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ABSTRACT 
 

Energetic, environmental and economic analysis of implantation a co-firing system 

with Torsional Chamber 

 

The objetive of this Project is to analyze the use of the torsional chamber as a 

biomass burner in C.T.Teruel. The system consists in a cylindrical chamber, in wich 

biomass particles are burned in aerodynamic suspension. The main advantage of this 

system is that permits a long residence time of biomass particles, wich permit to work 

with big particle size (until 30 mm). In this study, this system is compared with 

conventional systems of direct co-firing (combustion with/without specific burners), to 

check the viability. 

All co-firing systems alters the operation of the original power plant, thus the 

most influential technical aspects have been quantified and studied: boiler efficiency 

reduction, excess air, energy consumption in biomass pretreatments, investiment and 

additional cost in operation and maintenance. 

To evaluate this system and compare with conventional systems of direct co-

firing, three analysis were carried out. 

 

• Energy 

• Environmental 

• Economic 

 

A methodology has been developed for each analysis. It consists in literature 

reviews, a simulation in a software (EES) and the use of a software of life cycle 

assessment (Simapro). 

After the study, it is remarkable that the torsional chamber is the most 

advantageous technology from the energetic, environmental and economic parameters, 

respect the other technologies of direct co-firing. This is a global study, each case may 

be studied to get optimal conditions of operation. 

 

 

 



Análisis energético, medioambiental y económico de la implantación de un sistema de 
co-combustión con cámara torsional en la Central Térmica Teruel 

 
Universidad de Zaragoza Página 5 

RESUMEN 
 

Análisis energetic, medioambiental, y económico de la implantación de un sistema 

de co-combustión de Cámara Torsional en la Central Térmica Teruel 

 

El objetivo de este proyecto es analizar el uso de la cámara torsional como un 

quemador de biomasa en la Central Térmica Teruel. El sistema consiste en una cámara 

cilíndrica, en el cual las partículas de biomasa se queman en suspensión aerodinámica. 

La principal ventaja de este sistema es que permite un mayor tiempo de residencia de 

las partículas de biomasa, lo que hace posible trabajar con tamaños de partícula mayores 

(hasta 30 mm). En este estudio, dicho sistema se compara con sistemas convencionales 

de co-combustión directa (combustión de partículas de biomasa con o sin quemadores 

especifícos), para estudiar su viabilidad. 

Todos los sistemas de co-combustión alteran la operación original de la planta, 

por ello se hace necesario evaluar y estudiar los aspectos técnicos del proceso: 

disminución de rendimiento térmico, exceso de aire, consumo de energía en 

pretratamientos de biomasa, costes inversión y mantenimiento.  

Para evaluar este sistema y compararlo con los sistemas convencionales de co-

combustión directa, se han llevado a cabo tres análisis. 

• Energético 

• Medioambiental 

• Económico 

 

Para cada uno de estos análisis se ha desarrollado una metodología 

independiente. Consisten en revisions bibliográficas, simulación con software (EES) y 

el estudio de ciclo de vida (Simapro). 

Después de este studio, se llega a la conclusion de que la cámara torsional es la 

tecnología más ventajosa desde el punto de vista energético, medioambiental y 

económico, respecto de las otras tecnologías de co-combustión directa. Este es un 

estudio global, cada caso debe ser estudio de forma particular para optimizer las 

condiciones de operación.  
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1. INTRODUCCIÓN 

Los beneficios derivados del empleo de la biomasa vegetal como fuente de 

energía se encuentran no sólo en el ámbito ambiental, sino también en el 

socieconómico, lo que hace de esta fuente de energía un recurso renovable muy 

interesante y muy valorado. Genera un balance neto de las emisiones de CO2 casi nulo, 

creación de empleo local, reducción de la dependencia energética externa etc. A pesar 

de las ventajas que presenta, la contribución de este recurso en Europa está siendo 

menor de lo esperado [1]. 

Un interesante método de uso para este recurso reside en la transformación 

termoquímica de la biomasa en centrales de carbón. Este concepto se conoce como co-

combustión, y consiste en la combustión simultánea de diversos combustibles, 

generalmente carbón y biomasa. A pesar de las ventajas que presenta, para lograr el 

asentamiento de esta tecnología es necesario asegurar su viabilidad económica. Se debe 

realizar una inversión inicial para la adaptación de la planta, así como, asumir los costes 

asociados al precio de la biomasa y sus pretratamientos. Generalmente suele producirse 

una disminución en el rendimiento neto de la misma, por tanto se traduce en un nuevo 

coste añadido. [2,3] 

1.1 Biomasa 

La definición de biomasa puede expresarse como: “las sustancias orgánicas que 

tienen su origen en los compuestos del carbono formados en la fotosíntesis”. Dichas 

sustancias pueden haber sufrido diferentes procesos, tanto naturales como artificiales, de 

pequeña o elevada complejidad [4]. 

El origen de la energía contenida en la biomasa es el sol. Este hecho se debe a 

que toda la biomasa procede de manera directa o indirecta de la materia orgánica, la 

cual ha fijado su energía química acumulada en los enlaces atómicos e intermoleculares 

a partir de la fotosíntesis. Mediante este fenómeno, las células vegetales utilizan la 

radiación solar para formar sustancias orgánicas a partir de sustancias simples, como el 

agua y el dióxido de carbono presentes en el aire, además de sustancias como hidratos 

de carbono, proteínas, lípidos etc. Es gracias al medio ambiente, por el que se incorpora, 

transforma y modifica dicha energía, generando subproductos con capacidad para la 

producción de productos de mercado, por lo que pueden ser utilizados como fuente de 
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energía a través de su transformación termoquímica, como la combustión, o la 

transformación biológica en procesos de fermentación. 

1.2 Co-combustión  

La co-combustión consiste en la combustión combinada de varios combustibles, 

generalmente carbón y biomasa. Aunque a priori parece un concepto muy sencillo o de 

fácil aplicación, hay que estudiar cada caso de forma particular, atendiendo a los tipos 

de combustibles, tipo de caldera, forma de introducción de la biomasa y la influencia 

que se observa en la operación. 

Se trata de una tecnología probada y experimentada en numerosos países 

Europeos (Reino Unido, Alemania, Finlandia, Polonia, etc), Estados Unidos y Canadá 

[6] a gran escala para todos los tipos de caldera, con todos los carbones comerciales 

actuales, y con todas las categorías principales de biomasa. 

La co-combustión de carbón con biomasa ofrece una de las mejores soluciones a 

corto y largo plazo para la reducción de gases de efecto invernadero, en instalaciones 

donde no estaba previsto que esto sucediera. Por ello, este sistema permite obtener 

multilpes beneficios del uso de materias renovables, a partir de la incorporación de 

sistemas de pretratamiento (molinos específicos de biomasa), alimentación de la 

biomasa o equipos auxiliares de combustión. 

El interés por implantar este sistema y no una central de biomasa convencional, 

radica en el rendimiento global de la planta. Las  plantas convencionales de biomasa 

alcanzan rendimientos en torno al 30% [5], pero en las plantas convencionales de 

carbón se logran rendimientos del 37% [6], además las plantas de carbón de última 

generación alcanzan rendimientos de hasta el 43% [5]. Por todas estas razones la co-

combustión es uno de los mejores métodos para convertir la biomasa  en energía con 

alto rendimiento. Además debido a la estacionalidad de la biomasa, se elimina la 

incertidumbre de disposición para producción eléctrica, pudiendo funcionar 

exclusivamente con carbón. 

El efecto más inmediato de la co-combustión de carbón con biomasa es la 

reducción de emisiones netas de CO2. Junto a este, existen otros factores positivos, 

como la reducción de emisiones de SO2, debidas a la baja cantidad de azufre presente en 

la biomasa, reducción de NOx, por la disminución del contenido de nitrógeno en la 

biomasa y porque la temperatura de llama en el hogar puede ser más uniforme. 
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Asimismo hay que atender a los inconvenientes de la co-combustión de carbón 

con biomasa. La adición de biomasa a una caldera específica de carbón produce una 

disminución de rendimiento térmico de caldera, que junto con la energía consumida en 

los pretratamientos, se traduce en una disminución de rendimiento global de la planta. 

Además, presenta mayores riesgos de corrosión y ensuciamiento por el mayor contenido 

en álcalis y cloro en la biomasa. Por otra parte, en términos estrictamente económicos, 

el uso de biomasa puede resultar algo menos conveniente que el carbón por su precio 

ligeramente mayor en el mercado. 

Atendiendo al lugar de transformación de la biomasa, se puede distinguir dos 

tipos de co-combustión [7]: directa e indirecta. 

La co-combustión directa consiste en introducir la biomasa, pretratada, en la 

caldera de carbón. Sin embargo, en la co-combustión indirecta la biomasa se transforma 

termoquímicamente, total o parcialmente, con anterioridad en un equipo independiente 

de la caldera de carbón (combustión en caldera específica de biomasa o gasificación de 

biomasa). 

Este proyecto tiene como fin la comparación de los diferentes sistemas de co-

combustión directa, por ello se explican detalladamente: 

 

• Co-combustión directa sin quemadores específicos de biomasa: la biomasa se 

introduce a la caldera por los propios quemadores de carbón u otros conductos 

disponibles. Este hecho hace que se requieran tamaños de partículas de la biomasa lo 

menor posible, en torno a 1-2 mm. Ello se traduce en un mayor consumo de equipos 

auxiliares, aunque la inversión y la necesidad de reformas son menores. 

 

• Co-combustión directa con quemadores específicos de biomasa: en este caso 

la introducción de la biomasa en la caldera se realiza con quemadores específicos de 

biomasa. Por esta razón el tamaño de partícula es mayor y por consiguiente, los costes 

de operación se reducen, sin embargo los costes de inversión y la necesidad de reformas 

son mayores. 
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1.3 Cámara torsional  

La cámara torsional es un quemador industrial, que genera energía a partir de la 

combustión de combustibles con alto contenido en volátiles. Consiste esencialmente en 

un cilindro horizontal rodeado de tubos de aguas, que se conecta a la caldera por medio 

de una garganta en forma de cono invertido, para la producción de agua caliente o 

vapor. 

Aunque no existen experiencias en co-combustión con este quemador, 

representa una opción interesante para reducir costes. La cámara torsional se adapta a un 

generador de vapor convencional, mediante el revestimiento del cilindro con tubos que 

formen parte del circuito de generación de la caldera. Ya se ha demostrado su idoneidad 

para varios tipos de biomasa. 

 
Figura 1: Cámara torsional sin su aislante externo (20 t/h de vapor saturado a 12 bar) 

 

 

La principal ventaja que ofrece este sistema es el elevado tiempo de residencia  

de las partículas,  que permite la utilización de tamaños de partícula de hasta 30 mm, 

con un contenido de humedad de hasta el 30% [7]. 

. 
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1.4 Alcance y objetivos  

La finalidad del proyecto es analizar la viabilidad técnica y económica, 

valorando a su vez los aspectos medioambientales, de la implantación de co-combustión 

de carbón con biomasa en la Central Térmica Teruel (Andorra), mediante el uso de una 

cámara torsional utilizada a modo de quemador para la biomasa.  

Para alcanzar este objetivo, se comienza describiendo en el capítulo 2 los 

aspectos más importantes de funcionamiento de la cámara torsional, junto a sus 

características, influencia tras su instalación e integración en una caldera de potencia. 

Tras determinar los factores que afectan a la operación (capítulo 3), se desarrolla 

una metodología de análisis energético, económico y medioambiental (capítulo 4), que 

se aplicarán posteriormente particularizando al caso de la Central Térmica Teruel 

(capítulo 5), completándose con una evaluación de recursos de biomasa de la zona. La 

metodología del análisis medioambiental, se ha extraído del trabajo de fin de máster 

desarrollado por Juana María Alarcón Rodríguez [48]. 

Por último en el capítulo 6, se presentan y analizan los resultados, exponiendo 

las conclusiones. 

2. CO-COMBUSTIÓN CON CÁMARA TORSIONAL 

Como ya se ha explicado, la idea de este proyecto es analizar la viabilidad 

técnica y económica de una nueva tecnología de co-combustión, a partir de la 

incorporación de una o varias cámaras torsionales a una caldera de carbón pulverizado, 

como quemadores independientes de biomasa. 

En los siguientes apartados se describen el funcionamiento de la cámara 

torsional, así como su integración, la influencia tras su implantación y una comparativa 

frente a otros sistemas de co-combustión.  
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2.1 La cámara torsional: funcionamiento 

El modo de funcionamiento de la cámara torsional se representa en la Figura 2 y 

se resume a continuación. Existen dos corrientes de aire que operan en la cámara 

torsional. El aire secundario, se introduce a través de un gran número de toberas 

laterales, que garantiza una elevada vorticidad. El combustible entra tangencialmente en 

el interior de la cámara mediante transporte neumático con el aire primario, 

manteniéndose en suspensión neumática y produciéndose el primer proceso de pirolisis 

o devolatilización. Tras este proceso, el residuo carbonoso que queda se concentra en la 

periferia de la cámara, lo que permite la rápida conversión de las partículas a su fase 

gaseosa [8]. 

 

Figura 2: Esquema funcionamiento cámara torsional. Fuente: Centro de Producción más Limpia – 
INTEC Chile / Cooperación Técnica Alemana GTZ. 

 

Dado este funcionamiento, se logran temperaturas más uniformes que en 

sistemas convencionales, haciendo de este sistema un quemador de baja generación de 

óxidos de nitrógeno (NOx). A su vez, cabe destacar que entre el 20 y el 40% de las 

cenizas quedan retenidas en el interior de la cámara, desde donde son extraídas con 

frecuencia. 

La cámara torsional puede operar con cualquier biomasa sólida capaz de ser 

transportada neumáticamente. No existen limitaciones de quemar simultáneamente 

partículas de diversos tamaños o densidades, siempre en el rango de 0,1 a 30 mm. 
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Otra ventaja presente es la capacidad de la cámara de operar con bajos excesos 

de aire, del orden del 10% (que produce una disminución del rendimiento menor). 

2.2 Integración de la cámara torsional en una  caldera de potencia 

La cámara torsional debería ser instalada de tal manera que el agua/vapor de la 

caldera pase a través de ella, a la vez que los gases de combustión de la biomasa 

entraran al hogar, tras ceder parte de su energía, donde completarían su combustión y 

acabarían de ceder su energía útil. 

 

Figura 3: Esquema de instalación de una cámara torsional en una caldera de potencia 
 

Los tubos de agua de la cámara torsional y del hogar están conectados, aunque la 

co-combustión de biomasa se produce de forma independiente. Los gases de 

combustión producidos por la biomasa salen a través de la garganta y se mezclan con 

los del carbón.  

Los detalles de instalación (pared de caldera, altura, número de cámaras 

torsionales…) van a estar condicionados por muchos factores. Para la posición óptima 

se debe estudiar cada caso en particular, realizando diversas pruebas que exceden del 

objetivo de este proyecto. En la Figura 4 se muestra una posible configuración de 

instalación. 
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Figura 4: Esquema caldera con integración de una cámara torsional. Fuente: Elaboración propia. 

 

Cabe destacar, que aunque nunca se ha llevado a cabo una idea de co-

combustión como aquí propuesta, su viabilidad técnica está asegurada por la gran 

experiencia del uso de la cámara torsional en otras aplicaciones. 

2.3 Ventajas e inconvenientes frente a otras tecnologías de co-combustión 

La co-combustión con cámara torsional, presenta las siguientes ventajas [9]: 

• Puede ser adaptada a cualquier tipo de caldera de potencia. 

• Presenta gran flexibilidad, ya que puede trabajar con un amplio rango de tipos de 

biomasa o incluso una mezcla de estos.  

• Requiere menor pretratamiento, ya que puede trabajar con tamaños de partícula de 

hasta 30 mm con un 30% de humedad. 

• Debido a la combustión separada del carbón y biomasa, la disminución del 

rendimiento de caldera es mínima. 

• Gran retención de las cenizas de combustión, entre el 20 y el 40% antes de llegar a 

la caldera de carbón.  
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A pesar de ser un buen sistema de obtención de energía, la co-combustión con 

cámara torsional presenta la incertidumbre de ser un sistema que no ha sido realmente 

probado en esta actividad, de ahí la duda de su viabilidad Además los costes de 

inversión inicial son algo mayores que para el resto de los casos de co-combustión. 

3. ASPECTOS TÉCNICOS Y ECONÓMICOS DE LA CO - COMBUSTIÓN 

El principal y gran inconveniente de la co-combustión es que las calderas que 

operan en las centrales térmicas convencionales de carbón, son específicas para ese 

combustible. Por ello la adición de biomasa puede disminuir la eficiencia y la capacidad 

de la planta, conforme aumenta el porcentaje de sustitución de biomasa. La biomasa 

presenta valores de humedad mayores que el carbón, además de un incremento en 

monóxido de carbono (CO) y mayor porcentaje de inquemados. Todo ello genera una 

disminución del rendimiento térmico.  

3.1. Influencia en los pretratamientos de la biomasa herbácea 

La cantidad de energía necesaria para los pretratamientos es proporcional al 

tamaño de partícula. A su vez, el tamaño de partícula necesario varía en función de la 

tecnología de co-combustión utilizada. 

Para el caso de co-combustión sin quemadores específicos de biomasa, se 

requiere un tamaño de partícula entre 1-2 mm; para co-combustión con quemadores 

específicos de biomasa pulverizada 3-4 mm y para la cámara torsional 10 mm, aunque 

puede operar con valores de hasta 30 mm [14,15,16]. 

Se pretende determinar la influencia del tamaño de partícula sobre el consumo 

energético para la biomasa herbácea. Con ello se pretende estimar los consumos 

energéticos que suponen las operaciones de pretatamiento. 

Los valores recopilados en este análisis se han obtenido a partir de la revisión 

bibliográfica, por ello los datos deben de servir solamente de referencia.  
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3.1.1.  Metodología 

La metodología desarrollada para este caso consiste en la revisión bibliográfica 

de distintas pruebas experimentales de molienda para biomasa herbácea. La Tabla 1 

muestra diferentes tipos de biomasa herbácea, con su respectiva humedad, los diferentes 

tamaños a los que ha sido molida y la correspondiente energía que ha sido necesaria 

invertir. 

Tabla 1: Recursos herbáceos. Elaboración propia a partir de [17,18, 19] 

Biomasa 
Humedad 
(% base 
húmeda) 

Tamaño de parilla por molinos 

de martillos (mm) 
Consumo energético 
especifico (kWh/t) Referencias 

Cebada 

13,5 50 3,15 

Adapa & al (2011) 

13 30 1,7 

12,4 6,4 8,26 

 No disponible 3,2 18,59 

  No disponible 1,6 25,1 

12 0,8 99,49 Mani & al (2004) 
12 1,6 27,09 

Canola 

15,1 50 1,96 

Adapa & al (2011) 
15,1 30 1,46 

13,4 6,4 12,38 

 No disponible  3,2 25,73 
  No disponible 1,6 35,7 

Avena 

13,1 50 2,74 

Adapa & al (2011) 
13,1 30 5,68 

10,3 6,4 16,23 

 No disponible  3,2 29,62 
 No disponible  1,6 41,52 

Trigo 

15,6 50 2,27 

Adapa & al (2011) 
15,6 30 2,05 

13,3 6,4 12,26 

  No disponible 3,2 28,02 
 No disponible  1,6 42,57 

12,1 0,8 45,32 

Mani & al (2004) 12,1 1,6 43,56 

12,1 3,2 24,66 

10 2 23,74 
Spliethoff & Hein (1998) 10 4 9,5 

10 6 7,12 
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3.1.2. Resultados 

A partir de los datos recopilados de las diversas experiencias para biomasa 

herbácea, se ha determinado el consumo energético específico. Para ello se ha realizado 

una curva de consumo energético en función del tamaño de luz de malla del molino (ver 

Figura 5). El consumo energético se muestra en kWh por cada tonelada pretratada. 

 

 

Figura 5: Consumo energético de molienda para recursos herbáceos. Fuente: Elaboración propia a 
partir de [17,18, 19] 

 

Los datos de consumo de molienda herbácea obtenidos, se utilizarán junto con 

los datos de consumo de molienda leñosa obtenidos por Juana María Alarcón Rodríguez 

[47], para realizar un consumo medio para la biomasa en general. Se utilizará 

posteriormente en el capítulo 4. 

3.2. Costes de operación y mantenimiento e inversión. 

Se detallan en este apartado los costes de los distintos tipos de co-combustión 

directa. Como la práctica de la co-combustión todavía no es una actividad muy 

generalizada, es difícil determinar los costes de inversión, así como, los costes 

asociados a la operación y el mantenimiento. 
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3.2.1.  Costes de inversión 

Los costes de inversión, necesarios para la adaptación de la central térmica base 

a co-combustión se han determinado a partir de una extensa revisión bibliográfica de 

diferentes experiencias en Estados Unidos y Europa. Para el caso de la cámara torsional 

se ha consultado directamente con el fabricante. Los costes de inversión obtenidos se 

muestran en la Tabla 2, en euros por cada kW instalado. Para la fácil comparación se 

han redondeado los valores encontrados. 

 

Tabla 2: Costes de inversión. Elaboración propia a partir de [20, 21, 22, 23, 24, 25] 

 Co-combustión sin 
quemadores 

Co-combustión con 
quemadores 

Co-combustión con 
cámara torsional 

Coste reformas 
(€/kW) 100 150 160 

Coste instalación 
pretratamientos 

(€/kW) 
400 350 300 

 

La co-combustión sin quemadores específicos de biomasa es la que presenta una 

menor inversión inicial, puesto que precisa menores reformas de caldera, sin embargo, 

requiere mayor inversión en equipos de pretratamientos, por necesitar un tamaño de 

partícula menor para su operación. En el caso de co-combustión con quemadores 

específicos de biomasa la inversión en reformas es mayor, pero al permitir un tamaño de 

partícula mayor se reducen los costes de equipos de pretratamientos. Para la cámara 

torsional se necesita una inversión mayor que para quemadores específicos de biomasa, 

sin embargo, requiere mucho menor coste en equipos de pretratamientos. Todo ello hace 

que la cámara torsional sea la tecnología de menor inversión. 

3.2.2. Costes de operación y mantenimiento 

Para la obtención de los costes de operación y mantenimiento se ha realizado 

una extensa revisión bibliográfica, para los diferentes casos de estudio [22, 23, 26]. 

Dado que estos costes son proporcionales al consumo en pretratamientos, se han 

realizado los cálculos para que el coste sea mayor conforme aumenta dicho consumo. 

Para ello se han considerado costes fijos y variables, siendo los fijos costes comunes a 

las tres tecnologías, mientras que los variables se han acotado para que sean iguales o 

menores al caso más desfavorable de pretratamientos, que corresponde al caso de co-

combustión sin quemadores. 
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La ecuación 1 muestra como se ha realizado el cálculo: 

 

𝑂&𝑀 = 0,13 + 0,19 ∗ 𝑊𝑝𝑟𝑒𝑡

𝑊𝑝𝑟𝑒𝑡sin𝑞𝑢𝑒𝑚
        (1) 

 

Donde 

• 𝑂&𝑀 : costes de operación y mantenimiento, en c€/kWh, 

• 𝑊𝑝𝑟𝑒𝑡 : consumo energético en astillado y molienda, en kJ/kg biomasa. 

• 𝑊𝑝𝑟𝑒𝑡 sin𝑞𝑢𝑒𝑚: consumo energético en astillado y molienda para la co-

combustión sin quemadores, en kJ/kg biomasa. 

 

Los costes fijos para las tres tecnologías corresponden a 0,13 c€/kWh, mientras 

que los costes variables se calculan a partir de los consumos específicos para cada 

tecnología respecto al consumo sin quemadores específicos. 

La Tabla 3 muestra los costes asociados a la operación y mantenimiento para los 

tres casos de estudio en euros por cada kWh producido, siendo el caso más favorable la 

cámara torsional, por permitir un tamaño de partícula mayor. 

 

Tabla 3: Coste adicional en operación y mantenimiento [Elaboración propia] 

 Co-combustión sin 
quemadores 

Co-combustión con 
quemadores 

Co-combustión con 
cámara torsional 

O y M (c€/kWh) 0,32 0,26 0,17 
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4. METODOLOGÍA 

El siguiente capítulo muestra la metodología desarrollada para la realización del 

análisis energético, económico y ambiental, que posteriormente se aplicará para el caso 

de la Central Térmica Teruel. Mientras que la metodología de análisis energético y 

económico ha sido desarrollada por mí, la metodología del análisis ambiental ha sido 

desarrollada por Juana María Alarcón Rodríguez [48]. 

4.1. Análisis energético 

El objetivo de este análisis es determinar el rendimiento en la producción de 

electricidad por el uso de un determinado combustible, teniendo en cuenta todos los 

consumos implicados en el proceso de la energía (ver Figura 6). 

 

Figura 6: Esquema análisis energético del proceso [Elaboración propia] 

 

La producción de los combustibles, para su posterior uso en la producción 

eléctrica, requiere una cantidad de energía para su extracción o manufactura. Por ello 

cuanto mayor sea la energía invertida en la producción del combustible, menor será el 

rendimiento global de producción de electricidad (ver ecuación 2). 

 

𝜂𝑝𝑟𝑜𝑐𝑒𝑠𝑜 = 𝑊
𝐸𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑑𝑎1+𝐸𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑑𝑎2+𝐸𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑑𝑎3+𝐸𝑛𝑒𝑡𝑎

     (2) 
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 Este análisis se ha realizado de acuerdo a una metodología basada en la tasa de 

retorno energético de cada combustible (TRE). Este valor adimensional determina la 

relación entre la energía que proporciona el combustible y la que ha sido necesaria 

invertir para su producción (ver ecuación 3). 

 

𝑇𝑅𝐸 = 𝐸𝑡𝑜𝑡𝑎𝑙
𝐸𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑑𝑎

         (3) 

Atendiendo a los diversos modos de obtención del TRE, en la bibliografía 

existen valores dispares para un mismo combustible. Este hecho se debe a que todavía 

no es un parámetro muy normalizado y existen multitud de metodologías de cálculo. 

Para solventar este problema, la mejor opción es realizar una amplia búsqueda 

bibliográfica para obtener distintos valores, calculando posteriormente un valor 

promedio. 

Cabe destacar que en la obtención del dato del TRE para la biomasa no deben 

considerarse los biocarburantes obtenidos a partir de biomasa. La producción de estos 

combustibles requiere de un gran aporte energético, obteniéndose valores del TRE 

incluso inferiores a 1 [27, 28].  

Los valores del TRE del carbón y de la biomasa obtenidos se reflejan en la Tabla 

4. 

Tabla 4: TRE carbón y biomasa [Elaboración propia] 
 Valor Referencia 

TRE carbón 54 [27,28,39,40] 
TRE biomasa 27 [27,28,39,40] 

 

El rendimiento del proceso de producción de energía del carbón se calcula 

teniendo en cuenta la eficiencia actual de la central y el TRE del carbón. Este nuevo 

rendimiento (ecuación 4) tiene en cuenta la penalización energética sufrida por la 

obtención del combustible. 

𝜼𝑝𝑟𝑜𝑐𝑒𝑠𝑜−𝑐𝑎𝑟𝑏ó𝑛 = 𝜼𝑐𝑒𝑛𝑡𝑟𝑎𝑙 ∗ �
1

(1+� 1
TREcarbón

�
�     (4) 
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Dónde: 

• 𝜼𝑐𝑒𝑛𝑡𝑟𝑎𝑙: rendimiento original de la central térmica de carbón en tanto por 1. 

• 𝜼𝑝𝑟𝑜𝑐𝑒𝑠𝑜−𝑐𝑎𝑟𝑏ó𝑛: nuevo rendimiento de proceso de producción de electricidad a 

partir de carbón.  

• TREcarbón: tasa de retorno energético del carbón (adimensional). 

 

Para los casos de estudio del proceso de producción eléctrica en co-combustión 

se tienen las mismas consideraciones, aportando además el valor del TRE para la 

biomasa y el consumo de pretratamientos requeridos para los tres casos de estudio (sin 

quemadores específicos de biomasa pulverizada, con quemadores y cámara torsional) 

(ver ecuación 5). 

 

𝜼𝒑𝒓𝒐𝒄𝒆𝒔𝒐−𝒄𝒐−𝒄𝒐𝒎𝒃𝒖𝒔𝒕𝒊ó𝒏 =
�1−� Wpret 

Potenciabiomasa
��

�1+�
�
100−%sustitución

100 �

TREcarbón
�+�

�
%sustitución

100 �

TREbiomasa
��

∗  𝜼𝑐𝑜−𝑐𝑜   (5) 

 

Dónde: 

• 𝜼𝑝𝑟𝑜𝑐𝑒𝑠𝑜−𝑐𝑜−𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖ó𝑛  : rendimiento del proceso de producción de electricidad. 

• 𝜼𝑐𝑜−𝑐𝑜  : rendimiento de la central en co-combustión según los casos 

considerados. 

• Wpret  : potencia requerida para los pretratamientos en cada caso. 

• Potenciabiomasa: potencia instalada de biomasa en la central térmica de  

carbón, según el porcentaje de sustitución.  

• %sustitución: porcentaje de sustitución de biomasa por carbón en términos de 

energía en %. 

• TREbiomasa : valor de la tasa de retorno energético de la biomasa. 
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4.2. Análisis económico 

El objetivo del análisis económico es determinar el beneficio anual tras la 

implantación de un sistema de co-combustión con cámara torsional y compararlo con el 

resto de tecnologías de co-combustión directa y la central térmica convencional. 

La metodología desarrollada se basa en un modelo clásico de cálculo de VAN y 

TIR, diferenciando los cuatro casos de estudio. 

Como el precio de la biomasa puede ser fluctuante, se ofrecen los resultados 

mediante un estudio paramétrico. 

En cuanto a la estimación de la inversión se han tenido en cuenta todos los 

costes para la adaptación de la central convencional a la central de co-combustión de 

carbón con biomasa. La adaptación contempla: parque de biomasa, instalaciones de 

pretratamientos y adaptación del sistema de alimentación de la caldera. Además se 

consideran los costes por los autoconsumos adicionales que suponen los sistemas de 

pretratamiento específico de biomasa y el incremento en el consumo de los  

ventiladores. 

4.3. Análisis medioambiental 

El objetivo de este análisis es el de cuantificar el impacto ambiental provocado 

por la producción de electricidad, mediante el Análisis de Ciclo de Vida (ACV). Esta 

metodología es una herramienta que permite cuantificar los impactos ambientales a lo 

largo de las fases de su ciclo de vida. 

En este caso solo se evalúa la categoría de calentamiento global, cuantificando 

las emisiones de gases de efecto invernadero, expresadas en kg de CO2 equivalentes, 

para 1 TJe producido por la central en los tres casos de co-combustión y el caso de 

carbón.  
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4.4. Evaluación de recursos 

El objetivo de la evaluación de recursos es determinar la cantidad de biomasa 

disponible en los alrededores de la central y el potencial de la misma. Con ello se 

pretende establecer el porcentaje de energía de sustitución óptimo, sin que la biomasa 

pierda su carácter renovable. 

Para realizar la evaluación de recursos se utiliza la herramienta informática on-

line Bioraise. Consiste en un software basado en un Sistema de Información Geográfica 

(SIG), desarrollado en el marco del proyecto del V Programa Marco de la UE 

“CHRISGAS” para calcular el potencial de biomasa de uso energético, costes de 

recolección y transporte en regiones de España, Portugal, Francia, Italia y Grecia. 

Además de la biomasa primaria, agrícola y forestal, también considera la biomasa 

procedente de actividades industriales [30]. 

Para el cálculo de la biomasa forestal, el programa se basa en la utilización de 

una cartografía europea de los usos del suelo denominada Corine Land Cover,  junto 

con tablas de producción de distintas especies forestales. Para la biomasa agrícola, el 

cálculo se basa en los datos de superficies y producciones agrícolas procedentes de 

EUROSTAT. 

Como se ha comentado, el programa ofrece los recursos potenciales del área de 

búsqueda, y por otro los disponibles. 

El software funciona mediante un sencillo interfaz, en el cual se muestra un 

entorno geográfico de los países disponibles. Tras seleccionar la zona de estudio, 

permite calcular los recursos de biomasa existentes para un radio comprendido entre 1 y 

100 km.  

5. APLICACIÓN A LA CENTRAL TÉRMICA TERUEL  
 

En el presente capítulo se va a aplicar la metodología descrita anteriormente, 

junto con la metodología desarrollada por Juana María Alarcón Rodríguez [48], para 

realizar un análisis energético, económico y medioambiental, junto con una evaluación 

de recursos, de la Central Térmica Teruel. Para ello se van a considerar los principales 

aspectos de funcionamiento, analizando los tres tipos de co-combustión directa. 

A priori se pretende realizar una sustitución del 5% en energía, de carbón por 

biomasa. Esto supone producir 55,22 MWe, aunque debe realizarse la evaluación de 

recursos de la zona para comprobar la disponibilidad. 
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5.1. Central Térmica Teruel 

La Central Térmica de Teruel es una central convencional con ciclo de vapor de 

carbón pulverizado.  

Consta de tres grupos de generación iguales con un rendimiento neto sobre PCI 

de 34,9% [29] y una potencia neta instalada de 1104,4 MWe [31, 32, 33].  

El principal combustible de la Central es el carbón de las minas de la provincia 

de Teruel. Dicho carbón se mezcla con carbones de importación, de bajo contenido en 

azufre, en el parque de homogeneización. La proporción es aproximadamente 75% 

lignitos de la zona y el resto hulla de importación [31]. 

Las calderas son Foster Wheeler, de circulación natural y con recalentamiento 

intermedio. Cada una de ellas produce 1.090 toneladas/hora de vapor sobrecalentado, a 

una presión de 165 bar y 540ºC, con un consumo aproximado de 190 toneladas/hora de 

carbón [32]. 

5.2.  Evaluación de recursos 

A partir de la metodología descrita en el capítulo 3.3, se puede calcular la 

cantidad de recursos de biomasa disponibles en los alrededores de la Central Térmica 

Teruel. 

Para ellos se introducen las coordenadas de la central (las coordenadas de 

proyección utilizada, ETRS89 Lambert Azimutal Equal Area, son x=3446796 m  

y=2047761 m) y se elije 50 km como radio de acción, y a continuación se  realiza la 

misma operación para un radio de acción de 75  y 100 km 

Se muestran en la Tabla 5 los recursos disponibles alrededor de 50, 75 y 100 km 

de la Central Térmica Teruel, en toneladas en base seca por año. 
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Tabla 5: Cantidad de recursos disponibles. Fuente [Biorase] 

DISTANCIA 50 km  75 km 100 km 

 

Tipo biomasa 

Cantidad 

(t.m.s/año) 

Contenido 

energético 

(GJ/año) 

Cantidad 

(t.m.s/año) 

Contenido 

energético 

(GJ/año) 

Cantidad 

(t.m.s/año) 

Contenido 

energético 

(GJ/año) 

Secano (paja 

de cereal) 

85577 1461531 199444 3406199 315230 10869563 

Regadío 38847 655068 72198 1217446 325331 5485906 

Viñedo 1057 18798 14233 253016 28213 501546 

Frutales 5460 93453 27720 474468 120225 2057781 

Olivar 3198 57180 14625 261503 35336 631811 

Dehesas con 

cultivo anual 

1333 23063 1772 30658 1772 30658 

Frondosas 11056 195051 39721 700725 60852 1073495 

Coníferas 29213 553880 69565 1318952 95553 1811690 

Mezcla 

coníferas 

frondosas 

6352 116262 13793 252435 18052 330367 

Matorral 22192 414216 44728 834850 68064 1270421 

Subproductos 

de la industria 

11612 81111 41928 281592 113641 566099 

Total 204285 3669613 539730 8280844 1182269 24629337 

 

 

La cantidad total disponible para un radio de 50 km es del orden de 204.000 

toneladas/año, mientras que para 75 km en torno a las 540.000 toneladas/año y para 100 

km sobre 1.182.269 toneladas/año en base seca. 

Para sustituir un 5% de energía por biomasa en la Central Térmica Teruel, es 

necesaria una cantidad aproximada de 230000 toneladas/año. Se puede observar que 

para un radio de acción de 50 km es insuficiente, por ello se plantea ampliarlo a los 75 

km. El consumo de biomasa para este radio supone el 42,5% de los recursos disponibles 

alrededor de la central. Supone consumir un porcentaje elevado de los recursos, por lo 
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que se propone aumentar este radio a los 100 km. Para esta distancia supone consumir 

el 19,4 % de los recursos disponibles, lo cual representa un porcentaje idóneo. 

La mayor parte de recursos están constituidos por residuos agrícolas de regadío 

(28%), seguido de residuos agrícolas de secano (27%), como puede apreciarse en la 

Figura 7. A partir de estas proporciones y de las bases de datos específicos de las 

propiedades de la biomasa [34, 35], se calcula el PCI medio de la composición, que en 

este caso es de 17,62 MJ/kg. 

 

 

Figura 7: Distribución de recursos disponibles a 100 km [Elaboración propia] 
 

 

Se muestra en la Tabla 6 la composición elemental promedio de las diversas 

biomasas: 

Tabla 6: Composición de la biomasa promedio. Elaboración propia a partir de [34,35] 

 C H O N Ceniza 

Composición 47,79 5,66 37,47 1,02 7,18 

 

La sustitución de los mencionados recursos en lugar de carbón, suponen instalar 

55,22 MWe brutos en la Central Térmica Teruel. 

5.3.  Variaciones técnicas de funcionamiento con co-combustión 

Como ya se ha comentado en capítulos anteriores, la modificación de una central 

térmica de carbón pulverizado a co-combustión, produce una serie de modificaciones 

técnicas en la operación y el funcionamiento. Los principales parámetros que varía son 
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el rendimiento de la caldera (que afecta al rendimiento neto de la central) y los 

consumos en pretratamientos.  

5.3.1. Metodología 

Para estimar la disminución de rendimiento experimentada en la caldera, se ha 

desarrollado un programa con la aplicación EES (Engineering Ecuation Solver), que 

permite determinar el valor del rendimiento final, a partir del porcentaje de sustitución 

de biomasa junto con las condiciones técnicas de operación. 

El programa se ha diseñado considerando los siguientes parámetros: 

• Composición y PCI del carbón. 

• Composición y PCI de la biomasa. 

• % Inquemados (CO, inquemados en residuo sólido). 

• Temperatura ambiente, de gases de escape y de cenizas 

• % Exceso de aire 

 

A partir de estos datos se procede al cálculo del rendimiento térmico sobre PCI 

mediante el método de pérdidas separadas, considerando las siguientes pérdidas; calor 

sensible de gases, calor sensible de residuos, combustible inquemado, monóxido de 

carbono y cenizas (ecuación 6). Las variaciones de funcionamiento entre los diversos 

sistemas de estudio corresponden al porcentaje de inquemados (CO y C), el residuo 

sólido (% cenizas) y el exceso de aire. 

 

𝜂𝑓𝑖𝑛𝑎𝑙 = 1 − 𝑃𝑔𝑠 − 𝑃𝑦𝑟 − 𝑃𝑐 − 𝑃𝑐𝑜 − 𝑃𝑐𝑒𝑛      (6) 

 

Para poder comparar los valores obtenidos en EES, se ha realizado una extensa 

revisión bibliográfica, que se refleja en la Figura 8, en base a experiencias de co-

combustión, en la que se muestran porcentajes de disminución de rendimiento en 

función del porcentaje de sustitución de energía. 
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Figura 8: Disminución del rendimiento en función del porcentaje de sustitución en energía. 
Elaboración propia a partir de [9,10,11,12,13]. 

 

Por lo general, y como puede observarse en la Figura 8, la disminución de 

rendimiento es creciente conforme aumenta el porcentaje de energía de sustitución de 

biomasa por carbón. Para un 5% de sustitución de biomasa por carbón, en términos de 

energía, las experiencias analizadas muestran una disminución de entre 0,2 y 0,5 puntos 

porcentuales sobre el rendimiento neto de la central sobre PCI. Este rango permitirá 

contrastar los datos obtenidos por la simulación. 

5.3.2. Aplicación a Central Térmica Teruel 

La Central Térmica Teruel consume un carbón con una composición promedio 

como se muestra en la Tabla 7, compuesto por un 75% de carbón local y 25% 

procedente de Sudáfrica [36, 37].  

Tabla 7: Composición del carbón y la biomasa promedio C.T.Teruel [Elaboración propia] 
 Carbón 
C % 49,39 
H % 3,44 
O % 10,07 
N % 1,04 
S % 5,23 
Cenizas % 24,99 
Humedad % 5,84 
PCI (kJ/kg) 18670,25 
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• Exceso de aire: el exceso de aire es un factor determinante en la disminución 

de rendimiento en caldera y, adicionalmente, va a suponer un incremento en el 

consumo de ventiladores al aumentar el caudal volumétrico de aire y gases. 

Esto se debe principalmente a la diferencia de tamaño entre las partículas de 

carbón y las de biomasa. Puesto que una central de carbón convencional suele 

operar con un exceso del 20% [38], en co-combustión se tendrá un exceso 

mayor. El exceso para co-combustión con quemadores específicos de biomasa  

pulverizada y sin quemadores específicos, se supone del 22,5% y el 25% 

respectivamente. Para la cámara torsional, debido a que no existen 

experiencias, se supone igual que para el caso de quemadores específicos de 

biomasa pulverizada, aunque posiblemente sea menor por el mayor recorrido 

de las partículas. 

• Inquemados: como no se dispone de datos exactos, se han supuesto las 

siguientes aproximaciones. La combustión que tiene lugar en la central 

convencional es muy buena, por tanto se estima un 1% de inquemados. Para el 

caso de sin quemadores específicos de biomasa, al existir una diferencia entre 

el tamaño de las partículas y no ser un quemador adecuado para biomasa, se 

considera un 4%. Finalmente, se considera un 2% de inquemados para 

quemadores específicos de biomasa. 

Teniendo en cuenta estos parámetros y un porcentaje de sustitución del 5%, se 

obtienen los siguientes reflejados en la Tabla 8: 

 

Tabla 8: Condiciones de operación en co-combustión para un 5% de sustitución [Elaboración 
propia] 

  

Exceso de aire % C residuo Incremento caudal 
volumétrico aire y 

gases % 

% 
Disminución 
rendimiento 
sobre PCI  

 CT de Carbón 20 1 0 0 
Co-co sin quemadores 25 4 5,44 1,64 
 Co-co con quemadores * 22,5 2 2,33 0,5 

 

Para la cámara torsional se obtiene una disminución de 0,5 puntos porcentuales, 

que se encuentra dentro del rango de las experiencias analizadas en el capítulo 5.3.1. 
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5.4.  Análisis energético 

A continuación se aplica la metodología descrita en el capítulo 4.1., para realizar 

el análisis energético de la Central Térmica Teruel. Para ello se precisan una serie de 

datos de entrada, que se detallan en la Tabla 9. El último dato de la tabla es el valor del 

rendimiento del proceso de producción eléctrica integro con carbón.  

Tabla 9: Datos para el análisis energético [Elaboración propia] 

Datos Valor Referencia 

𝛈𝐧𝐞𝐭𝐨𝐏𝐂𝐈 0,349 [29] 

𝐓𝐑𝐄𝐂𝐚𝐫𝐛ó𝐧 54 [28], [39], [40], [41] 

𝐓𝐑𝐄𝐁𝐢𝐨𝐦𝐚𝐬𝐚 27 [12], [40], [41] 

𝐏𝐂𝐈𝐁𝐢𝐨𝐦𝐚𝐬𝐚 17.606 (kJ/kg) Bioraise 

% Sustitución 5  

𝛈𝐜𝐚𝐫𝐛ó𝐧 0,34265 [Elaboración propia] 

 

Tras evaluar la influencia del carbón utilizado y un porcentaje de sustitución del 

5% en energía sobre PCI, se presentan los resultados obtenidos en la Tabla 10 para los 

tres casos de estudio.  

Tabla 10: Resultados obtenidos en el análisis energético [Elaboración propia a partir de 
simulación] 

Resultados 
Sin 

quemadores 

Con 

quemadores 

Cámara 

torsional 

 
𝛈𝐜𝐨−𝐜𝐨 

 0,31988 0,32726 0,33769 

Flujo biomasa 

(kg/s) 
9,03093 9,00108 9,00108 

Dimensionamiento 

pretratamientos 

(kW) 

3622 2431 749 

𝛈𝐩𝐫𝐨𝐜𝐞𝐬𝐨−𝐜𝐨−𝐜𝐨  0,34729 0,34844 0,34844 

 

Para los casos de co-combustión estudiados, la cámara torsional y los 

quemadores específicos de biomasa pulverizada, representan la mejor opción en el 

proceso neto de producción eléctrica. Sin embargo el rendimiento de la central de co-

combustión con cámara torsional es mayor, por requerir un menor consumo en 

pretratamientos. 
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5.5.  Análisis económico 

A partir de la metodología descrita en el capítulo 3.2.  se realiza el análisis 

económico de la central Térmica Teruel, para estudiar la viabilidad económica de los 

tres casos de estudio. 

Los principales datos de entrada para el estudio son el rendimiento neto de la 

central sobre PCI, los costes de pretratamientos, los costes de inversión y reformas. 

Se ha considerado un tiempo de operación anual de 7.000 horas, de acuerdo a 

previsiones para 10 años de nuevos proyectos de co-combustión en Europa [42]. 

Se muestran en la Tabla 11 los siguientes datos generales considerados. 

 

Tabla 11: Datos de funcionamiento general [Elaboración propia] 

Datos generales 

Periodo de amortización (años) 15 
Interés de amortización (%) 5 
Derechos de emisión (€/tCO2) 12 
Precio del carbón (c€/kWh, PCI) 0,9 [43] 
Precio de la electricidad (c€/kWh) 5 
 

En base a antiguas inversiones de la Central Térmica Teruel, se ha considerado 

un periodo de amortización de 15 años, con un interés al 5% [44]. El precio de los 

derechos de emisión se ha fijado en 12 euros por cada tonelada de CO2 [44, 45]. 

Actualmente este precio es mucho menor pero previsiblemente es una situación que va a 

cambiar en los próximos años. Para cumplir con los objetivos europeos de 2020, de 

producir al menos un 20% del total de la energía a partir de sistemas renovables [47], se 

espera que el estado incentive esta producción con una nueva ley en los próximos años. 

Por ello se ha considerado una prima conservadora de 1 c€/kWh producido a partir de 

biomasa. 

Para el cálculo del precio de la electricidad se ha obtenido un valor aproximado 

de entre todos los precios de mercado en el último año [46]. En lo referente al precio de 

la biomasa, no es un valor fácilmente cuantificable, pudiéndose considerar aceptables 

entre 1 y 1,5 c€/kWh. 

Los resultados calculados representan el incremento en el beneficio neto que se 

obtiene con la aplicación de las tres tecnologías de co-combustión analizadas, respecto a 

la situación inicial de operación con carbón. 
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Las Figuras 9, 10 y 11 muestran los indicadores económicos considerados en 

este estudio, analizados siempre en función del coste de la biomasa: beneficios (k€/año), 

Valor Actual Neto (VAN, M€) y Tasa Interna de Retorno (TIR, %) respectivamente. 

 

 

Figura 9: Beneficio neto en función del precio de la biomasa [Elaboración propia] 

 

 

Figura 10: Valor Actual Neto (VAN) en función del precio de la biomasa [Elaboración propia] 
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Figura 11: Tasa Interna de Retorno (TIR) en función del precio de la biomasa [Elaboración propia] 
 

Cabe destacar que se han considerado precios bajos para el derecho de emisión, 

cuando las perspectivas de incremento son mayores, por lo que supondrá una fuente de 

ingresos importante. Los resultados muestran que con una prima de 1 c€/Kwh, la 

cámara torsional resulta rentable para precios de biomasa razonables.  

Por otro lado los quemadores específicos de biomasa también obtienen 

beneficio, pero a precios de biomasa muy bajos. Para el caso de sin quemadores, la 

opción es inviable económicamente. 

5.6.  Análisis ambiental 

A partir de la metodología desarrollada por Juana María Alarcón Rodríguez 

[48], se procede a realizar la evaluación ambiental de la Central Térmica Teruel. Dicho 

análisis de ciclo de vida (ACV) evalúa la categoría de calentamiento global. 

Se muestra en la Tabla 12 el consumo de combustible por TJe producido, para 

cada una de las tres tecnologías de estudio, siendo dependiente del rendimiento global 

de la central. 

Tabla 12: Consumo de combustible en cada tecnología comparada [Elaboración propia] 

 Consumo Carbón t/TJe 
producido 

Consumo biomasa t/TJe 
producido 

C.T. Carbón 153,47 - 
Co-co sin quemadores 148,54 8,28 
Co-co con quemadores 146,75 8,18 
Co-co cámara torsional 146,75 8,18 
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El objetivo principal de este análisis ambiental es cuantificar las emisiones de 

gases de efecto invernadero expresada en kg de CO2 equivalentes por cada TJe 

producido. Se muestra a continuación en la Figura 12 las emisiones finales generadas 

por cada tecnología de estudio. 

 

 

Figura 12: Evaluación de impacto en el ACV para las tecnologías comparadas [Elaboración propia] 

 

En la Tabla 13 se muestran las emisiones evitadas, tras la implantación de cada 

una de las tres tecnologías de estudio, junto con el porcentaje de reducción de las 

mismas, obtenidos del análisis ambiental. 

Tabla 13: Emisiones evitadas de CO2 y porcentaje de reducción en las mismas con respecto a la 
central convencional [Elaboración propia] 

 

Emisiones totales CO2 
evitadas (kg/TJe producido) 

% reducción de emisiones de 
CO2 

Co-combustión sin quemadores 7526 2,24 
Co-combustión con quemadores 11839 3,53 
Co-combustión cámara torsional 12749 3,81 
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Dados los resultados obtenidos, la cámara torsional es la tecnología con menor 

potencial de calentamiento. Ello se debe a que permite tamaños de partícula mayores, lo 

que reduce de manera considerable el consumo en pretratamientos, que se traducen en 

menores emisiones equivalentes de CO2. Para un porcentaje de sustitución del 5% se 

produce una reducción del 3,81% sobre el total de las emisiones. Este valor es algo 

menor que el porcentaje de sustitución, debido a la producción, transporte y 

pretratamiento de la biomasa, que si presentan emisiones. La instalación de co-

combustión con quemadores específicos de biomasa presenta resultados similares, pero 

siempre más desfavorables que la cámara torsional. 

Por tanto la tecnología más ventajosa, en cuanto a términos ambientales se 

refiere, es la cámara torsional. 

 

6. CONCLUSIONES 

Todos los sistemas de co-combustión estudiados presentan una disminución de 

rendimiento neto de la central, siendo la cámara torsional junto con los quemadores 

específicos los que menor disminución generan.  

Respecto al impacto ambiental, todas las tecnologías presentan una reducción de 

emisiones de CO2, siendo la cámara torsional el mejor de los casos de estudio. Este 

hecho viene motivado por su menor consumo energético en los pretratamientos. 

En cuanto a inversiones, la cámara torsional representa la opción más 

económica, a pesar de que la reforma en caldera sea mayor que en el caso de no 

disponer de quemadores específicos de biomasa. Los costes de inversión en 

pretratamientos son mucho menores, así como su operación. Para el caso estudiado, con 

una prima de 1 c€/kWh y un precio de la biomasa de 1,2 c€/kWh, la cámara torsional 

resulta rentable. 

A pesar de que es necesario llevar a cabo un detallado estudio aerodinámico para 

optimizar la situación y operación de las cámaras torsionales, se llega a la conclusión de 

que la generación de electricidad con biomasa (55,22 MW) mediante co-combustión 

con cámara torsional en la Central Térmica Teruel, aprovechando los recursos 

disponibles en un radio de 100 km y con una prima de 1 c€/kWh es técnica y 

económicamente factible. 
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Este sistema de co-combustión, de entre los estudiados, es el que presenta 

mejores resultados energéticos, medioambientales y económicos. Esto se debe a la 

menor penalización de rendimiento, bajo consumo de pretratamientos y baja inversión. 

Ello hace que esta tecnología pueda llegar a ser una de las más interesantes 

alternativas de co-combustión en el futuro, desde el punto de vista energético, 

medioambiental y económico, tanto para la Central Térmica Teruel como para otras 

centrales de carbón pulverizado. 
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