunas restricciones que se han visto en cuanto a los com-
ponentes, como el campo de visión, la resolución de las imágenes de profundidad
y el rango de operación. Los fps no se ven limitados por el chip, sino por los sen-
sores en sí y la conexión USB en este caso, igual que la resolución de la imagen
de color.

37

APÉNDICE A. LA CÁMARA MICROSOFT KINECT

(a) (b)

Figura A.6: a) Sensores y láser empotrados en una placa metálica. b) Placas paralelas
a la metálica con la electrónica y microchips que controlan el dispositivo.

Figura A.7: Esquema de funcionamiento del PS1080

38

A.2. FUNCIONAMIENTO DEL SENSOR DE PROFUNDIDAD

Especi�cación técnica PS1080
Campo de visión 58o Horizontal, 45o Vertical, 70o

Diagonal
Tamaño de la imagen de profun-
didad

VGA (640× 480)

Resolución espacial en x/y a 2m
de distancia

3mm

Resolución en Z (profundidad) a
2m de distancia

1cm

Frames por segundo máximos 60 fps
Rango de operación 0.8m - 3,5m
Tamaño de la imagen de color UXGA (1600× 1200)
Audio: Micrófonos integrados Dos micrófonos
Audio: Entradas digitales Cuatro entradas
Interfaz de datos USB 2.0
Fuente de energia USB 2.0
Consumo 2.25W
Dimensiones (Ancho x alto x es-
pesor)

14cm× 3, 5cm× 5cm

Ambiente de uso Cerrado
Temperatura de operación 0oC - 40oC.

Tabla A.1: Especi�caciones del PS1080

Además, la Kinect está equipada con un ventilador que se activa cuando la
temperatura alcanzada es mayor de 70oC (recordar que el valor máximo del rango
de operación de los sensores ronda esa temperatura) y que se alimenta por la toma
USB.

A.2. Funcionamiento del sensor de profundidad

De todas las características y prestaciones que tiene la Microsoft Kinect descri-
tas en la sección A.1, una de las más interesantes para el proyecto es la percepción
de profundidad. Por ello, esta sección va a comentar su funcionamiento básico y
la base matemática que hay detrás de su óptica.

Las claves del funcionamiento son parcialmente desconocidas al no haberse
revelado explícitamente, pero análisis realizados por expertos [6, 10, 9] junto con
la observación de las patentes que PrimeSense han ido publicando en los últimos
años dejan entrever algunos de sus secretos.

Observando las imágenes captadas por la Kinect, a priori no puede asegurarse
qué método emplea. Se sabe que dispone de un emisor láser y de un receptor
que capta las señales re�ejadas del láser. Podría tratarse de un sensor de tiem-
po de vuelo (Time-Of-Flight), aquel que la distancia de la escena se determina
cronometrando el tiempo de viaje de ida y vuelta de un pulso de luz. Dado que

39

APÉNDICE A. LA CÁMARA MICROSOFT KINECT

la luz del láser se difracta en numerosos puntos, de este modo podría obtener-
se la información de la escena completa. Pero el láser no emite pulsos, no está
modulado.

La Kinect utiliza un procedimiento de luz estructurada para extraer la pro-
fundidad. El emisor emite un patrón de puntos, y la observación por medio del
sensor de las variaciones en el patrón indican la forma y situación de los objetos
mediante un proceso de triangulación. Para realizar la triangulación ha de haber
un previo patrón de referencia.

El láser emite un rayo único que se divide formando el patrón, que es constante
y se proyecta en la escena. Una captura realizada por una cámara capaz de captar
señales infrarrojas nos muestra su aspecto en la Figura A.8

Figura A.8: Captura del patrón de puntos sobre una pared

En ella se ve cómo el número de puntos es muy elevado, y su posición no sigue
una ordenación aparente, sino que parece aleatorio, pese a tratarse siempre del
mismo y ser constante. Sin embargo también se puede observar que parece que se
divide en nueve subsecciones formando una matriz 3× 3 donde el centro de cada
una aparece ligeramente más iluminado. Una observación más exhaustiva permi-
te además ver que hay algunos puntos que están menos iluminados con mucha
menos intensidad que otros. Se desconoce la razón por la que el patrón tiene estas
características, pueden tratarse de consecuencias derivadas del difractor emplea-
do o formar parte de una serie de �pistas� que ayudan al sistema a establecer las

40

A.2. FUNCIONAMIENTO DEL SENSOR DE PROFUNDIDAD

correlaciones para la triangulación.

(a) (b)

Figura A.9: Distorsión del patrón al introducir un objeto en escena. a) Pared sin nada.
b) Se ha situado un libro delante de la pared

El patrón de referencia se obtiene capturando un plano a una distancia co-
nocida del sensor, y permanece almacenado en la memoria desde el proceso de
fabricación de la cámara. Cuando un patrón de puntos se proyecta hacia un objeto
cuya distancia al sensor es mayor o menor que la del plano de referencia, el patrón
se distorsiona desde el punto de vista del sensor, ocasionándose desplazamientos
de los puntos en la dirección de la línea que une el proyector láser con la cámara
infrarroja. Esto se ilustra en la Figura A.9, donde se ve cómo se distorsiona el
patrón proyectado sobre la pared sin nada delante al introducir un libro en la es-
cena. Si pensamos en la pared como el plano de referencia, se ve cómo el patrón,
proyectado por el láser desde la derecha, se desplaza en la zona del libro hacia el
lado derecho produciéndose una especie de sombra a la izquierda del libro, puesto
que el sensor capta la imagen desde la izquierda y los rayos se ven interceptados
y no llegan a la zona oscura. El principio de funcionamiento general de la Kinect
es similar, solo que en vez de la pared es un plano precargado en la memoria a
una distancia determinada.

Para contemplar y medir los desplazamientos en los puntos que permiten eje-
cutar la triangulación ha de establecerse una correlación entre los puntos de la
imagen captada y el patrón de referencia. Se desconocen los detalles exactos de
funcionamiento de la misma, pero en esencia parece basarse en una búsqueda por
secciones de la imagen y una comparación posterior hasta encontrar puntos que
sean coincidentes en ambos patrones. Una vez encontrada alguna coincidencia se
procede a ir agrandando la región mirando los píxeles colindantes y presuponiendo
que las diferencias en cada super�cie no son muy grandes. Se sigue aumentando
la región hasta el momento en que ocurren grandes variaciones en todas las di-
recciones que hagan pensar que se trata de una región distinta. Se deja de mirar
en esa región y se toma otro punto coincidente. Pese a la complejidad del proceso
la Kinect es capaz de computarlo de forma rápida.

Para describir el proceso matemático de obtención de distancias nos apoyamos
en la Figura A.10. En ella se ve la relación triangular entre el punto del objeto a

41

APÉNDICE A. LA CÁMARA MICROSOFT KINECT

tratar k visto desde el sensor relativo al plano de referencia y la disparidad medida
d. Se considera el origen de las coordenadas tridimensionales situado en la cámara
infrarroja, con el eje Z ortogonal al plano de la imagen y dirigido al objeto y el eje
X en la línea base b que une la cámara con el proyector perpendicular al anterior.

Figura A.10: Esquema de la triangulación empleada para obtener el valor de profun-
didad desde la disparidad captada por el sensor

En el esquema se ha situado el plano del objeto a una distancia Zk menor que
la distancia del plano de referencia Zo. Por tanto, al proyectarse el patrón desde
L, el punto proyectado que en el plano de referencia visto por C se situaba en
o, ahora se situará en k, al haber ahora un objeto delante. Desde C se percibe
como un desplazamiento en el eje X a la derecha de magnitud D. Si se hubiese
considerado el objeto más lejano al plano de referencia, el desplazamiento hubiese
sido hacia la izquierda.

Lo que mide y registra el sensor no es directamente la distancia D del espacio
del objeto, sino la disparidad d. Para cada punto k se mide dicho parámetro y se
obtiene un mapa de disparidad. Observando los triángulos que forman la imagen
obtenemos:

D

b
=
Zo − Zk

Zo

(A.1)

y:

d

f
=
D

Zk

(A.2)

42

A.2. FUNCIONAMIENTO DEL SENSOR DE PROFUNDIDAD

Donde Zk, la distancia (profundidad) del punto k del objeto, es la variable
que se quiere obtener; b es la longitud de la base entendida como la distancia
entre la cámara y el proyector; f es la distancia focal del sensor infrarrojo; D es
la distancia real de desplazamiento del punto k en el espacio del objeto y d es la
disparidad observada en el espacio de la imagen. Sustituyendo D de ecuación A.2
en ecuación A.1 y despejando se obtiene:

Zk =
Zo

1 + Zo

fb
d

(A.3)

Los parámetros Zo, f y b se pueden determinar del proceso de calibración.
La coordenada Z de cada punto junto con f de�nen la escala de la imagen para
ese punto. Las coordenadas planimétricas del objeto en cada punto se pueden
calcular a partir de las coordenadas de la imagen y la escala:

Xk = −
Zk

f
(xk − xo + δx)

Yk = −
Zk

f
(yk − yo + δy)

(A.4)

Donde xk e yk son las coordenadas en la imagen del punto, xo e yo son las
coordenadas del punto principal, es decir, del o�set de la imagen y δx y δy son
las correcciones de la distorsión de la lente. Tanto los valores de o�set como los
de las correcciones también se pueden obtener del proceso de calibración.

Con los parámetros de la calibración conocidos, se puede completar la relación
entre los puntos medidos de la imagen (x, y, d) y las coordenadas del objeto
(X, Y, Z) de cada punto. Así se puede generar una nube de puntos de cada imagen
de disparidad.

La disparidad así descrita es una medida de la �profundidad inversa�, valores
más grandes de la misma signi�can distancias más cortas. Pero el valor de dispa-
ridad que retorna la Kinect, d′ está normalizado con un o�set según la relación:

d′ = doffset − 8d (A.5)

De modo que los valores que se obtienen mediante el software sí que crecen
con la distancia. Por esto, a efectos prácticos, se han utilizado los valores de
disparidad normalizada d′ como si de la profundidad se tratase puesto que se
comportan de igual manera y evita la adición de cálculos extra. A través de d′ es
posible obtener mapas de disparidad donde cada punto tiene una representación
(x, y, d′). Dichos mapas son los que se denominan habitualmente �imágenes de
profundidad� (Figura A.11).

Las imágenes de profundidad tal y como llegan al sistema después de proce-
sarse dentro de la cámara son imágenes de 11-bits de 640 × 480. En el entorno
de trabajo aparecen como matrices cuyos píxeles tienen un valor numérico de
0 a 211 = 2047. El valor de cada elemento se corresponde con la disparidad
normalizada obtenida en cada punto. Los píxeles donde no haya información de
profundidad los consideraremos de valor cero, aunque en ROS lo recibamos como

43

APÉNDICE A. LA CÁMARA MICROSOFT KINECT

Figura A.11: Mapa de disparidad (izquierda) calculado por la Kinect e imagen RGB
convencional

Not a Number. Para interpretar correctamente los valores de disparidad, estudios
detallados del proceso de calibración de la Kinect ([10]) proporcionan los grá�cos
de la Figura A.12.

(a) (b)

Figura A.12: Correspondencia entre disparidad d y distancia real en metros (a). Ta-
maño de paso en milímetros entre dos valores consecutivos de disparidad en función de
la distancia en metros (b). Grá�cas obtenidas de [10]

En la Figura A.12a se representa la relación de los valores con las distancias
reales en metros. En el entorno de trabajo se emplean valores de disparidad entre
600 y 700, que se sitúan por debajo del metro (la distancia entre la cámara
y los distintos puntos de la mesa están en ese intervalo). Por otra parte, en
la Figura A.12b se tiene idea de la precisión que se obtiene con este sensor a
diferentes distancias. La curva obtenida ha sido sometida a un análisis de regresión
que cumple la función.

q(z) = 2,73z2 + 0,74z − 0,58[mm] (A.6)

Así, en los intervalos en los que se trabaja en este proyecto (0,6 − 0,9m)
obtenemos una precisión de entre 0,8468 y 2,2973mm, según a la distancia a la

44

A.3. CONECTIVIDAD DE LA CÁMARA CON EL ORDENADOR

que se encuentren los objetos. Dicha precisión disminuye con la distancia, por lo
que se demuestra que la Kinect mide mejor en distancias cortas siempre y cuando
no sea inferior al límite de correcta medición (aproximadamente 0,5m).

A.3. Conectividad de la cámara con el ordenador

El cable que sale de la Kinect tiene una terminación especial para conectarla a
la Xbox. No obstante se dispone de un adaptador con una terminación de puerto
USB que utilizaremos para conectarla al ordenador. La energía que proporciona
el USB no es su�ciente para alimentar a los sensores y el motor de inclinación de
la cámara, por lo que también se dispone de una conexión adicional a la corriente
eléctrica en forma de adaptador de corriente (Figura A.13).

Figura A.13: Adaptador de USB y corriente para la Kinect

La mayor parte del desarrollo llevado a cabo internacionalmente con la Kinect
se ha hecho empleando drivers y librerías para programar en C++ o C# ([6], [3]).
Por ello, en este proyecto utilizamos ROS que tiene un compilador para C++
y para Python. Concretamente, se programa en C++, con el que se realiza los
algoritmos, además de realizar el tratamiento de imágenes con la librería OpenCV,
la cual nos ofrece muchas posibilidades.

A.4. Imágenes RGB y de profundidad

El uso de las imágenes RGB y de profundidad constituye uno de los pilares
de este proyecto, por lo que es conveniente dejar claro en qué consisten y cómo
se manejan, así como ayudar a entender la visualización de las mismas.

La obtención de la imagen RGB se obtiene de la misma manera que con una
cámara convencional. RGB es un modelo que permite representar cualquier color
mediante la mezcla de tres colores primarios. En este caso, y como indican las
siglas, rojo,verde y azul (Red,Green,Blue).

La obtención de la imágenes por parte de la cámara de infrarrojos se basa en
un sistema de luz estructurada, donde un patrón de puntos láser proyectado por
la propia cámara (Figura A.14) es leído por el sensor infrarrojo y procesado por

45

APÉNDICE A. LA CÁMARA MICROSOFT KINECT

el propio chip interno de la Kinect. En él se establece una comparación con un
patrón a una distancia conocida y mediante triangulación se obtienen los valores
de disparidad d en cada punto. Los valores de disparidad no se corresponden
con valores directos de distancia, el cálculo de la misma requiere el conocimiento
de ciertos parámetros de calibración. No obstante, los valores de disparidad que
llegan a la Kinect están normalizados y se comportan de igual manera, siendo
crecientes con la distancia.

Figura A.14: Patrón de puntos láser proyectado.

(a) (b)

Figura A.15: Imágenes obtenida: (a) Imagen RGB (b) Imagen profundidad

Las imágenes RGB (Figura A.15a) que se obtienen son matrices 640x480 de
tres canales, donde cada canal es un color (rojo,verde o azul). Cada pixel varía
entre un valor de 0 y 255. Las imágenes de profundidad (Figura A.15b) que
se obtienen son matrices 640x480 de un solo canal. Como se observa en la �gura
correspondiente, hay más o menos intensidad de gris, dependiendo de la distancia
a la que se encuentren los objetos, pero hay zonas negras donde la cámara no ha
podido obtener datos. Esos puntos son devueltos como NaN (Not a Number),
pero tratados posteriormente para convertirlos a un valor 0.

A.4.1. Obtención de las imágenes RGB y de profundidad

El primer objetivo es conseguir las imágenes de profundidad y RGB para, a
partir de ellas, empezar con la detección de los recipientes. En un primer momento,
se pensó en utilizar el software Matlab, ya que es un entorno de simulación más
extendido, permitiendo la posible integración en otros sistemas. Sin embargo,

46

A.4. IMÁGENES RGB Y DE PROFUNDIDAD

hay una gran desventaja al utilizar este software. Tras una búsqueda exhausta de
información, se llegó a un punto: la imposibilidad de poder obtener los dos tipos de
imágenes (RGB y profundidad) de manera simultánea. En una primera opción se
intentó capturar los dos tipos en Matlab por medio de archivos mex-�les (Matlab
Executable). Un mex-�le proporciona una interfaz entre Matlab y subrutinas
escritas en C++ que, al ser compilado, permite al código que no pertenece a
Matlab ser involucrado dentro de los programas y funciones de este sistema.
De esta forma, habría que tomar primero una imagen (RGB) y posteriormente
otra (profundidad), lo que aumentaría considerablemente los tiempos al obtener
dos imágenes consecutivas del mismo tipo (estando entre 1.2 - 1.3 segundos),
perdiendo uno de los objetivos que queremos conseguir, que es el obtener las
imágenes a tiempo real.

Para conseguir nuestro objetivo, ROS nos proporciona las herramientas ne-
cesarias, permitiendo la publicación o subscripción a �ujos de datos. Gracias a
los drivers de OpenNI, podemos controlar la cámara Microsoft Kinect. Al conec-
tarnos con ella, ROS nos ofrece una cantidad de nodos a los cuales nos podemos
subscribir para poder recibir información de ellos, mostrándonos las opciones por
su consola al hacer la petición de la lista de los nodos disponibles.

Figura A.16: Consola para el manejo de ROS con los nodos que ofrece la cámara para
su posible subscripción

Como vemos, hay muchas posibilidades debido a los diversos nodos que se crea
y que ROS nos ofrece: imagen de disparidad, comprimida, de color, en blanco y
negro, etc...En nuestro programa creamos dos subscriptores: uno para la imagen

47

APÉNDICE A. LA CÁMARA MICROSOFT KINECT

RGB y otro para la imagen de profundidad. De esta forma, podemos obtener
el �ujo de imágenes de una manera simultánea, cumpliendo uno de los objetivos
del proyecto. Concretamente, nos subscribimos al nodo /camera/rgb/imagecolor
para conseguir la imagen de la cámara convencional, y nos subscribimos al no-
do /camera/depth/imagerect para conseguir la imagen de profundidad. ROS
también nos permite crear distintos apartados para realizar el tratamiento de
imágenes de forma simultánea. Así, en nuestro programa, se crean dos funciones
distintas a raíz del programa principal: uno donde tratamos la imagen RGB, y
otro donde manejamos la imagen de profundidad. Todo ello dentro del mismo
proceso de toma de imagen. Así, cada vez que llegua uno de estos frames nuevos,
son tratados para conseguir los objetivos que estamos buscando. De esta manera,
los datos se pueden tratar a la vez y conseguir que todo sea a tiempo real.

Aunque teóricamente la cámara Microsoft Kinect trabaja a 30 frames por
segundo, su conectividad por cable USB hace que esta cifra baje hasta prácti-
camente la mitad. En cada frame, el programa modi�ca la imagen y la muestra
en una ventana de ROS, donde visualizamos el resultado. Las ventanas son dos,
una para cada tipo de imagen y el tratamiento que le vamos dando. El tamaño
de las imágenes recibidas es de 640x480. Éstas son convertidas a una matriz del
entorno para poder recoger los datos y manejarlas con las herramientas tanto de
ROS como de OpenCV y C++.

48

Apéndice B

Cálculo analítico del plano de referencia

Para calcular el plano en tres dimensiones se necesitan las coordenadas y
distancia de al menos tres puntos pertenecientes a él. Dado que para la homografía
hay que coger cuatro puntos que no incluyan tres colineales, se utilizan esos
mismos puntos.

Tras la detección automática de las esquinas, conocemos los puntos P1, P2, P3

y P4, de los cuales se pueden obtener, por ejemplo, los vectores −→u y −→v como:

−→u =
−−→
P1P2 = (u1, u2, u3) = (x2 − x1, y2 − y1, z2 − z1)

−→v =
−−→
P1P3 = (v1, v2, v3) = (x3 − x1, y3 − y1, z3 − z1)

(B.1)

Éstos forman parte del plano que vamos a calcular, al igual que P1. Se supone
un punto X = (x, y, z) que pertenece al plano, por lo que sabremos que el vector
−−→
P1X es coplanario con −→u y −→v :

−−→
P1X = λ−→u + µ−→v (B.2)

(x− x1, y − y1, z − z1) = λ(u1, u2, u3) + µ(v1, v2, v3) (B.3)

(x, y, z)− (x1, y1, z1) = λ(u1, u2, u3) + µ(v1, v2, v3) (B.4)

De forma que un punto X está en el plano si tiene solución el sistema:
x− x1 = u1λ+ v1µ

y − y1 = u2λ+ v2µ

z − z1 = u3λ+ v3µ

(B.5)

Para ello el sistema tiene que ser compatible determinado en las incógnitas λ
y µ. Por tanto, el determinante de la matriz ampliada del sistema con la columna
de los términos independientes tiene que ser igual a cero:∣∣∣∣∣∣

x− x1 u1 v1
y − y1 u2 v2
z − z1 u3 v3

∣∣∣∣∣∣ = 0 (B.6)

49

APÉNDICE B. CÁLCULO ANALÍTICO DEL PLANO DE REFERENCIA

Desarrollando el determinante:∣∣∣∣ u2 v2
u3 v3

∣∣∣∣ (x− x1)− ∣∣∣∣ u1 v1
u3 v3

∣∣∣∣ (y − y1) + ∣∣∣∣ u1 v1
u2 v2

∣∣∣∣ (z − z1) = 0 (B.7)

Se obtiene:

A =

∣∣∣∣ u2 v2
u3 v3

∣∣∣∣ B = −
∣∣∣∣ u1 v1
u3 v3

∣∣∣∣ C =

∣∣∣∣ u1 v1
u2 v2

∣∣∣∣ (B.8)

Sustituyendo:

A(x− x1) +B(y − y1) + C(z − z1) = 0 (B.9)

Operando y dando a D el valor

D = −Ax1 −By1 − Cz1 (B.10)

se obtiene la ecuación general del plano

Ax+By + Cz +D = 0 (B.11)

con lo cual, dando valores de 1 a 640 en x y de 1 a 480 en y se obtiene una
imagen 640× 480 que es el plano calculado con esos cuatro puntos.

El proceso se repite tres veces más rotando los puntos de las esquinas empe-
lados, de modo que en vez de coger P1, P2 y P3 se prueba con P2, P3 y P4; P3, P4

y P1 y P4, P1 y P2. Al �nal resulta el plano que menos error tiene de todas las
combinaciones.

50

Apéndice C

Cálculo de homografías

C.1. Concepto de homografía

La necesidad de realizar una homografía viene dada principalmente por en-
contrar la correspondencia entre la imagen de profundidad y la imagen RGB en la
calibración de la cámara. Una homografía es una transformación proyectiva que
permite transformar la imagen tomada a un nuevo plano donde aparece corregida
la distorsión ocasionada por la perspectiva y muestra la imagen en la situación
ideal.

Una homografía es una aplicación invertible, que se denomina h, que transfor-
ma puntos situados en un plano a otro de modo que la colinealidad se mantiene.
Es decir, si tres puntos de un plano están contenidos en una línea, lo siguen
estando en el plano transformado. Más precisamente:

Una homografía (o proyectividad) es una aplicación invertible h desde P 2 a
sí misma tal que tres puntos x1, x2 y x3 coinciden en la misma línea sí y sólo sí
h(x1), h(x2) y h(x3) también lo hacen.

Una de�nición equivalente en forma algebraica es la siguiente:

una aplicación h : P 2 → P 2 es una homografía sí y sólo sí existe
una matriz H no singular 3x3 que para cada punto de P 2 representado
como vector de coordenadas homogéneas x se cumple que h(x) = Hx.

Que un punto del espacio bidimensional esté descrito en coordenadas homo-
géneas signi�ca que está de�nido por tres coordenadas. De tal modo un punto
de dimensiones (x, y) se representa por (x

w
, y
w
, w) donde por simplicidad se con-

sidera en una primera instancia que w = 1. Dado que estamos trabajando con
coordenadas homogéneas, la matriz H también lo será. Al igual que ocurre con la
representación homogénea de un punto, sólo el ratio entre los elementos de la ma-
triz es signi�cante, luego por haber 8 ratios independientes entre los 9 elementos
de H, hay 8 grados de libertad a la hora de calcular la matriz.

Sabiendo eso, se puede realizar la transformación proyectiva de las coordena-
das de un punto p(x, y) a un punto p′(x′, y′). La solución no homogénea es:

51

APÉNDICE C. CÁLCULO DE HOMOGRAFÍAS

x′ =
x′1
x′3

=
h11x+ h12y + h13
h31x+ h32y + h33

y′ =
x′2
x′3

=
h21x+ h22y + h23
h31x+ h32y + h33

(C.1)

De modo que se generan dos ecuaciones por cada punto p(x, y). Si se conoce el
punto p′(x′, y′) únicamente se tienen como incógnitas del sistema a los elementos
de la matrizH. Siendo que dicha matriz tiene únicamente ocho grados de libertad,
teniendo cuatro puntos conocidos en ambas proyecciones se pueden obtener las
ocho ecuaciones necesarias para resolver y calcular H. La única restricción a tener
en cuenta es que esos cuatro puntos han de estar en una �posición general�, es
decir, que entre ellos no haya tres alineados en ningún caso.

Una vez obtenida H se puede invertir para pasar indistintamente de un plano
a otro.

C.2. Procedimiento

Como se ha visto en el subapartado anterior, se necesita calcular la matriz H.
Hay muchos algoritmos para ello, el que se va a comentar es el de transformación
linear directa (Direct Linear Transformation algorithm, o DLT) [27].

Ello requiere partir de un conjunto de cuatro puntos que se conoce que se
corresponden en ambos planos proyectivos, xi ↔ x′i. La transformación la da la
ecuación x′i = Hxi, como ya se ha comentado. Esta ecuación se puede expresar
como el producto vectorial tal como x′i ×Hxi = 0.

La j-ésima �la de la matriz H se llamará hjT , tal que:

Hxi =

 h1Txi

h2Txi

h3Txi

 (C.2)

Escribiendo x′i = (x′i, y
′
i, w

′
i)
T , el producto vectorial se puede dar como:

x′i ×Hx′i =

 y′ih
3Txi − w′ih2Txi

y′ih
1Txi − w′ih3Txi

y′ih
2Txi − w′ih1Txi

 (C.3)

Y dado que hjTxi = xhj para j = 1, ..., 3, da un conjunto de tres ecuaciones
de los términos de H: 0T −w′ixT

i y′ix
T
i

−w′ixT
i 0T −x′ixT

i

−y′ixT
i x′ix

T
i 0T

 h1

h2

h3

 = 0. (C.4)

52

C.2. PROCEDIMIENTO

Que tiene la forma Aih = 0, donde Ai es una matriz 3x9 y h es un vector de
9 componentes que forman la matriz H.

h =

 h1

h2

h3

 , H =

 h1 h2 h3
h4 h5 h6
h7 h8 h9

 (C.5)

Donde hi es el i -ésimo elemento de h.

De las tres ecuaciones obtenidas, solo dos de ellas son linealmente indepen-
dientes, por lo que, como ya vimos, es necesario usar cuatro puntos para obtener 8
ecuaciones que nos permitan calcular la H completa. Se puede eliminar la tercera
�la de la ecuación (C.4) y obtener:

[
0T −w′ixT

i y′ix
T
i

−w′ixT
i 0T −x′ixT

i

] h1

h2

h3

 = 0. (C.6)

que origina una matriz Ai de dimensiones 2x9.

53

APÉNDICE C. CÁLCULO DE HOMOGRAFÍAS

54

Apéndice D

Android

D.1. ¾Qué es Android?

Android es un sistema operativo pensado inicialmente para móviles. Sin em-
bargo, lo que le hace diferente es que está basado en Linux, un núcleo de siste-
ma operativo libre, gratuito y multiplataforma.Este sistema permite programar
aplicaciones en una variación de Java, proporcionando las interfaces necesarias
para desarrollar aplicaciones que accedan a las distintas funciones del teléfono
(GPS, llamadas, agenda, etc...) de una forma muy sencilla mediante este lengua-
je orientado a objetos. Esta sencillez, junto con las herramientas de programación
gratuitas, hace que haya una gran cantidad de aplicaciones disponibles, ya que
cualquier usuario puede actuar como desarrollador de aplicaciones para luego
funcionar sobre este sistema operativo.

Una de las mejores características es que es completamente libre. No hay que
pagar nada por programar en este sistema, ni para incluir en ningún dispositivo
que lo tenga (móviles, tablets, ordenadores). Por ello, es muy popular entre fa-
bricantes y desarroladores, ya que los costes para lanzar una aplicación son muy
bajos. Cualquiera puede bajarse el código fuente, modi�carlo, inspeccionarlo o
compilarlo. Esto proporciona seguridad a los usuarios, ya que algo que es abier-
to permite detectar fallos más rápidamente. Y también a los fabricantes, ya que
pueden adaptar mejor el sistema operativo a los terminales.

La estructura del sistema operativo Android se compone de aplicaciones que
se ejecutan en un framework Java de aplicaciones orientadas a objetos sobre el
núcleo de las bibliotecas de Java en una máquina virtual Dalvik con compilación
en tiempo de ejecución. Las bibliotecas escritas en lenguaje C incluyen un ad-
ministrador de interfaz grá�ca (surface manager), un framework OpenCore, una
base de datos relacional SQLite, una Interfaz de programación de API grá�ca
OpenGL ES 2.0 3D, un motor de renderizado WebKit, un motor grá�co SGL,
SSL y una biblioteca estándar de C Bionic. El sistema operativo está compuesto
por 12 millones de líneas de código, incluyendo 3 millones de líneas de XML, 2,8
millones de líneas de lenguaje C, 2,1 millones de líneas de Java y 1,75 millones

55

APÉNDICE D. ANDROID

de líneas de C++.

D.1.1. Historia

Inicialmente, fue desarrollado por Android Inc., y cuando aún era desconocido,
fue comprado por Google en 2005. Hasta noviembre de 2007 sólo hubo rumores,
pero en esa fecha se lanzó la Open Handset Alliance, que agrupaba a muchos
fabricantes de teléfonos móviles, chipsets y Google y se proporcionó la primera
versión de Android, junto con el SDK para que los programadores empezaran a
crear sus aplicaciones para este sistema. Google liberó la mayoría del código de
Android bajo la licencia Apache, una licencia libre y de código abierto.

Aunque los inicios fueran un poco lentos, debido a que se lanzó antes el sis-
tema operativo que el primer móvil, se ha colocado rápidamente como el sistema
operativo para móviles más vendido del mundo, alcanzando su auge en 2010. Las
unidades vendidas de teléfonos inteligentes con Android se ubican en el primer
puesto en los Estados Unidos, en el segundo y tercer trimestres de 2010, con
una cuota de mercado de 43,6% en el tercer trimestre. A nivel mundial alcanzó
una cuota de mercado del 50,9% durante el cuarto trimestre de 2011, más del
doble que el segundo sistema operativo (iOS de Apple, Inc.) con más cuota. En
la actualidad, Android ha transcendido los teléfonos móviles para trascender a
dispositivos más grandes, como las tablets, ordenadores, e incluso consolas de
juego.

Figura D.1: Diferentes dispositivos donde android ya está disponible

56

D.1. ¾QUÉ ES ANDROID?

Figura D.2: Esquema de la arquitectura Android

D.1.2. Arquitectura Android

Aplicaciones: Este nivel contiene, tanto las incluidas por defecto de An-
droid como aquellas que el usuario vaya añadiendo posteriormente, ya sean
de terceras empresas o de su propio desarrollo. Todas estas aplicaciones
utilizan los servicios, las API y librerías de los niveles anteriores.

Framework de aplicaciones: Representa fundamentalmente el conjunto
de herramientas de desarrollo de cualquier aplicación. Toda aplicación que se
desarrolle para Android, ya sean las propias del dispositivo, las desarrolladas
por Google o terceras compañías, o incluso las que el propio usuario cree,
utilizan el mismo conjunto de API y el mismo framework, representado por
este nivel.

Librerías: La siguiente capa se corresponde con las librerías utilizadas
por Android. Éstas han sido escritas utilizando C/C++ y proporcionan a
Android la mayor parte de sus capacidades más características. Junto al
núcleo basado en Linux, estas librerías constituyen el corazón de Android.

Tiempo de ejecución de android: Al mismo nivel que las librerias de
Android se sitúa el entorno de ejecución. Éste lo constituyen las Core Li-
braries, que son librerias con mulititud de clases Java y la máquina vistual
Dalvik.

Núcleo Linux: Android utiliza el núcleo de Linux 2.6 como una capa de
abstracción para el hardware disponible en los dispositivos móviles. Esta ca-
pa contiene los drivers necesarios para que cualquier componente hardware

57

APÉNDICE D. ANDROID

pueda ser utilizado mediante las llamadas correspondientes. Siempre que un
fabricante incluye un nuevo elemento de hardware, lo primero que se debe
realizar para que pueda ser utilizado desde Android es crear las librerias de
control o drivers necesarios dentro de este kernel de Linux embebido en el
propio Android.

D.1.3. Características

Diseño de dispositivo: La plataforma es adaptable a pantallas de ma-
yor resolución, VGA, biblioteca de grá�cos 2D, biblioteca de grá�cos 3D
basada en las especi�caciones de la OpenGL ES 2.0 y diseño de teléfonos
tradicionales.

Almacenamiento: SQLite, una base de datos liviana, que es usada para
propósitos de almacenamiento de datos.

Conectividad: Android soporta las siguientes tecnologías de conectivi-
dad: GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi, LTE,
HSDPA, HSPA+, NFC y WiMAX.

Mensajería: SMS y MMS son formas de mensajería.

Navegador web: El navegador web incluido en Android está basado en el
motor de renderizado de código abierto WebKit, emparejado con el motor
JavaScript V8 de Google Chrome.

Soporte multimedia: Android soporta los siguientes formatos multime-
dia: WebM, H.263, H.264 (en 3GP o MP4), MPEG-4 SP, AMR, AMR-WB
(en un contenedor 3GP), AAC, HE-AAC (en contenedores MP4 o 3GP),
MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG, GIF y BMP.

Soporte para hardware adicional: Android soporta cámaras de fotos, de
vídeo, pantallas táctiles, GPS, acelerómetros, giroscopios, magnetómetros,
sensores de proximidad y de presión, sensores de luz, gamepad, termómetro,
aceleración por GPU 2D y 3D.

Entorno de desarrollo: Incluye un emulador de dispositivos, herramientas
para depuración de memoria y análisis del rendimiento del software.

Multi-táctil: Android tiene soporte nativo para pantallas capacitivas con
soporte multi-táctil que inicialmente hicieron su aparición en dispositivos
como el HTC Hero. La funcionalidad fue originalmente desactivada a nivel
de kernel (posiblemente para evitar infringir patentes de otras compañías).
Más tarde, Google publicó una actualización para el Nexus One y el Moto-
rola Droid que activa el soporte multi-táctil de forma nativa.

Bluetooth

58

D.1. ¾QUÉ ES ANDROID?

Videollamada

Multitarea: Multitarea real de aplicaciones está disponible, es decir, las
aplicaciones que no estén ejecutándose en primer plano reciben ciclos de
reloj.

Características basadas en voz: La búsqueda en Google a través de
voz está disponible como .Entrada de Búsqueda"desde la versión inicial del
sistema.

Tethering: Android soporta tethering, que permite al teléfono ser usado
como un punto de acceso alámbrico o inalámbrico (todos los teléfonos desde
la versión 2.2, no o�cial en teléfonos con versión 1.6 o inferiores mediante
aplicaciones disponibles en Google Play.

59

APÉNDICE D. ANDROID

60

Apéndice E

ROS

ROS (Robot Operating System, o Sistema Operativo Robótico en español)
es un framework para el desarrollo de software para robots que provee la fun-
cionalidad de un sistema operativo en un clúster heterogéneo. Provee librerías y
herramientas para ayudar a los desarrolladores de software a crear aplicaciones
para robots. También provee abstracción de hardware, controladores de disposi-
tivos, librerías, herramientas de visualización, comunicación por mensajes, admi-
nistración de paquetes y más. ROS está bajo la licencia open source, BSD.ROS
se desarrolló originalmente en 2007 bajo el nombre de switchyard por elLabora-
torio de Inteligencia Arti�cial de Stanford para dar soporte al proyecto del Robot
con Inteligencia Arti�cial de Stanford . Desde 2008, el desarrollo continúa pri-
mordialmente en Willow Garage, un instituto de investigación robótico con más
de veinte instituciones colaborando en un modelo de desarrollo federado. ROS
provee los servicios estándar de un sistema operativo tales como abstracción del
hardware, control de dispositivos de bajo nivel, implementación de funcionalidad
de uso común, paso de mensajes entre procesos y mantenimiento de paquetes.
Está basado en una arquitectura de grafos donde el procesamiento toma lugar en
los nodos que pueden recibir, mandar y multiplexar mensajes de sensores, con-
trol, estados, plani�caciones y actuadores, entre otros. La librería está orientada
para un sistema UNIX (Ubuntu (Linux) es el sistema soportado aunque también
se está adaptando a otros sistemas operativos como Fedora, Mac OS X, Arch,
Gentoo, OpenSUSE, Slackware, Debian o Microsoft Windows considerados como
experimentales). Se puede programar en C++ o Python, a través de una serie de
módulos.

ROS tiene dos partes básicas: la parte del sistema operativo, ros, como se ha
descrito anteriormente y ros-pkg, una suite de paquetes aportados por la contri-
bución de usuarios (organizados en conjuntos llamados pilas o en inglés stacks)

61

APÉNDICE E. ROS

que implementan la funcionalidades tales como localización y mapeo simultáneo,
plani�cación, percepción, simulación, etc. ROS es software libre bajo términos de
licencia BSD. Esta licencia permite libertad para uso comercial e investigador.
Las contribuciones de los paquetes en ros-pkg están bajo una gran variedad de
licencias diferentes.

En este proyecto, se va a utilizar la parte de visión robótica, que es la que nos
va a proporcionar los nodos para poder conseguir las imágenes de profundidad y
de RGB.

Las áreas que incluye ROS son:

Un nodo principal de coordinación.

Publicación o subscripción de �ujos de datos: imágenes, estéreo, láser, con-
trol, actuador, contacto, etc.

Multiplexación de la información.

Creación y destrucción de nodos.

Los nodos están perfectamente distribuidos, permitiendo procesamiento dis-
tribuido en múltiples núcleos, multiprocesamiento, GPUs y clústeres.

Login.

Parámetros de servidor.

Testeo de sistemas.

Las áreas que incluirán las aplicaciones de los paquetes de ROS son:

Percepción

Identi�cación de Objetos

Segmentación y reconocimiento

Reconocimiento facial

Reconocimiento de gestos

Seguimiento de objetos

Egomoción

Comprensión de movimiento

Estructura de movimientos (SFM)

62

Visión estéreo: percepción de profundidad mediante el uso de dos cámaras

Movimientos

Robots móviles

Control

Plani�cación

Agarre de objetos

63

APÉNDICE E. ROS

64

Apéndice F

Transmisión de datos y protocolos de co-
municación

F.1. Método de transmisión de datos: Sockets

Socket, como su propio nombre indica (enchufe) es un método de comunicación
entre un servidor y un cliente. De esta forma, dos programas pueden intercam-
biarse un �ujo de datos de una forma �able y ordenada. Gracias a ellos, se forma
una especie de canal de conexión, que constituye el mecanismo para la entrega
de paquetes de datos. Aunque existen varios tipos, nos centramos en los sockets
de TCP/IP, que ofrece los protocolos de TCP y UDP.

Figura F.1: Situación de los sockets en capas

La forma en la que intercambian información es muy similar al proceso de
lectura y escritura de un �chero. Así, lo que queramos mandar es lanzado por el
socket de salida, mientras que la información es recibida por el socket destino.

65

APÉNDICE F. TRANSMISIÓN DE DATOS Y PROTOCOLOS DE
COMUNICACIÓN

Un socket se identi�ca siempre por la dirección IP y por el número de puerto,
que debemos especi�car al principio del programa. De esta forma, quedan iden-
ti�cados el socket origen y el socket destino. La particularidad que tienen frente
a otros mecanismos de comunicación entre procesos (IPC - Inter-Process Com-
munication) es que posibilitan la comunicación aun cuando ambos procesos estén
corriendo en distintos sistemas unidos mediante una red. De hecho, el API de
sockets es la base de cualquier aplicación que funcione en red puesto que ofrece
una librería de funciones básicas que el programador puede usar para desarrollar
aplicaciones en red. Por esta razón, los sockets ofrecen la mejor solución para
realizar la comunicación entre dos lenguajes de programación distintos como son
C++ y Android.

Los sockets para TCP/IP permiten la comunicación de dos procesos que estén
conectados a través de una red TCP/IP. En una red de este tipo, cada máquina
está identi�cada por medio de su dirección IP que debe ser única. Sin embargo,
en cada máquina pueden estar ejecutándose múltiples procesos simultáneamente.
Cada uno de estos procesos se asocia con un número de puerto, para poder así
diferenciar los distintos paquetes que reciba la máquina.

Es importante mencionar que a la aplicación creada en Android para el dispo-
sitivo, hay que darle unos permisos a la hora de poder comunicarse, para poder
acceder al Wi-� y a internet. Estos permisos son los siguientes:

android.permission.ACCESS_WIFI_STATE: Permite a las aplicaciones ac-
ceder a la información referente a las redes Wi-Fi.

android.permission.INTERNET: Permite a las aplicaciones abrir redes de
sockets para la comunicación.

android.permission.ACCESS_NETWORK_STATE: Permite a las aplica-
ciones acceder a la información sobre las redes.

android.permission.CHANGE_WIFI_MULTICAST_STATE: Permite a las
aplicaciones entrar en el modo Wi-Fi multidifusión.

F.2. Protocolos de comunicación

Como hemos mencionado anteriormente, los dos protocolos más usados son
TCP y UDP, siendo los dos pertenecientes a la capa de transporte. En el caso de
los sockets, estos son nombrados Socket Stream si se trata del protocolo TCP, o
Socket Datagram si se trata del protocolo UDP.

A grandes rasgos, las características del protocolo TCP son las siguientes:

Protocolo orientado a conexión

Secuenciado

66

F.2. PROTOCOLOS DE COMUNICACIÓN

Sin duplicación de paquetes

Libre de errores

De esta forma, proporciona un transporte �able de información entre aplica-
ciones, realizando retransmisiones ante la pérdida de paquetes y asegurando que
los paquetes llegan de forma ordenada, ya que, como su propio nombre indica
(Transmission Control Protocol) el propio protocolo realiza las tareas de control.
Sin embargo, esta �abilidad repercute en la e�ciencia del sistema, disminuyén-
dola, ya que para poder gestionar todas las tareas anteriores se tiene que añadir
mucha información a los paquetes que se quieren enviar. Como estos paquetes
que se quieren enviar tienen un tamaño máximo, cuanta más información sobre
el protocolo tengamos que añadir, menor espacio para la información útil podre-
mos disponer. De hecho, el segmento TCP tiene una sobrecarga de 20 bytes en
cada segmento, mientras que UDP sólo añade 8 bytes.

Por otro lado, las características del protocolo UDP son las siguientes:

No orientado a conexión

Flujo de datos bidireccional

Los paquetes no tienen por qué llegar ordenados

Puede haber pérdidas de paquetes o llegar con errores

La transmisión que proporciona UDP no es del todo �able, ya que apenas aña-
de la información necesaria al paquete para la comunicación extremo a extremo.
Lo utilizan aplicaciones como NFS o para copiar �cheros entre ordenadores remo-
tos, pero sobre todo se emplea en la transmisión de audio y video, o para tareas
de control a través de una red. Es el mejor protocolo para realizar programas que
requieran transmitir a tiempo real, ya que no produce retardos para establecer la
conexión, no necesita mantenerse en estado de conexión y por lo tanto no reali-
za un seguimiento de estos datos. De esta manera, una aplicación con protocolo
UDP es capaz de soportar más clientes activos que en una aplicación con TCP.
Se podría decir que sirve como "multiplexor/demultiplexor"para enviar y recibir
datagramas, usando puertos para dirigir los datagramas como se muestra en la
Figura F.2.

Por todas las características que se han explicado, el protocolo que mejor se
adapta a lo que queremos hacer es el protocolo UDP, ya que en nuestro proyecto
va a ser necesario transportar imágenes y transmitir �ujos de datos a tiempo real.
El uso de UDP es utilizado siempre cuando resulta más importante transmitir con
velocidad que garantizar el hecho de que lleguen absolutamente todos los bytes.

67

APÉNDICE F. TRANSMISIÓN DE DATOS Y PROTOCOLOS DE
COMUNICACIÓN

Figura F.2: Esquema del socket actuando como multiplexor/demultiplexor

F.3. Comunicación: Servidor

De una forma resumida y concisa, el servidor es el programa que permanece
pasivo a la espera de que alguien solicite conexión con él, normalmente, para
pedirle algún dato. Cliente es el programa que solicita la conexión para, normal-
mente, pedir datos al servidor. El servidor será programado en el PC en lenguaje
C++, mientras que el cliente se va a programar en Android. En nuestro caso, al
tratarse de una comunicación UDP, no se realiza una conexión permanente, sino
que el servidor esperará un paquete del cliente, recogiendo la dirección IP de la
que proviene, para poder responder a ese terminal.

Los pasos que debe seguir un programa servidor son los siguientes:

Abrir un socket con la función socket().

Asociar el socket a un puerto con bind().

Leer mensaje con recvfrom().

Responder mensaje con sendto().

F.3.1. Abrir socket

Se abre el socket de la forma habitual, con la función socket(). Esto simple-
mente nos devuelve un descriptor de socket, que todavía no funciona ni es útil.
Este descriptor es usado para poder asociar después a la comunicación.

F.3.2. Asociar el socket con un puerto

Con el sistema operativo Ubuntu, se disponen de 65536 puertos para hacer
conexiones con sockets, numerados de 0 a 65535. Sin embargo, del 0 al 1023 están
reservados al sistema. Por ello, tenemos que escoger un puerto que vaya del 1024

68

F.3. COMUNICACIÓN: SERVIDOR

al 65536. En nuestro caso, el puerto elegido es el 7000, aunque le podríamos haber
asignado cualquier otro.

Una vez hemos abierto un socket, se utiliza la función bind(), que sirve para
comunicar al sistema operativo que puerto es el que queremos utilizar para la
transmisión. Para decir que puerto queremos coger, tenemos dos opciones. Una
de ellas es indicar directamente cuál es el puerto que queremos utilizar. La otra
es indicar con permisos de root en el �chero /etc/services el puerto que queremos
atender, y darle un nombre a este puerto. De esa forma, el sistema operativo
sabría que ese puerto está reservado. Sin embargo, por simplicidad utilizaremos la
primera opción, indicando directamente el puerto por el que queremos realizar la
comunicación, que deberá ser el mismo que indicaremos en la aplicación Android.

De esta forma tenemos los parámetros de�nidos para comenzar la comunica-
ción. Primero, debemos de recibir la petición del cliente que se quiere conectar al
servidor. Posteriormente, una vez que sepamos con quién nos vamos a comunicar,
podemos realizar la comunicación bidireccional.

F.3.3. Recibir mensaje en el servidor

Para recibir mensajes del servidor, la función para los sockets UDP es recv-
from(). Esta función es "bloqueante", por lo que el programa se queda esperando
a recibir una petición y no continua. Esto supone un problema, ya que la toma
de imágenes debe de ser continua, y no puede haber nada en el programa que
bloquee la llegada de frames. Por ello, la solución pasa por realizar dos procesos:
un proceso que toma las imágenes tanto de profundidad como RGB, mientras
que el otro proceso es el que haría de servidor. De esta forma, aunque el proceso
del servidor se quede bloqueado esperando la llegada de un socket, el proceso de
toma de imágenes es continuo y nunca deja de tomar los frames necesarios para
realizar la detección y seguimiento de los recipientes. Aunque debemos tener en
cuenta que hay que tener datos en común entre estos dos procesos, como las imá-
genes y la potencia que le pasemos cada vez que variemos el fuego de uno de los
recipientes.

La imagen RGB que nosotros construimos para pasar al dispositivo móvil se
trata en el mismo proceso de toma de imágenes, ya que a cada imagen que se toma
de la cámara, ésta es tratada y mostrada por una ventana. Así que debe haber
una comunicación entre los dos procesos, de tal forma que cuando el proceso del
servidor necesite la imagen, el proceso de toma de imágenes se la entregue para
su posterior envío.

Para crear otro proceso en C++ hay dos opciones: o crear un proceso hijo
(fork) o crear un hilo (thread). En un primer momento se probó a crear un
proceso hijo mediante la función fork, sin embargo, esta opción fue desechada
ya que, aunque el hijo hereda las mismas variables que el padre, cada uno las
modi�ca de forma individual. Por ejemplo, si una variable es cambiada de valor
por el hijo, en éste proceso tendrá un nuevo valor, sin embargo en el proceso padre

69

APÉNDICE F. TRANSMISIÓN DE DATOS Y PROTOCOLOS DE
COMUNICACIÓN

no habrá variado.

Por ello, la solución por la que se opta es realizar un hilo, a través de la función
thread. De esta forma, podemos compartir variables y matrices, permitiendo una
comunicación entre el proceso de toma de imágenes y el servidor, de tal forma
que cualquiera de los dos pueda estar al tanto de las potencias y las imágenes.

A la función recvfrom(), le pasamos una estructura vacía, pero que es de vital
importancia: struct sockaddr. Esta estructura recoge los datos del cliente que nos
ha enviado el mensaje. De esta forma, podemos identi�car al otro programa y
responderle, produciendo así la comunicación bidireccional.

Si queremos identi�car errores, esta función nos devuelve -1 en caso de que se
haya producido un error. Sin embargo, si funciona correctamente, nos devuelve
el número de bytes leídos.

F.3.4. Respuesta al cliente

A la hora de responder al cliente, la función utilizada es sendto(). Esta función
admite los mismos parámetros que la función recvfrom(), aunque como es obvio,
la estructura sockaddr no está vacía, sino que contiene los datos que ha recibido
del cliente.

Al igual que recvfrom() devuelve un -1 en caso de error, devuelve el número
de bytes escritos en el caso de que la comunicación haya sido correcta.

F.4. Comunicación: Cliente

El cliente se va a programar en Android. Esta aplicación necesita conocer desde
un primer momento la dirección del servidor y el puerto de comunicación, para
así poder enviarle un paquete de tal forma que éste conozca de donde proviene el
paquete y enviarle una respuesta.

Los pasos a seguir son los siguientes:

Creación del socket

Creación del paquete de datagrama, ya sea para recibir o para enviar.

Enviar paquete

Recibir paquete

F.4.1. Creación socket

En un primer lugar, se utiliza la función Datagram socket para crear un socket
que permita la comunicación, tanto para enviar como para recibir. En este caso,

70

F.4. COMUNICACIÓN: CLIENTE

no hay que pasarle ningún parámetro, sólo abrirlo, ya que la dirección del servidor
y el puerto de comunicación se indican cuando se crea el paquete que vamos a
enviar.

F.4.2. Creación paquete

Aunque el concepto es el mismo tanto para la creación de un paquete para
enviar datos como para recibirlos, hay diferencias entre uno y otro. Para la crea-
ción de los paquetes UDP, se utiliza la función Datagram Packet, tanto para el
envío como para recibir.

En el caso del paquete a enviar hay que introducirle varios parámetros. En
primer lugar, se introduce el array de bytes que se quiere enviar y su longitud. Y
posteriormente, se le indica la dirección del servidor y el puerto por donde se va
a producir la comunicación. De esta manera, el paquete se envía al servidor, que
escucha por el puerto establecido en común, y que recoge la dirección del cliente,
para posteriormente enviarle información a esa misma dirección.

En el caso del paquete recibido, simplemente se le indica el bu�er donde
almacenar la llegada de datos y la longitud del mismo.

F.4.3. Enviar paquete

A la hora de enviar un paquete de datagrama, utilizamos la función soc-
ket.send(), siendo socket el nombre con el que hayamos llamado en un principio
a nuestro socket, e introduciéndole el nombre del paquete que hemos creado para
el envío.

F.4.4. Recibir paquete

En el caso de la recepción, utilizamos socket.receive(), introduciéndole el pa-
quete que hemos creado para recibir la información. Aunque hemos utilizado un
paquete para la recepción, hay que tener en cuenta que los datos se encuentran
almacenados en el bu�er que hemos creado.

Sin embargo, en este caso nos surge un problema. Al igual que ocurre con
el servidor programado en C++, la función receive es bloqueante, por lo que
el programa no avanza si se queda bloqueada. En Android, si hay una función
bloqueante en la parte principal de una actividad, el programa deja de responder.
Por lo tanto, se crea un thread que separe el proceso cliente de la actividad
principal, para que así pueda operar de una forma secundaria manteniendo la
parte principal del programa sin ninguna función que la pueda bloquear. Para
hacer cambios en la interfaz de esa actividad, utilizaremos un handler, función
que permite comunicar este proceso creado para el cliente con la parte principal

71

APÉNDICE F. TRANSMISIÓN DE DATOS Y PROTOCOLOS DE
COMUNICACIÓN

de la actividad. Esto sirve de mucha utilidad a la hora de poder mostrar la imagen
de la placa en el dispositivo.

72

Apéndice G

Métodos de detección

Para la detección de contornos existen una variedad de métodos. Los más
utilizados son el método de Sobel[19], el de Prewitt[20], el de Roberts[21] o el
de Canny[22]. Los tres primeros se basan en los distintos niveles de grises que
hay en una imagen de blanco y negro. Aplicando máscaras de convolución a la
imagen, se resaltan los cambios bruscos en la intensidad, lo que se corresponderá
con los contornos que realmente estamos buscando.Cada uno tiene sus ventajas
y desventajas.

G.1. Método de Roberts

El método de Roberts utiliza una máscara más sencilla. Presenta como gran
desventaja que considera muy pocos píxeles de entrada para hacer la aproxima-
ción, lo que provoca que sea muy sensible al ruido y nos permite solamente marcar
los puntos de borde, es decir, su localización, pero no la orientación de los mismos.
No obstante, esta misma desventaja lo convierte en un operador muy simple que
trabaja muy bien con imágenes binarias y con una gran velocidad de cómputo.

Ventajas:

Buena respuesta en bordes horizontales y verticales.

Buena localización.

Simpleza y rapidez de cálculo.

Desventajas:

Mala respuesta en bordes diagonales.

Sensible al ruido.

Empleo de máscaras pequeñas.

73

APÉNDICE G. MÉTODOS DE DETECCIÓN

No da información acerca de la orientación del borde.

Anchura del borde de varios píxeles.

G.2. Método de Sobel

El método de Sobel utiliza la misma máscara que Prewitt, sin embargo, el rui-
do es menor ya que posee un suavizado que reduce el ruido, permitiendo mejores
medidas. Sobel es el operador usado más comúnmente y en la práctica propor-
ciona una buena detección de bordes diagonales.

Ventajas:

Buena respuesta en bordes horizontales y verticales.

Diversidad de tamaños en las máscaras.

Proporcionan un suavizado además del efecto de derivación

Desventajas:

Mala respuesta en bordes diagonales.

Lentitud de cálculo.

No da información acerca de la orientación del borde.

Anchura del borde de varios píxeles.

G.3. Método de Prewitt

El método de Prewitt utiliza una máscara más compleja que el de Roberts,
por lo que aunque no sea tan rápido computacionalmente, permite unos mejores
resultados en la detección de los bordes. A diferencia del operador de Sobel, el
operador de Prewitt proporciona una mejor detección de los bordes verticales y
horizontales en comparación con los bordes diagonales. No obstante, en la práctica
no se aprecia una gran diferencia entre ambos.

Ventajas:

Buena respuesta en bordes horizontales y verticales.

Poco sensible al ruido.

Proporciona la magnitud y dirección del borde.

74

G.4. MÉTODO DE CANNY

Desventajas:

Mala respuesta en bordes diagonales.

Lentitud de cálculo.

Anchura del borde de varios píxeles.

G.4. Método de Canny

En 1986, Canny propuso un método para la detección de bordes que ofrecía
mejores resultados que los métodos vistos anteriormente aunque presentaba una
mayor complejidad computacional.

El método de Canny se basa en tres criterios principales:

El criterio de detección, que expresa el hecho de evitar la eliminación de
bordes importantes así como no suministrar falsos bordes.

El criterio de localización, que establece que la distancia entre la posición
real y la posición localizada para el borde debe ser minimizada.

El criterio de respuesta única, que establece la necesidad de que el detector
retorne un único punto por cada punto de borde verdadero. Esto implica
que el detector no debe encontrar múltiples píxeles de borde donde solo
existe uno.

Uno de los métodos relacionados con la detección de bordes es el uso de la
primera derivada, que utiliza el valor cero en todas las regiones donde no varía
la intensidad y tiene un valor constante en toda la transición de intensidad. Por
lo tanto, un cambio de intensidad se mani�esta como un cambio brusco en la
primera derivada, característica que es utilizada para detectar un borde, y en la
que se basa el algoritmo de Canny.

El algoritmo de Canny consta de tres grandes pasos:

Obtención del gradiente: Para la obtención del gradiente, lo primero que
se realiza es la aplicación de un �ltro gaussiano a la imagen original con el
objetivo de suavizar dicha imagen y conseguir la eliminación del ruido que
pueda existir. Sin embargo, hay que tener cuidado de no aplicar un suavi-
zado excesivo, puesto que se podrían perder ciertos detalles de la imagen y
provocar que el resultado �nal no fuese el esperado. Una vez que se suaviza
la imagen, para cada píxel se obtiene la magnitud y módulo(orientación)
del gradiente, obteniendo así dos imágenes.

75

APÉNDICE G. MÉTODOS DE DETECCIÓN

Supresión no máxima al resultado del gradiente: Las dos imágenes
generadas en el paso anterior sirven de entrada para generar una imagen
con los bordes adelgazados. El procedimiento es el siguiente: se consideran
cuatro direcciones identi�cadas por las orientaciones de 0o, 45o, 90o y 135o

con respecto al eje horizontal. Para cada píxel se encuentra la dirección que
mejor se aproxime a la dirección del ángulo de gradiente. Posteriormente se
observa si el valor de la magnitud de gradiente es más pequeño que al menos
uno de sus dos vecinos en la dirección del ángulo obtenida en el paso anterior.
De ser así, se asigna el valor 0 a dicho píxel, en caso contrario se asigna el
valor que tenga la magnitud del gradiente. La salida de este segundo paso
es una imagen con los bordes adelgazados después de realizarse la supresión
no máxima de puntos de borde.

Histéresis de umbral a la supresión no máxima: La imagen que ha
sido obtenida en el paso anterior suele contener máximos locales creados por
el ruido. Una solución para eliminar dicho ruido es la denominada histéresis
del umbral. El proceso de histéresis consiste en tomar la imagen obtenida en
el paso anterior, obtener la orientación de los puntos de borde de la imagen
y tomar dos umbrales de forma que el primero sea más pequeño que el
segundo. Para cada punto de la imagen se debe localizar el siguiente punto
de borde no explorado que sea mayor que el segundo valor de umbral. A
partir de dicho punto, se siguen las cadenas de máximos locales conectados
en ambas direcciones perpendiculares a la normal del borde siempre que
sean mayores que el primer valor de umbral. De esta forma, se marcan
todos los puntos explorados y se almacena la lista de todos los puntos en el
contorno conectado. Es de este modo como se logra eliminar, con este paso,
las uniones en forma de Y de los segmentos que con�uyen en un determinado
punto.

Como conclusión, se puede indicar que el algoritmo de Canny tiene como
principal ventaja su gran adaptabilidad para poder ser aplicado a diversos tipos
de imágenes, además de no disminuir su rendimiento ante la presencia de ruido en
la imagen original. Sin embargo, tiene como desventaja el hecho de que al realizar
el suavizado de la imagen se pueden difuminar ciertos bordes aunque con eso se
consiga reducir el ruido.

Este algoritmo es uno de los mejores métodos para la detección de bordes, el
cual aplica métodos de diferencias �nitas basado en la primera derivada y cuya
popularidad se debe, además de a sus buenos resultados, a su sencillez, la cual
que permite una gran velocidad de procesamiento al ser implementado.

76

