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Análisis Vibratorio en Estructuras Ligeras 

sometidas a Excitaciones Armónicas. 
(Resumen) 

 

 

El presente trabajo Fin de Máster se desarrolla en el ámbito del análisis de 

vibraciones en sistemas con comportamiento no lineal. En concreto se analiza y 

estudia la respuesta en estructuras de pequeño espesor de aplicación en el ámbito 

automovilístico, naval y aeronáutico. 

Así pues, este trabajo consiste en el análisis de la variación de la rigidez de una 

estructura ligera sometida a cargas armónicas de amplitud variable, con el fin de 

caracterizar su no linealidad. 

El trabajo se ha desarrollado siguiendo una serie de fases: 

 

- Revisión bibliográfica y estado del arte. 

- Definición del problema (geometría, cargas, material). 

- Análisis estático no lineal con grandes deformaciones. 

- Análisis modal. 

- Planteamiento de un modelo analítico con MATLAB. 

- Análisis dinámico no lineal. 

- Análisis en el dominio frecuencial. 

- Validación. 

 

El objetivo principal de este Trabajo Fin de Máster es analizar el comportamiento 

de este tipo de estructuras frente a solicitaciones armónicas con el fin de aplicar los 

resultados a análisis de estructuras similares empleados en diversos campos de la 

ingeniería. Estableciendo para ello un procedimiento de caracterización que permita 

su implementación en modelos simplificados para su análisis, ya que el cálculo del 

modelo completo, frente a una solicitación dinámica, con comportamiento no lineal 

supone un alto coste computacional. 
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1.-Introducción. 
En diversos campos de la ingeniería como el de la automoción, aeronáutico y 

aeroespacial entre otros se están utilizando estructuras ligeras sometidas a diferentes 

excitaciones armónicas, cuyo comportamiento no queda definido mediante los análisis 

tradicionales aplicados a estructuras con comportamiento lineal. 

El uso de estructuras ligeras viene propiciado por el incesante objetivo de 

conseguir estructuras poco pesadas y lo suficientemente resistentes para las cargas a 

las que van a estar sometidas. Para ello se utilizan materiales con poca densidad 

tratados por distintos métodos que consiguen aumentar su rigidez. 

En el mundo de la ingeniería es importante conocer cómo va a responder un 

sistema mecánico al estar sometido a una serie de cargas externas para así poder 

realizar un diseño adecuado de dicho sistema. Las vibraciones son un aspecto a tener 

muy en cuenta ya que pueden provocar la rotura de ciertos elementos y por lo tanto 

hay que ser muy cuidadosos para conseguir un diseño en el que se minimice este 

fenómeno. 

Resulta ser que un sistema vibratorio puede ser representado por un modelo 

matemático que incluya los parámetros del sistema,  las condiciones iniciales y el tipo 

de excitación, entre otras cosas. Este modelo permite la formulación de criterios 

importantes para su análisis y diseño y son representados por ecuaciones diferenciales 

que pueden clasificarse como [1]:  

 

a) Modelo lineal y no lineal. Representado por ecuaciones diferenciales 

lineales o no lineales, respectivamente.  

 

b) Modelo no forzado y forzado. Representado por una ecuación diferencial 

homogénea y no homogénea, respectivamente. 

 

c) Modelo con y sin amortiguamiento. Representado por una ecuación 

diferencial en donde interviene el término que representa la pérdida de 

energía o no, respectivamente.  

 

d) Modelo de 1 grado de libertad o de varios grados de libertad. 

Representado por una ecuación diferencial o un conjunto de ecuaciones 

diferenciales, respectivamente.  

 
Para conocer el comportamiento de estas estructuras ligeras se van a realizar 

distintos análisis, entre los que destacan los siguientes: 

 

- Análisis estático no lineal con grandes deformaciones. 

- Análisis modal. 
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- Análisis dinámico no lineal en el dominio temporal. 

- Análisis en el dominio frecuencial. 

 

Cada uno de ellos aportará distinta información que utilizaremos a lo largo del 

trabajo para llevar a cabo el análisis planteado en este TFM. De este modo, gracias al 

primero de ellos, se conocerá la constante de rigidez y el desplazamiento que se 

produce en el voladizo de la estructura que se va a analizar. 

En el análisis modal se visualizarán las formas modales de vibración a lo largo del 

tiempo dependiendo de la fuerza aplicada en el extremo de la estructura y se 

calcularán las frecuencias naturales. Se comprobará que éstos varían según la fuerza 

aplicada debido a la no linealidad del modelo. 

Se verán las distintas variables de desplazamiento, velocidad y aceleración 

respecto al tiempo mediante un modelo en MATLAB que resolverá el sistema 

equivalente a la estructura ligera y su forma de vibrar. Mediante la Transformada de 

Fourier se hará el análisis frecuencial. 

Finalmente, en ABAQUS, se analizará dinámicamente el modelo de una forma 

sencilla para comparar con los modelos anteriormente mostrados y realizar, de esta 

manera, la validación del modelo. 

 

1.1. Objetivo y alcance del Trabajo Fin de Máster. 

 

En el presente Trabajo Fin de Máster se pretende analizar el 

comportamiento de estructuras ligeras frente a solicitaciones armónicas con el 

fin de aplicar los resultados a análisis de estructuras similares empleadas en 

diversos campos de la ingeniería.  

Para ello se establecerá un procedimiento de caracterización que permita su 

implementación en modelos simplificados para su análisis, ya que el cálculo del 

modelo completo, frente a una solicitación dinámica, con comportamiento no 

lineal, supone un alto coste computacional. 

Así pues, el trabajo propuesto se desarrolla en el ámbito del análisis de 

vibraciones de sistemas con comportamiento no lineal, en concreto se analizará 

y estudiará la respuesta en estructuras de pequeño espesor de aplicación en 

diversos ámbitos como se verá posteriormente. 

 

1.2. Historia de las Vibraciones. 

 

El origen de la ciencia de las vibraciones mecánicas es difícil de establecer. 

No hay una sola persona que apadrine la ciencia de las vibraciones, ya que a lo 

largo de la historia grandes científicos realizaron importantes aportaciones 

haciendo que hoy en día el fenómeno de las vibraciones sea toda una ciencia. 
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A continuación se realiza un pequeño recorrido de algunos personajes que 

hicieron aportaciones importantes sobre el fenómeno de las vibraciones. 

Antes de Cristo, dos personajes célebres como Pitágoras y Aristóteles ya 

hacían aportaciones a la ciencia de las vibraciones. El primero de ellos, mediante 

un experimento realizado con unas agujas del mismo espesor y misma tensión, 

pero distinta longitud pudo concluir que las notas dependían de la frecuencia de 

vibración, lo calculó y concluyó que la música no era más que una relación 

matemática de las vibraciones medidas según intervalos. 

Por su parte, Aristóteles trabajó con las leyes del movimiento, escribió el 

primer escrito relacionado con la acústica On Acustic e introdujo el principio del 

trabajo virtual. 

Más cercano en el tiempo se encuentra Galileo Galilei, el cual encontró la 

relación existente entre la longitud de cuerda de un péndulo y su frecuencia de 

oscilación, así como la relación entre la tensión, longitud y frecuencia de 

vibración de las cuerdas. A través de un experimento basado en una piedra atada 

a una cuerda averiguó que el tiempo de oscilación dependía de la longitud de la 

cuerda.   

Posteriormente fue Isaac Newton el que se implicó en este campo. Tiene un 

papel importante en el análisis de sistemas y en la determinación de frecuencias 

de oscilación. De la misma época es Robert Hooke, reconocido por sus 

investigaciones en el campo de la elasticidad. 

Ya en el siglo XVIII, Bernoulli estudió la forma de vibrar de algunos cuerpos 

usando el principio de superposición de armónicos. Junto con su amigo Euler 

trataron problemas de pequeñas oscilaciones en cuerdas y vigas.  

A finales de este mismo siglo y comienzos del XIX, una de las sorprendentes 

aportaciones del trabajo de Fourier fue que muchas de las funciones más 

conocidas podían expresarse en series de senos y cosenos, de tal modo que esta 

es una aportación de las más importantes e interesantes en el ámbito de las 

vibraciones mecánicas ya que en base al algoritmo de la serie de Fourier trabajan 

los modernos analizadores de vibraciones [1]. 

En la era moderna se han realizado importantes aportaciones matemáticas 

que han ampliado considerablemente el área de investigación del campo de las 

vibraciones. Por ejemplo, los métodos de Rayleigh que sirven para determinar las 

frecuencias de resonancia de algunos elementos basándose en ecuaciones de 

energía, las variables de estado que nos permiten resolver y analizar problemas 

basados en ecuaciones diferenciales no lineales, el elemento finito que consiste 

en discretizar cualquier elemento para posteriormente modelar y analizar su 

comportamiento como pudiera ser los modos de vibrar y ecuaciones estadísticas 

que facilitan el estudio de vibraciones aleatorias. Todo esto combinando con los 

avances tecnológicos en computadores, analizadores de vibraciones, etc... 



 

1.3. Definición y Conceptos Básicos

 

Una vibración mecánica es la oscilación repetida de un punto material o de 

un cuerpo rígido en torno a su

vibración puede hacerse en el dominio del tiempo o de la frecuencia. En el 

primero la variable independiente es el tiempo y en el segundo la frecuencia. 

Ambos dominios están relacionados p

Se dice que un cuerpo vibra cuando experimen

modo que sus puntos oscilen sincrónicamen

equilibrio, sin que el campo cambie de lugar.  

 

Figura 

Las vibraciones pueden producirse por efecto del propio funcionamiento de 

una máquina o equipo. En toda oscilación vibratoria, en general, se producen los 

siguientes tres fenómenos energéticos:

-  Almacenamiento de energía potencial en l

-  Almacenamiento de energía cinética en las masas e inercias.

-  Pérdida gradual de energía en los elementos disipativos.

 

Figura 1.

La amplitud desde el punto de 

movimiento puede tener una masa desde una posición neutral.

la amplitud del desplazamiento, velocidad o aceleración de la señal de vibración. 

Se mide en unidades de longitud en el sistema internaciona
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Conceptos Básicos. 

Una vibración mecánica es la oscilación repetida de un punto material o de 

un cuerpo rígido en torno a su posición de equilibrio. El análisis de las señales de 

vibración puede hacerse en el dominio del tiempo o de la frecuencia. En el 

primero la variable independiente es el tiempo y en el segundo la frecuencia. 

Ambos dominios están relacionados por la transformada de Fourier

Se dice que un cuerpo vibra cuando experimenta cambios alternativos, de tal 

modo que sus puntos oscilen sincrónicamente en torno a sus posiciones de 

equilibrio, sin que el campo cambie de lugar.   

Figura 1.3.1. Representación de una vibración armónica.

 

Las vibraciones pueden producirse por efecto del propio funcionamiento de 

una máquina o equipo. En toda oscilación vibratoria, en general, se producen los 

siguientes tres fenómenos energéticos: 

Almacenamiento de energía potencial en los elementos elásticos.

Almacenamiento de energía cinética en las masas e inercias.

Pérdida gradual de energía en los elementos disipativos. 

1.3.2. Representación de la energía sin elemento disipativo.

 

desde el punto de vista de las vibraciones, es cuá

movimiento puede tener una masa desde una posición neutral. 

la amplitud del desplazamiento, velocidad o aceleración de la señal de vibración. 

Se mide en unidades de longitud en el sistema internacional. 

 

 

Una vibración mecánica es la oscilación repetida de un punto material o de 

El análisis de las señales de 

vibración puede hacerse en el dominio del tiempo o de la frecuencia. En el 

primero la variable independiente es el tiempo y en el segundo la frecuencia. 

rmada de Fourier. 

ta cambios alternativos, de tal 

te en torno a sus posiciones de 

 
bración armónica. 

Las vibraciones pueden producirse por efecto del propio funcionamiento de 

una máquina o equipo. En toda oscilación vibratoria, en general, se producen los 

os elementos elásticos. 

Almacenamiento de energía cinética en las masas e inercias. 

 
2. Representación de la energía sin elemento disipativo. 

e las vibraciones, es cuánta cantidad de 

 Se puede medir 

la amplitud del desplazamiento, velocidad o aceleración de la señal de vibración. 
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Figura 1.3.3. Amplitud y Período. 

 

La fase se refiere a la medida relativa entre dos puntos de medición, 

generalmente se usa el ángulo de separación entre las señales que representan 

el movimiento de estos puntos.  

Otro concepto básico asociado a las vibraciones es el periodo, que tal y como 

se muestra anteriormente (Figura 1.3.3.) es el tiempo transcurrido entre dos 

puntos equivalentes de la vibración. Se mide en segundos. 

� � 1� � 2��  

Conociendo el período y haciendo su inversa como se observa en la ecuación 

anterior, se puede calcular la frecuencia, o viceversa. En cuestión de vibración, la 

frecuencia es el número de periodos (oscilaciones) completos que el cuerpo 

realiza por segundo, la unidad de medición son los ciclos/segundo o Hertz (Hz). 

Dentro del término frecuencia cabe destacar la frecuencia natural, que es 

aquella que solo depende de la masa y la rigidez del sistema. Una frecuencia 

natural es una frecuencia a la que una estructura vibrará si uno la desvía y 

después la suelta. Una estructura típica tendrá muchas frecuencias naturales.  

De cualquier estructura física se puede hacer un modelo en función de un 

número de resortes, masas y amortiguadores. Los amortiguadores absorben 

energía, mientras que los resortes y las masas la liberan. El resorte y la masa 

interactúan uno con otro, de manera que forman un sistema que hace 

resonancia a su frecuencia natural característica. Si se le aplica energía a un 

sistema masa resorte, el sistema vibrará a su frecuencia natural, y el nivel de las 

vibraciones dependerá de la fuerza de la fuente de energía y de la absorción 

inherente al sistema. La ecuación es: 

�� � 12� 	 
� 

Siendo: �� � ��
��
���� ������� ���� 

  
 � ��������
 �
 
���������� � �����
� ���  

  � � ���� �!�� 
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De la ecuación anterior se puede ver que si la rigidez aumenta, el valor de la 

frecuencia natural también lo hace, y si la masa aumenta, la frecuencia natural 

disminuye. 

La resonancia es un estado de operación en el que una frecuencia de 

excitación se encuentra cerca de una frecuencia natural de la estructura. Cuando 

ocurre la resonancia, los niveles de vibración que resultan pueden ser muy altos 

y pueden causar que los daños evolucionen muy rápidamente. 

El amortiguamiento se define como la capacidad de un sistema o cuerpo 

para disipar energía cinética en otro tipo de energía. 

El amortiguamiento es un parámetro fundamental en el campo de las 

vibraciones y en el desarrollo de modelos matemáticos que permiten el estudio y 

análisis de sistemas vibratorios, como son: estructuras metálicas, motores, 

maquinaria rotativa, turbinas, automóviles, etc. Esto va encaminado a la teoría 

de que todo sistema vibratorio (sistemas mecánicos) tiene la capacidad de 

disipar energía. Para el control de vibraciones e impactos en maquinaria, se 

utiliza el concepto de amortiguamiento como una técnica para disipar energía 

del sistema, manipulando así la amplitud de vibración en el sistema y otros 

parámetros de estudio. El elemento que disipa la energía es llamado 

amortiguador. 

El desplazamiento especifica un cambio de posición o distancia, sus unidades 

pueden ser m, mm o μm y se expresa de acuerdo a la siguiente ecuación: 
 " � "# sin���� 

 

Siendo: "# � '�(����� 

  � � )
����� 

  � � *+, � ��
��
���� ������� 

 

La velocidad es la tasa de cambio de desplazamiento respecto al tiempo. Se 

mide en m/s y se expresa de acuerdo a la siguiente ecuación: 
 

- � �"�� � �"# cos���� 

 

La aceleración es la razón de cambio de la velocidad respecto al tiempo. Se 

expresa en m/s2 y su ecuación es: 

 

� � �-�� � �*"�*� � 0�*"# sin���� 
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1.4. Clasificación de las vibraciones. 

 

Las vibraciones mecánicas pueden clasificarse desde diferentes puntos de 

vista dependiendo de la excitación, la disipación de energía, la linealidad de los 

elementos y las características de la señal [2]. 

 

- Dependiendo de la excitación: 

 

Se dividirá en vibración libre o vibración forzada. Una vibración libre es 

cuando un sistema vibra debido a una excitación instantánea. La vibración 

forzada se debe a una excitación permanente. Esta división o clasificación es 

importante porque indica que un sistema vibra libremente si solo existen 

condiciones iniciales del movimiento, ya sea porque se suministra energía por 

medio de un impulso o debido a una deformación inicial del resorte. 

 

- Dependiendo de la disipación de energía: 

 

Habrá vibraciones amortiguadas y no amortiguadas. El amortiguamiento es 

un sinónimo de la pérdida de energía de sistemas vibratorios y se manifiesta con 

la disminución del desplazamiento de vibración. Este hecho puede aparecer 

como parte del comportamiento interno de un material por ejemplo la fricción, o 

bien, como un elemento físico llamado precisamente amortiguador. 

Por lo tanto, la vibración amortiguada es aquella en la que la frecuencia de 

oscilación de un sistema se ve afectada por la disipación de la energía, pero 

cuando la disipación de energía no afecta considerablemente a la frecuencia de 

oscilación entonces la vibración es del tipo no amortiguada. 

 

- Dependiendo de la linealidad de los elementos: 

 

Si el comportamiento de cada uno de los parámetros de los componentes 

básicos de un sistema es del tipo lineal la vibración resultante es lineal, en caso 

contrario será del tipo no lineal. En realidad todo elemento se comporta de 

forma no lineal, pero bajo ciertas condiciones puede considerarse como 

elemento lineal, facilitando de esta manera considerablemente su análisis. 

 

- Dependiendo de las características de la señal: 

 

Esta clasificación divide en determinística y probabilísticas.  

Mientras que probabilística se refiere a la señal de vibración que se 

caracteriza por ciclos irregulares de movimiento por lo que no es predecible. 
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Determinística es cuando el comportamiento vibratorio de un sistema 

puede ser representado por medio de una ecuación matemática. 

Las vibraciones determinísticas las podemos dividir a su vez en periódicas o 

no periódicas. Se llaman así a las primeras debido a que se repiten cada cierto 

periodo de tiempo. Por el contrario, aquellas que no se repiten periódicamente 

reciben el nombre de no periódicas. 

 

1.5. Programas empleados. 

Para este Trabajo Fin de Máster han sido varios los programas empleados 

para poder validar los modelos realizados. Así pues, a parte de los programas 

ofimáticos tradicionales como Excel y Word, para el cálculo y las gráficas que se 

muestran en los Anexos, se han utilizado los tres siguientes. 

 

ABAQUS: 

Es un software que nos permite calcular mediante el método de elementos 

finitos múltiples modelos actuales, los cuales pueden utilizarse en distintos 

ámbitos de la ingeniería. Gracias a él se pueden realizar simulaciones próximas a 

la realidad de estructuras permitiéndonos una mayor calidad en los productos y 

reduciendo sustancialmente el número de experimentos reales a ensayar. 

Se compone de tres módulos principales ABAQUS/STANDARD, 

ABAQUS/EXPLICIT y ABAQUS/CAE. Dos de sus tres módulos han sido empleados 

en el trabajo presente. El primero de ellos permite hacer frente a los 

tradicionales problemas del análisis por elementos finitos, como la estática, 

dinámica… Con el siguiente módulo se pueden realizar y calcular la dinámica en 

problemas como los de impacto, mientras que con el CAE se pueden crear 

modelos, visualizar resultados, etc. 

MATLAB: 

Es un programa matemático con lenguaje propio. Entre sus principales 

características cabe destacar la posibilidad de manipular matrices, representar 

funciones, implementar distintos algoritmos y la comunicación con programas 

con otros lenguajes. Es un software muy utilizado en universidades y en centros 

tecnológicos de desarrollo e investigación. 

MEScope: 

Es una herramienta de post-procesamiento de señales temporales, 

obtenidas experimentalmente o mediante simulación. Este programa da la 

posibilidad de importar y exportar datos de vibraciones y estructuras gracias a 

una interfaz digital. Con él se va a realizar el análisis frecuencial a partir de los 

datos obtenidos en ABAQUS y MATLAB, para su comparación, en el análisis 

dinámico transitorio no lineal realizado en este trabajo de investigación. 
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2.- Estado del Arte. 
En el presente apartado se va a proceder a hablar sobre el estado del arte 

relacionado con el análisis vibratorio en estructuras ligeras y delgadas sometidas a 

excitaciones armónicas. 

Al tratarse de estructuras ligeras de poco espesor, los análisis que se realizarán 

serán con elementos tipo placa y barra sometidos a vibraciones no lineales en 

programas de cálculo de elementos finitos. Por lo tanto, a continuación, se va a hablar 

y presentar los diferentes problemas de no linealidad geométrica, así como las 

dificultades encontradas en el análisis dinámico no lineal de este tipo de estructuras. 

También se van a comentar los métodos más comunes de modelar con sus 

respectivas soluciones y conclusiones. Todo ello debidamente referenciado con 

múltiple bibliografía de distintos autores como se observará a lo largo del texto para 

poder encontrar literatura sobre este tema rápidamente. 

 

2.1. Introducción. 

 

Se pueden encontrar múltiples problemas relacionados con la vibración en 

estructuras delgadas en distintas ramas de la industria, incluyendo la ingeniería 

aeronáutica, automovilística, naval y civil [3, 4]. En todas las ramas mencionadas las 

estructuras deben tener un peso lo más bajo posible y una resistencia lo más alta 

posible para que puedan estar expuestas a grandes amplitudes de vibración [4, 5]. 

Según la teoría lineal de vibración, las frecuencias naturales y las formas modales son 

independientes de la amplitud de la vibración. 

 

2.2. Comportamiento geométricamente no lineal en estructuras delgadas. 

 

En este primer apartado se da una descripción cualitativa de varios efectos que 

pueden inducir a la no linealidad en el comportamiento estructural dinámico. 

Una de las características encontrada en el estudio de vibraciones no lineales es la 

presencia de fenómenos no previstos a través de la teoría lineal. La comprensión de 

muchos casos experimentales es difícil si no se tiene en cuenta la no linealidad del 

sistema. Así pues, habrá que tener especial cuidado con: 

 

- La variación de las frecuencias resonantes con la amplitud de vibración [6]. 

- La dependencia de la amplitud con las formas modales [7]. 

- La distorsión armónica de la respuesta no lineal a una excitación armónica, y 

su distribución espacial [8]. 

- La presencia de vibración caótica. [9] 

- La existencia de puntos de bifurcación [10]. 

- La resonancia interna [11]. 
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- El acoplamiento debido a la no linealidad entre desplazamientos transverales y 

en el plano [12]. 

- Etc. 

 

La determinación de las características modales de vibraciones libres y forzadas en 

estructuras delgadas es un problema de gran interés técnico. En muchos casos, el 

análisis lineal, es insuficiente para explicar y describir el comportamiento del sistema. 

Por esta razón, los efectos no lineales deben ser tenidos en cuenta en el análisis y en el 

proceso de diseño de la estructura [13]. Por ejemplo, los paneles de un avión excitados 

a altos niveles de presión se exponen a un comportamiento no lineal. Recientemente, 

el creciente empleo de nuevos materiales, principalmente compuestos, hace que haya 

una mayor demanda de principios de diseño apropiados, satisfaciendo las nuevas 

exigencias de funcionamiento en futuras estructuras en vehículos navales, 

aeroespaciales… Por otra parte, gracias a los progresos teóricos en el desarrollo de 

instrumentos de investigación analíticos y numéricos, así como el alto rendimiento de 

los nuevos sistemas de cálculo, permiten a los ingenieros utilizar los materiales 

avanzados para este tipo de estructuras ligeras. 

El modelar y simular el comportamiento de estructuras complejas para el campo 

aeroespacial es quizás la tarea de análisis más desafiante hasta el momento. 

Las formas modales son de particular interés en el comportamiento dinámico de 

una estructura. Por lo tanto, los métodos de predicción deben ser necesariamente 

precisos para determinar en vibraciones de grandes amplitudes las formas modales no 

lineales y las frecuencias de resonancia correspondientes a estructuras ligeras de poco 

espesor. Otro de los objetivos del análisis modal de vibraciones no lineales es poder 

detectar zonas peligrosas donde se puedan concentrar tensiones y ser una zona de 

riesgo de rotura, para ello se compara con el modelo de teoría lineal obteniendo en 

aquellas zonas diferencias cuantitativas y cualitativas [14]. 

Para concluir, el análisis de los efectos no lineales jugará un importante papel en el 

diseño y la ingeniería en los próximos años, por lo que deberá ser incluido en los 

modelos matemáticos. 

 

2.3. Dificultades encontradas en el análisis no lineal de estructuras delgadas. 

 

Tal y como explica Leissa en su libro [5], las soluciones características como la 

unicidad y la superposición que son totalmente garantizadas en problemas lineales de 

vibraciones, no pueden ser garantizadas ni válidas en problemas de no linealidad. Las 

principales fuentes de no linealidad pueden ser varias [10]: 

 

- El material. 

- La geometría. 
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- La inercia. 

- Condiciones de contorno. 

 

Actualmente, con los estudios realizados hasta el momento, solamente es 

considerada la geometría como no lineal, combinado en algunas ocasiones con otros 

efectos que complican el cálculo. El efecto no lineal es introducido en la relación 

tensión-desplazamiento. 

Una dificultad más en problemas de vibraciones no lineales geométricamente 

aparece en la definición de los modos normales, los cuales se hacen difíciles de 

interpretar en el caso no lineal debido a que el tiempo y las variables espaciales no son 

independientes en la mayoría de los problemas de vibración no lineal. Lo cierto es que 

el concepto de forma modal no lineal no está claro y se aceptó a nivel universal su 

equivalente lineal. Sin embargo para muchos de los artículos referentes a este tema 

del que se está tratando, es muy útil para la comprensión cualitativa del 

comportamiento no lineal, y se espera que sean de un importante papel para 

desarrollar la teoría de análisis modal no lineal. 

Hay muy pocos estudios experimentales dedicados a la vibración no lineal de 

superficies delgadas. También, pocos trabajos experimentales plasmados en literatura 

corresponden a características especiales geométricas, condiciones de contorno y 

amplitudes de vibración. Así pues, esto todavía es insuficiente para clarificar en mayor 

medida el sorprendente comportamiento no lineal de placas delgadas. 

 

2.4. Nuevos materiales. 

 

La línea que se está siguiendo actualmente en este campo de los nuevos 

materiales se rige principalmente por varios factores de los que destacan el peso 

(densidad), la resistencia y el precio al cual se consiguen esos materiales. 

Respecto a la densidad, en ámbitos como la industria aeroespacial, aeronáutica, 

naval o automovilística, se intentan conseguir materiales poco pesados para reducir 

cargas en otros elementos del conjunto. Actualmente se están utilizando materiales de 

baja densidad expuestos a tratamientos térmicos, por ejemplo, para que su resistencia 

aumente considerablemente, de tal forma que sean capaces de aguantar a las fuerzas 

externas a las que van a ser sometidos. 

Los componentes fabricados tienen un precio y con él se debe jugar también. 

Posiblemente un material sea de muy baja densidad y muy resistente, pero para 

conseguirlo se han podido utilizar muchos tratamientos que hacen que su precio sea 

inviable con respecto a otros materiales más baratos, pero con peores propiedades. 

Actualmente, en las industrias anteriormente mencionadas se trabaja duramente 

en conseguir este tipo de materiales. Los aluminios tratados térmicamente son los más 

utilizados en estos tiempos. 
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2.5. Estudios experimentales. 

 

No se pueden desarrollar modelos no lineales a no ser que sean realizados a 

través de los resultados de las investigaciones experimentales. Dichas investigaciones 

deberían jugar un papel importante a priori y a posteriori del trabajo teórico. Los datos 

experimentales dirigen las suposiciones básicas e indican la forma de las soluciones 

esperadas antes de comenzar la realización del modelo. Posteriormente, en una nueva 

etapa, estos experimentos nos permiten validar los resultados numéricos obtenidos a 

través del modelo, así como nos indican la gama de validez y el grado de exactitud de 

cada tipo de solución. Se cree que las primeras investigaciones sobre los efectos de la 

no linealidad geométrica sobre las vibraciones en estructuras ligeras fueron realizadas 

por Evensen [15]. 

Más adelante, otros investigadores, con diferentes tipos de experimentos llegaron 

a conclusiones similares. Por ejemplo Olson [16] concluyó que las amplitudes de 

grandes vibraciones exponen una no linealidad leve que va suavizando. Este resultado 

experimental es usado con frecuencia por los investigadores para validar sus modelos 

[13]. 

 

2.6. Conclusiones 

 

Finalmente, se pueden sacar varias conclusiones respecto a este tema, de las que 

pueden destacar las siguientes: 

- Aunque hay muchas publicaciones que traten sobre la no linealidad de tipo 

geométrico, pocos documentos han sido encontrados sobre la no 

linealidad de tipo material o la combinación de ambas no linealidades. 

- El número de referencias relatando investigaciones experimentales sobre 

este tema es demasiado bajo. Se necesita de una revisión continua para 

clarificar mucho más el comportamiento no lineal de estructuras de este 

tipo. 

- La mayor parte de los estudios sobre las vibraciones no lineales en 

estructuras delgadas no dan ninguna indicación de la forma física de los 

modos de vibración en amplitudes grandes. 

- Se puede observar que la gran mayoría de los trabajos restringen sus 

estudios a la amplitud, la relación de frecuencia y la estabilidad. Sin 

embargo, las distribuciones de tensión sobre la superficie de la estructura 

no son analizadas. Estos efectos no lineales tienen una gran importancia en 

la ingeniería de diseño y muy significante en comparación con los casos de 

linealidad. 

- En muchas aplicaciones se utilizan refuerzos en estructuras delgadas, sin 

embargo, aunque los estudios referentes a vibraciones lineales en 
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estructuras ligeras reforzadas ha sido extenso, los estudios del mismo tipo 

de estructuras pero referenciados a vibraciones no lineales es muy escaso. 

 

Todas estas conclusiones finales vienen a confirmar la multitud de problemas y 

complicaciones de las vibraciones no lineales en estructuras ligeras, así como la poca 

investigación y el poco trabajo que se ha realizado hasta la fecha. 
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3.- Definición del Problema. 
El Trabajo Fin de Máster analiza la variación de la rigidez de una estructura ligera 

de poco espesor sometida a una carga armónica de amplitud variable en un extremo 

de ella con el otro extremo empotrado, con el fin de caracterizar su no linealidad.  

Esta estructura se va a modelizar como un sistema masa-muelle-amortiguador, 

con un solo grado de libertad. 

 
Figura 3.1. Sistema masa-resorte-amortiguador. 

 

El material con el que se ha trabajado es un Al 7075 T6. Es un material de baja 

densidad tratado térmicamente para aumentar su dureza, resistencia y elasticidad. Las 

propiedades del material son las siguientes: 1
������ � 2 � 2800 !�/�6 7�
����
��
 �
 )������ �  � 0.33 :ó���� �
 
���������� � < � 71.7 > 10? @/�* 

Para ello se ha utilizado una estructura de dimensiones (en mm) como la del plano 

siguiente: 

 
Con la sección rectangular de la estructura se calcula su momento de inercia: 

 
 

A � BC6
12 � 50 > 36

12 � 112,5 ��F 
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Las dimensiones de la sección de la estructura se han tomado teniendo como 

ejemplo una placa fabricada de este material. La longitud de la estructura es una 

medida para la cual nuestras fuerzas van a hacer que el comportamiento de ésta sea 

de no linealidad. Para ello se calculó una longitud de estructura de la siguiente forma: 

 

 

2 � GH6
3<A 

 

Condición de no linealidad: 

 

2 I H10 

 

Igualando las dos ecuaciones anteriores, se obtiene: 

H � 	3 > 71700 @��* > 112,5��F
10 > 10 @ � 491,92 �� L M
 �����á H � 500 �� 

La masa total que tiene la estructura viene determinada por la densidad y las 

dimensiones que se le han dado a ésta. 

� � 2800 !��6 O 0,5� O 0,05� O 0,003� � 0,21 !� 

Uno de los extremos de la placa, como anteriormente se ha mencionado, estará 

empotrado, es decir, todos sus movimientos estarán restringidos. Mientras que en el 

otro extremo se aplicará la fuerza armónica de ecuación: G � G# O �
��P O �� 

La amplitud (G#) corresponderá al módulo de la fuerza que vamos a aplicar, 

mientras que la frecuencia de excitación (Ω) variará entre los 0 y los 30 Hz. El tiempo 

(t) que se va a dejar que vibre la estructura serán 20 segundos en todos los casos. 

El último parámetro que falta de mencionar es ξ, el factor de amortiguamiento del 

modo que trabajaremos, el cual será 0,5%. 

Tras determinar las dimensiones del modelo se procederá, mediante distintos 

análisis y distintos programas de cálculo, a analizar la estructura para poder validar el 

modelo que acontece. 

Se compararán resultados obtenidos en dos programas de cálculo como son 

ABAQUS y MATLAB en el dominio temporal y en el dominio frecuencial para el primer 

modo de vibración. Además, mediante el análisis modal se podrán ver las distintas 

formas modales dependiendo de la fuerza implementada en el extremo. 
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4.- Análisis y Resultados. 
A continuación se va a proceder a explicar la forma en la que se han realizado los 

distintos análisis uno a uno, y ver los distintos resultados obtenidos en ellos. 

 

4.1. Análisis Estático No Lineal. 

El análisis estático no lineal se ha realizado en el programa ABAQUS/CAE. La 

placa se ha modelizado según un modelo en 3D deformable con elementos Shell, 

dándoles a estos, posteriormente, su debido espesor. Par ello se ha dibujado un 

rectángulo de dimensiones 0,5 m x 0,05 m mediante las opciones que tiene el 

programa en sus barras de herramientas. 

 
Figura 4.1.1. Geometría de la placa. 

 

Posteriormente se han introducido las propiedades del material elástico 

(densidad, módulo de elasticidad y coeficiente e Poisson) 

El siguiente paso ha sido la construcción de una sección a la cual se le han 

asignado los elementos shell con el espesor mencionado, así como el material creado 

con anterioridad que tiene las propiedades de nuestro Al 7075 T6. 

Una vez realizados los primeros pasos, se ha pasado a introducir las condiciones 

de contorno en el step inicial. De este modo se han restringido los movimientos en uno 

de los extremos. En este step no se ha aplicado ninguna fuerza, ya que ésta será 

aplicada en el siguiente step.  

Luego se ha procedido a crear el nuevo step, concretamente el estático general:  
 

 
Figura 4.1.2. Creación de un step estático. 
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En este momento se indica que el periodo durante el que se va a aplicar este 

cálculo estático va a ser de 1 segundo, ya que la fuerza se aplica instantáneamente y 

para que calcule rápidamente el programa. También se debe seleccionar la opción de 

no linealidades geométricas ya que es un análisis no lineal. 

A continuación se aplica la fuerza en el extremo. Para cada caso habrá que 

aplicar la nueva carga, es decir, para 10 N habrá que hacer un cálculo, y para 20 N 

deberemos de cambiar la carga. Así sucesivamente hasta los 10 casos que se han 

analizado. 

Luego, se malla la geometría. Cuantos más elementos tengamos en el mallado, 

más exacta será la solución. En este caso, al realizar los cálculos en la versión 

estudiantil del ABAQUS, éste sólo deja realizar cálculo con un máximo de 1000 nodos. 

Se ha procedido a tener el mayor número de elementos posibles, y con ellos se ha 

realizado el cálculo. 

Finalmente se crea un trabajo y se lanza el cálculo. Tras haber lanzado el cálculo, 

el propio programa crea una serie de archivos con distintas extensiones entre los que 

cabe destacar el ODB y el STA. El ODB es un archivo que se puede abrir con ABAQUS 

VIEWER y en él se muestran los resultados. Por otra parte, el archivo de extensión STA 

nos informa como va transcurriendo el cálculo y nos indica si éste ha sido completado 

correctamente (ha convergido) o por el contrario ha habido algún tipo de problema y 

no ha convergido. 

Tras haber realizado todos estos pasos, los resultados obtenidos en el extremo 

donde se aplica la carga se muestran en la siguiente tabla: 

 

F(N) K(N/m)no lineal δ(m) no lineal 

10 198.0590216 0.05049 

20 204.3318349 0.09788 

30 213.8275125 0.1403 

40 226.6288952 0.1765 

50 241.1963338 0.2073 

60 257.4002574 0.2331 

70 275.2654345 0.2543 

80 293.040293 0.273 

90 311.8503119 0.2886 

100 331.3452618 0.3018 

Tabla 4.1.1. Resultados del análisis estático no lineal. 

 

De esta forma podemos sacar la relación que hay entre la constante de rigidez y 

el desplazamiento que la fuerza genera en el extremo del voladizo de la estructura. 
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Gráfica 4.1.1. Relación rigidez-desplazamiento. 

 

Mediante la Tabla 4.1.1., en una hoja Excel, se crean una serie de gráficas iguales 

a la anterior con aproximaciones mediante la línea de tendencia, las cuales pueden 

observarse en el Anexo A.1. 

De entre todas ellas, la que mejor se aproxima es aquella que está elevada a la 

cuarta potencia. 

 

 
Gráfica 4.1.2. Aproximación de la relación rigidez-desplazamiento. 

 

De este modo podemos finalizar este análisis diciendo, que la constante de 

rigidez del muelle dependerá del desplazamiento obtenido. Conforme va aumentando 

el desplazamiento, la estructura tendrá una mayor rigidez.  

 

4.2. Análisis Modal. 

El objetivo de este análisis es observar el cambio de las formas modales según la 

carga que se aplique en el extremo y la variación de la frecuencia a la que dichas 

formas modales suceden. 
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El modelo geométrico empleado en ABAQUS es idéntico al utilizado en el análisis 

estático no lineal. Este análisis es continuación del propio análisis estático no lineal, ya 

que se quieren visualizar las formas modales obtenidas para cada carga. 

Así pues, se crea el nuevo step, en este caso será: 

 
Figura 4.2.1. Creación de un step modal. 

 

De este modo, no hay que introducir ningún dato para realizar el análisis, 

simplemente el número de modos que queremos visualizar. Se lanza el cálculo como 

anteriormente se ha realizado en el caso anterior y se visualizan los resultados. 

El trabajo realizado consta de 10 modos para las 10 cargas aplicadas de 10 N a 

100 N. En el Anexo B.1. y sus diferentes apartados se pueden observar las distintos 

modos de cada carga aplicada, así como las frecuencias de cada uno de ellos. 

Si nos fijamos en el primer modo de todas las cargas aplicadas, observamos que 

tiene la misma forma, por el contrario, las demás formas modales (tanto a flexión 

como a torsión), varían su forma conforme aumentamos la carga aplicada. 

En las tablas que se adjuntan en cada apartado del Anexo B.1. se pueden ver las 

distintas masas efectivas que se mueven en cada eje para cada modo. 

El estudio se centrará a partir de este momento en el modo 1 de todas las 

cargas, ya que es el único que no varía su forma y su forma movilizada es la mayor. Así 

pues, la Tabla 4.2.1. nos muestra las frecuencias del modo 1 para cada carga aplicada y 

su relación con la fuerza: 

FUERZA (N) FRECUENCIA (Hz) FRECUENCIA (rad/s) 

10 9.969 62.635 

20 10.202 64.101 

30 10.548 66.275 

40 10.965 68.895 

50 11.416 71.729 

60 11.885 74.676 

70 12.345 77.566 

80 12.797 80.406 

90 13.249 83.246 

100 13.667 85.872 
Tabla 4.2.1. Frecuencias del modo 1 según la carga aplicada. 
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Gráfica 4.2.1. Relación Fuerza aplicada-Frecuencia del modo 1. 

 

Para seguir adelante en el análisis de nuestro modelo, habrá que tener en cuenta 

la siguiente relación: ! � �* O � 

Esta ecuación nos indica que la constante de rigidez va a depender de la masa 

efectiva (en nuestro caso en el eje Z) y de la frecuencia. 

 

MODO 1 

F(N) δ(m) K (N/m) Masa Efectiva (kg) 

10 0.05049 4.99E+02 1.27E-01 

20 0.09788 5.09E+02 1.24E-01 

30 0.1403 5.23E+02 1.19E-01 

40 0.1765 5.39E+02 1.14E-01 

50 0.2073 5.54E+02 1.08E-01 

60 0.2331 5.69E+02 1.02E-01 

70 0.2543 5.82E+02 9.67E-02 

80 0.273 5.93E+02 9.17E-02 

90 0.2886 6.04E+02 8.72E-02 

100 0.3018 6.12E+02 8.30E-02 

Tabla 4.2.2. Resultados del modo 1 según la carga aplicada. 

 

Ante esta nueva situación se genera una nueva relación entre la constante de 

rigidez y el desplazamiento no lineal teniendo en cuenta la masa efectiva y la 

frecuencia de cada carga aplicada: 
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Gráfica 4.2.2. Relación Fuerza aplicada-Frecuencia del modo 1. 

 

 Avanzando un poco más, y analizando diversas situaciones se ha llegado a la 

conclusión de que la masa efectiva también depende del desplazamiento, ya que ésta 

varía conforme se va aumentando la deformación en el extremo de la estructura. A 

partir de los datos de la tabla anterior, se relaciona la masa con el desplazamiento no 

lineal obtenido en el análisis estático no lineal. La relación que se observa es la 

siguiente: 

 

 
Gráfica 4.2.2. Relación Fuerza aplicada-Frecuencia del modo 1. 
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Todas las relaciones obtenidas en el análisis modal de la estructura serán de gran 

utilidad en el modelo analítico que se va a realizar con el programa MATLAB a 

continuación. 

 

4.3. Modelo Analítico con MATLAB. 

El modelo analítico realizado con MATLAB  se realiza a través de la 

implementación de un código el cual se expone en el Anexo C.1.1. La primera parte del 

código corresponde al programa principal, en él se indica el número de puntos a 

analizar, en nuestro caso 65536 (216), el tiempo total de análisis y como varía el tiempo 

en relación al tiempo total del análisis. 

También se llama a una función (con sus condiciones iniciales) que nos resuelve 

la ecuación característica del sistema de un grado de libertad masa-muelle-

amortiguador modelizado, devolviéndonos ésta un vector cuyas componentes son el 

desplazamiento y la velocidad. 

En el mismo código se introducen las instrucciones para la realización de las 

gráficas temporales y la gráfica frecuencial obtenida a través de la Transformada de 

Fourier, indicando que su eje y sea dibujado en escala logarítmica. 

La transformada de Fourier es el espectro de frecuencias de una función. Un 

claro ejemplo de qué es lo que hace la transformada de Fourier lo tenemos en el 

propio oído, recibe una onda auditiva y la transforma en una descomposición de 

distintas frecuencias. El oído va percibiendo distintas frecuencias conforme el tiempo 

pasa, sin embargo, la Transformada de Fourier contiene todas las frecuencias 

presentes en todos los tiempo en que la señal existió, obteniendo un solo espectro de 

frecuencias para toda la función [17].  

La Transformada de Fourier [18] es utilizada para pasar al dominio frecuencial 

una señal con la que no se ha sacado información relevante en el dominio temporal. Es 

más sencillo saber sobre qué ancho de banda se concentra la energía de una señal 

analizándola en el dominio frecuencial. 

En el tratamiento digital de imágenes es muy utilizada para mejorar ciertas zonas 

de una imagen fotográfica. También es muy útil para el diseño de filtros de 

radiotransistores. 

En el código que tenemos en MATLAB, se consigue hacer la Transformada de 

Fourier de la velocidad gracias a la codificación que tenemos al final del código. 

En la función llamada en el programa principal en el que se pasan las condiciones 

iniciales introducimos datos significantes. La frecuencia de excitación inicial y final, es 

decir, el intervalo de frecuencias en el que se mueve la fuerza aplicada. El tiempo final 

de nuevo, ya que será utilizado para ir calculando paso a paso la frecuencia de 

excitación. 

Posteriormente se comienza a utilizar lo que se ha hallado en el análisis modal, 

como por ejemplo la función de la masa respecto al desplazamiento. También se usa la 



 

ecuación aproximada de la constante de rigidez del modo 1 respecto al 

desplazamiento no lineal y teniendo en cuenta la frecuencia y la masa efectiva.

A continuación se define el a

rigidez y de la masa. Se introduce el valor de la amplitud de la fuerza y se resuelve la 

ecuación de segundo orden

anteriormente. 

Llegados a este punto, las cargas que 

menores a las cargas aplicadas en los análisis anteriores. La razón es po

análisis dinámico, la amplitud se magnifica para frecuencias cercanas a la frecuencia de 

resonancia, tal y como se muestra en la 

Figura 4.3.1. 

La amplitud de las oscilaciones forzadas dependerá de la amplitud de la fuerza 

externa, pero para una misma amplitud de la fuerza, la amplitud de la oscilación 

dependerá también de la frecuencia.

En la Figura 4.3.1. se representa la amplitud de la oscilación forzada en función 

de la frecuencia para varios valores de calidad Q. Cuando estamos a muy baja 

frecuencia, la amplitud es la misma que si la fuerza fuera estática, mientras q

conforme nos acercamos a la frecuencia propia del sistema la amplitud también 

aumenta. Esta frecuencia se llamará frecuencia de resonancia. De esta figura se 

deduce que cuando el sistema está excitado a una frecuencia cercana a la de 

resonancia, la amplitud de las oscilaciones será Q veces más grande que la que se 

obtiene a baja frecuencia. 

 
 4.3.1. Análisis en el dominio temporal.

La parte correspondiente del código de MATLAB al análisis en el dominio 

temporal es aquella en la que vamos a representar la

desplazamiento y velocidad respecto al tiempo.
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ecuación aproximada de la constante de rigidez del modo 1 respecto al 

desplazamiento no lineal y teniendo en cuenta la frecuencia y la masa efectiva.

A continuación se define el amortiguamiento en función de la constante de 

rigidez y de la masa. Se introduce el valor de la amplitud de la fuerza y se resuelve la 

ecuación de segundo orden. Finalmente, devuelve el vector mencionado 

este punto, las cargas que se aplicarán de aquí en adelante serán 

menores a las cargas aplicadas en los análisis anteriores. La razón es po

amplitud se magnifica para frecuencias cercanas a la frecuencia de 

resonancia, tal y como se muestra en la Figura 4.3.1.  

 
a 4.3.1. Respuesta en frecuencia de un oscilador armónico. 
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Para ello se han utilizado los resultados proporcionados por la función que 

resuelve el sistema. Esta solución viene determinada por un vector de cuatro 

componentes y cada componente tendrá para cada instante de tiempo su 

correspondiente valor. 

De este modo, la primera componente del vector será el desplazamiento, 

mientras que la segunda será la velocidad, las cuales utilizaremos junto con el 

tiempo para realizar las gráficas del dominio temporal del modelo. 

Las tercera y cuarta componente no se utilizan para realizar, en este caso, 

ninguna gráfica, ya que no son necesarias para éste análisis. De todos modos 

corresponde a la aceleración y a la fuerza del resorte, respectivamente. 

Todas las gráficas se encuentran en el Anexo C junto con el código de 

MATLAB. Ahí se muestran para cada fuerza aplicada en este caso. Podemos 

observar que dependiendo de la amplitud de la fuerza que se aplique, el 

desplazamiento y la velocidad aumentará conforme se aumente la amplitud 

de la fuerza. Conforme se aumenta la fuerza aplicada de observa que llega un 

momento en el que las amplitudes positivas y negativas no tienen el mismo 

módulo produciéndose gráficas no simétricas. 

También se han realizado las gráficas desplazamiento-velocidad (se pueden 

ver en el Anexo C para cada amplitud de carga), en ellas se observa su 

circularidad y que están centradas en el origen, pero conforme aumenta la no 

linealidad (aumentando la fuerza), van tomando formas más sorprendentes. 

 

 4.3.2. Análisis en el dominio frecuencial. 

El análisis en el dominio de la frecuencia se utiliza como una herramienta 

muy común en la teoría de control. Actualmente con las facilidades y la 

cantidad de aplicaciones que nos permiten las computadoras, la simulación en 

el dominio temporal es bastante más sencilla, por lo que este análisis ha 

perdido importancia práctica. Aún con todo, sigue teniendo un valor 

conceptual y una sencillez en la comprensión intuitiva muy importante. 

Gracias al programa MATLAB, mediante una de sus funciones (la 

Transformada Rápida de Fourier, anteriormente explicada), se han podido 

realizar las gráficas de la frecuencia respecto a la amplitud de la velocidad. 

Todas las gráficas se pueden observar en el Anexo D dependiendo de la fuerza 

aplicada. Se observa que mientras la fuerza no produce la no linealidad, todas 

ellas tienen la misma frecuencia en el modo 1. Cuando se empieza a producir 

no linealidad se observa que aumenta levemente la amplitud y aparecen 

zonas con muchos picos de frecuencia (barridos continuos). 

Para la validación del modelo, se ha comparado con el modelo de ABAQUS 

a través del programa de tratamiento de señales MESCOPE. 
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4.4. Análisis Numérico Dinámico Transitorio No Lineal. 

Para el análisis que se muestra a continuación se proyecta una estructura en 

2D deformable con elementos tipo barra (beam). Lo que cambiará respecto a los 

otros análisis realizados en ABAQUS será en primer lugar el nuevo paso, también 

denominado step, que se aplicará en el programa de la forma que se muestra en 

la Figura 4.4.1. 

 
Figura 4.4.1. Creación de un step dinámico transitorio. 

 

El análisis dinámico transitorio no lineal se ha realizado para un tiempo total 

de 20 segundos, con un incremento de 0,000305175 con un máximo de 66.000 

pasos (número superior al marcado en MATLAB, aunque analizará el mismo 

número que en MATLAB debido a que le hemos marcado el incremento). Estos 

datos son introducidos al crear el step. 

En las propiedades del material introduciremos el amortiguamiento en la 

pestaña DAMPING. 

El amortiguamiento que se introduce en el programa ABAQUS en este caso 

corresponde al tipo de amortiguamiento de Rayleigh. La forma de encontrar la 

matriz de amortiguamiento es muy útil cuando se está analizando estructuras 

con disipadores visco-elásticos. En el modelo matemático que se adopte los 

amortiguadores deberán estar colocados en las masas, para que sea más fácil su 

evaluación. 

Una forma sencilla de encontrar la matriz de amortiguamiento C de una 

estructura es considerarla como una función dependiente de la matriz de masas 

M y la matriz de rigidez K, como se presenta a continuación. El modelo de 

Rayleigh considera que la matriz de amortiguamiento es una combinación lineal 

de las matrices de masa y rigidez. 7 � Q: R S! 

Donde α y β son dos constantes que se obtienen en base a los dos primeros 

modos de vibración, utilizando la siguiente ecuación: 

T � Q2�U R S�U2  
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Para hallar los valores de Q y S se ha realizado la Gráfica 4.4.1. que se 

muestra a continuación. 

 
Gráfica 4.4.1. Amortiguamiento de Rayleigh. 

 

Para aplicar la fuerza, se crea una tabla en el programa EXCEL con los 

tiempos y la fuerza aplicada en cada instante. Esta tabla se introduce en ABAQUS 

en la parte de Amplitudes tal y como se muestra en la Figura 4.4.2. 

 
Figura 4.4.2. Creación de una amplitud de fuerza. 

 

Tras haber realizado estos pasos previos, se llega al punto donde introducir 

los datos de la tabla generada en EXCEL, como se observa en la Figura 4.4.3. 

 
Figura 4.4.3. Introducción tabulada de la fuerza. 
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Una vez introducida la fuerza, ésta se aplicará mediante la creación de una 

carga dependiente de la amplitud generada. Tal y como muestra la Figura 4.4.4. 

 
Figura 4.4.4. Aplicación de la fuerza. 

 

Finalizados todos los pasos que se deben dar para generar el análisis que se 

está realizando, se lanza el cálculo como se ha hecho en análisis anteriores. El 

coste computacional de este modelo es mucho mayor a los realizados hasta el 

momento. 

Los resultados obtenidos a través de este análisis pueden observarse en el 

Anexo D.  

Si observamos las gráficas temporales del desplazamiento observamos que 

la amplitud va en aumento conforme se aplica mayor carga en el extremo. La 

forma gráfica es muy parecida en las cargas de 0.1 N a 2 N, pero a partir de este 

valor la forma gráfica cambia debido a la aparición de la no linealidad. También 

observamos que cuando se llega a la no linealidad, aparece una segunda fase en 

la gráfica en la cual vuelve a aumentar la amplitud. 

Al igual que en el desplazamiento, en la velocidad también se aumenta la 

amplitud conforme aumentamos la carga, y aparece el mismo fenómeno, en la 

segunda fase, en las cargas de valor alto. 

El fenómeno que se produce en la segunda fase o parte de la gráfica será 

analizado en la validación del modelo que se muestra en el siguiente apartado. 
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5.- Validación. 
La validación de los modelos que se han presentado en este Trabajo Fin de Máster 

consiste en valorar las diferencias que existen entre el funcionamiento del modelo en 

MATLAB con el modelo de ABAQUS. 

Para realizar la validación del análisis en el dominio temporal se van a superponer 

las gráficas que ambos programas nos muestran en el programa EXCEL (solo permite 

hacer gráficos con un máximo de 32.000 puntos). Para ello se han pasado los datos de 

los tiempos, desplazamientos y velocidades de ambos programas a una hoja EXCEL. 

Para simplificar un poco la cantidad de imágenes se va a reproducir la validación 

para tres cargas significativas (0.3 N, 1.5 N y 20 N) de tal forma que puedan verse las 

diferencias más notables en el desplazamiento y en la velocidad. 

En primer lugar, para las cargas de pequeño valor (0.3 N y 1.5 N),  se puede decir 

que los resultados que se producen en ambos programas son prácticamente idénticos, 

con unas pequeñas diferencias derivadas de la deficiente definición del 

amortiguamiento en el programa ABAQUS, por ello sus amplitudes son mayores que 

en el caso de MATLAB. Esta conclusión se puede observar gráficamente en las gráficas 

(Gráfica 5.1., Gráfica 5.2., Gráfica 5.3. y Gráfica 5.4.) de a continuación. 

 

 
Gráfica 5.1. Comparativa del desplazamiento en el dominio temporal con carga de 0.3 N. 

 

El porcentaje de error cometido en este caso de desplazamiento será: '�(����� 
� 'V'WXM'�(����� 
� :'�H'V O 100 � 0,00710,0061 O 100 � 116,4 L 16,4 % 



 

 
34 

 

 
Gráfica 5.2. Comparativa de la velocidad en el dominio temporal con carga de 0.3 N. 

 

El porcentaje de error cometido en este caso de velocidad será: '�(����� 
� 'V'WXM'�(����� 
� :'�H'V O 100 � 0,4200,380 O 100 � 110,5 L 10,5 % 

 
Gráfica 5.3. Comparativa del desplazamiento en el dominio temporal con carga de 1.5 N. 

 

El porcentaje de error cometido en este caso de desplazamiento será: '�(����� 
� 'V'WXM'�(����� 
� :'�H'V O 100 � 0,03450,0325 O 100 � 106,1 L 6,1 % 
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Gráfica 5.4. Comparativa de la velocidad en el dominio temporal con carga de 1.5 N. 

 

El porcentaje de error cometido en este caso de velocidad será: '�(����� 
� 'V'WXM'�(����� 
� :'�H'V O 100 � 2,1501,825 O 100 � 117,8 L 17,8 % 

 

Las gráficas correspondientes a la carga de 20 N son difíciles de comparar debido a 

que empiezan a aparecer diferentes formas modales para cada modelo. 

 

 
Gráfica 5.5. Comparativa del desplazamiento en el dominio temporal con carga de 20 N. 
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Gráfica 5.6. Comparativa de la velocidad en el dominio temporal con carga de 20 N. 

 

Respecto al análisis frecuencial, en primer lugar observamos en la Figura 5.1. la 

velocidad respecto al tiempo en el programa MESCOPE de los dos análisis (ABAQUS y 

MATLAB respectivamente). Estas gráficas corresponden a unas fuerzas aplicadas que 

son 1 N, 1.5 N, 2 N, 5 N, 10 N y 20 N de arriba a abajo como se muestran. Aquí también 

se puede observar lo que se ha comentado al final del análisis dinámico transitorio no 

lineal (la diferencia entre la forma de las gráficas con poca carga y con carga alta). 

 

 
Figura 5.1. Velocidades en el dominio temporal en el programa MESCOPE. 
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A través de las herramientas que tiene el programa MESCOPE y de las velocidades 

anteriormente vistas en la Figura 5.1., se hallan las Transformadas de Fourier para 

cada una de ellas, tal y como se muestra en la Figura 5.2. 

 

 
Figura 5.2. Transformada de Fourier de la velocidad en el programa MESCOPE. 

 

Se observan cambios en las frecuencias conforme aumentamos las cargas. Esto es 

debido a la diferencia en las formas modales. Para los puntos donde el tiempo es de 

3,25 segundos, 9,8 segundos y 19,2 segundos encontramos picos de frecuencia, que si 

los analizamos en la animación de ABAQUS, podemos ver que corresponden a 

deformadas de vibración diferentes como se muestra a continuación en las figuras. 

 

 
Figura 5.3. Deformada de la geometría en vibración para una carga de 1,5 N en el tiempo 3,25 segundos. 
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En la Figura 5.4. se muestra la deformada de la vibración para una carga de 1,5 N 

en el instante 9,8 segundos, la cual no varía respecto al instante de 3,25 segundos 

(Figura 5.3.). Se produce en este punto la mayor frecuencia debido a que es donde 

mayor velocidad y menor amplitud tiene la respuesta. 

 

 
Figura 5.4. Deformada de la geometría en vibración para una carga de 1,5 N en el tiempo 9,8 segundos. 

 

Para el instante 19,2 segundos se puede observar en la animación de ABAQUS que 

la deformada comienza a cambiar (Figura 5.5.), por eso aparece un pequeño barrido de 

frecuencias en la Transformada de Fourier. 

 

 
Figura 5.5. Deformada de la geometría en vibración para una carga de 1,5 N en el tiempo 19,2 segundos. 

 

Referente a la carga de 20 N, podemos observar que las formas modales han 

cambiado respecto a la que se veía para la carga de 1,5 N, de ahí los cambios 

producidos en las frecuencias de la Transformada de Fourier. 
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Figura 5.6. Deformada de la geometría en vibración para una carga de 20 N en el tiempo 3,25 segundos. 

 

 
Figura 5.7. Deformada de la geometría en vibración para una carga de 20 N en el tiempo 9,8 segundos. 

 

 
Figura 5.8. Deformada de la geometría en vibración para una carga de 20 N en el tiempo 19,2 segundos. 
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6.- Conclusiones. 
La realización del Trabajo Fin de Máster respecto al análisis vibratorio de 

estructuras ligeras sometidas a excitaciones armónicas ha llevado a la obtención de 

una serie de conclusiones como las que se indican en este apartado. 

Se ha establecido un procedimiento para modelizar el comportamiento dinámico 

no lineal en una placa de pequeño espesor mediante la reducción a un sistema de un 

grado de libertad. 

El comportamiento no lineal del sistema para el primer modo de vibración, que ha 

sido empleado para la construcción del modelo simplificado dado que es el que mayor 

masa moviliza, presenta las siguientes particularidades: 

- Aumento de la frecuencia con la amplitud de la carga. 

- Disminución de la masa movilizada del primer modo de vibración con la 

amplitud de la carga. 

- De las dos anteriores se deduce el aumento de la rigidez con la amplitud de 

carga. 

- Teniendo todo lo anterior en cuenta se constata que el empleo del 

amortiguamiento de Rayleigh en el modelo numérico no es el más 

adecuado.  

- Los resultados obtenidos con un grado de libertad presentan un 

comportamiento similar a los obtenidos con el modelo numérico para 

niveles de carga que generan comportamientos no lineales de pequeña 

magnitud, presentando mayor discrepancia para niveles de carga que 

generan efectos no lineales de mayor amplitud. 

- Finalmente, del análisis numérico se constata que para niveles de carga 

que generan lo linealidades de gran magnitud su comportamiento se aleja 

de la respuesta asociada al primer modo de vibración. 
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7.- Mejoras y trabajos futuros. 
 

El trabajo realizado aborda un tema muy poco investigado hasta la fecha como 

muy bien se recoge en el estado del arte de este documento. Por ello, sería 

interesante profundizar en aspectos sobre la no linealidad. Hay múltiples opciones de 

investigación para un futuro próximo en relación con este tema.  

 

1. FASE EXPERIMENTAL: 

 

Entre esas opciones destacaría la realización de una fase experimental 

desarrollando un sistema sin contacto para no alterar la dinámica de la estructura 

debido a su bajo peso como por ejemplo sistemas piezoeléctricos, magnéticos, etc. En 

este caso se podría utilizar un vibrómetro  láser para medir y, de este modo, ajustar al 

máximo los resultados obtenidos. 

 

2. AUMENTO DE LA COMPLEJIDAD DEL MODELO: 

 

El trabajo desarrollado en este Trabajo Fin de Máster ha consistido en un modelo 

analítico de un sólo grado de libertad, por lo que sería muy interesante aumentar la 

complejidad de este modelo analítico aumentando el número de grados de libertad, 

incrementando de esta manera la dificultad, pero, por el contrario, ajustándose más a 

la realidad. 

 

3. AJUSTE DEL AMORTIGUAMIENTO: 

 

Como se ha explicado cuando se ha hablado  del análisis numérico dinámico 

transitorio no lineal, el amortiguamiento en el programa ABAQUS da problemas por lo 

que una mejora podría dirigirse en este sentido, en el ajuste de la definición del 

amortiguamiento en el análisis dinámico del mencionado programa. 
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ANEXO A: Análisis Estático No Lineal. 

A.1. Aproximación en la Relación Constante de Rigidez-Desplazamiento. 
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ANEXO B: Análisis Modal. 
B.1. Formas Modales. 

B.1.1. Fuerza 10 N. 
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MODO 7 

 
 
 
 

MODO 8 

 

MODO 9 

 
 
 
 

MODO 10 

 

 
  

   
MASA EFECTIVA 

MODO 
FRECUENCIA 

(ciclos/tiempo) FRECUENCIA (rad/tiempo) X Y Z 

1 9.969 62.635 1.26E-03 6.75E-26 1.27E-01 

2 61.866 388.716 2.03E-04 3.88E-24 4.02E-02 

3 119.470 750.652 1.92E-26 9.62E-02 5.07E-24 

4 173.300 1088.876 5.60E-04 2.96E-25 1.40E-02 

5 230.270 1446.829 3.79E-27 3.07E-02 6.98E-25 

6 340.760 2141.058 3.27E-04 7.10E-26 7.13E-03 

7 565.230 3551.445 2.73E-04 4.98E-24 4.32E-03 

8 601.350 3778.393 3.39E-25 5.62E-03 3.70E-24 

9 847.620 5325.754 2.12E-04 1.06E-24 2.90E-03 

10 931.990 5855.866 1.44E-23 1.31E-02 2.47E-23 

      

  
TOTAL 2.84E-03 0.14563 0.19565 
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B.1.2. Fuerza 20 N. 
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49 

 

MODO 7 

 
 
 
 

MODO 8 

 

MODO 9 

 
 
 
 

MODO 10 

 

   
MASA EFECTIVA 

MODO FRECUENCIA (ciclos/tiempo) FRECUENCIA (rad/tiempo) X Y Z 

1 10.202 64.101 4.76E-03 3.34E-25 1.24E-01 

2 61.657 387.402 7.23E-04 5.01E-24 4.20E-02 

3 86.455 543.213 1.93E-26 1.00E-01 5.18E-24 

4 172.350 1082.907 2.01E-03 1.30E-24 1.48E-02 

5 258.310 1623.010 3.57E-26 2.45E-02 3.74E-25 

6 339.900 2135.655 1.16E-03 1.55E-25 7.42E-03 

7 564.260 3545.350 9.65E-04 1.55E-24 4.47E-03 

8 645.760 4057.430 2.22E-25 1.73E-02 7.56E-25 

9 846.750 5320.287 7.43E-04 8.02E-24 2.98E-03 

10 980.730 6162.108 4.14E-24 4.24E-03 1.27E-23 

      

  
TOTAL 1.04E-02 0.14646 0.1955 
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B.1.3. Fuerza 30 N. 
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MODO 7 

 
 
 
 

MODO 8 

 

MODO 9 

 
 
 
 

MODO 10 

 

   
MASA EFECTIVA 

MODO FRECUENCIA (ciclos/tiempo) FRECUENCIA (rad/tiempo) X Y Z 

1 10.548 66.275 9.83E-03 1.19E-23 1.19E-01 

2 61.378 385.649 1.36E-03 1.46E-22 4.47E-02 

3 67.731 425.566 5.72E-24 1.04E-01 2.06E-23 

4 171.050 1074.739 3.85E-03 3.02E-26 1.60E-02 

5 267.390 1680.061 1.02E-26 2.12E-02 7.94E-25 

6 338.720 2128.241 2.21E-03 1.29E-25 7.82E-03 

7 562.960 3537.182 1.81E-03 9.60E-25 4.68E-03 

8 644.660 4050.518 8.10E-26 2.31E-02 3.70E-25 

9 845.590 5312.999 1.38E-03 1.13E-22 3.09E-03 

10 1,073.300 6743.743 3.18E-23 6.64E-03 5.12E-22 

      

  
TOTAL 2.04E-02 0.15477 0.1953 
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B.1.4. Fuerza 40 N. 
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MODO 7 

 
 
 
 

MODO 8 

 

MODO 9 

 
 
 
 

MODO 10 

 

   
MASA EFECTIVA 

MODO FRECUENCIA (ciclos/tiempo) FRECUENCIA (rad/tiempo) X Y Z 

1 10.965 68.895 1.57E-02 1.27E-23 1.14E-01 

2 56.784 356.784 8.48E-24 0.10587 6.29E-22 

3 61.091 383.846 1.95E-03 1.04E-21 4.77E-02 

4 169.630 1065.817 5.65E-03 8.95E-25 1.74E-02 

5 268.050 1684.208 9.00E-27 2.03E-02 1.00E-27 

6 337.420 2120.072 3.22E-03 2.35E-27 8.29E-03 

7 561.550 3528.323 2.61E-03 2.60E-25 4.91E-03 

8 624.950 3926.677 2.77E-26 2.44E-02 1.07E-25 

9 844.360 5305.270 1.97E-03 1.22E-22 3.22E-03 

10 1,088.900 6841.760 4.55E-22 1.07E-02 1.59E-23 

      

  
TOTAL 3.11E-02 0.1612 0.19507 
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B.1.5. Fuerza 50 N. 
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MODO 7 

 
 
 
 

MODO 8 

 

MODO 9 

 
 
 
 

MODO 10 

 

   
MASA EFECTIVA 

MODO FRECUENCIA (ciclos/tiempo) FRECUENCIA (rad/tiempo) X Y Z 

1 11.416 71.729 2.19E-02 2.52E-23 1.08E-01 

2 49.972 313.983 2.03E-23 0.10725 2.65E-23 

3 60.833 382.225 2.40E-03 2.15E-22 5.10E-02 

4 168.260 1057.209 7.17E-03 1.10E-26 1.89E-02 

5 265.360 1667.306 1.18E-29 2.04E-02 1.83E-25 

6 336.140 2112.030 4.07E-03 1.47E-25 8.76E-03 

7 560.180 3519.715 3.28E-03 2.01E-25 5.14E-03 

8 604.190 3796.238 2.45E-26 2.44E-02 1.66E-25 

9 843.180 5297.856 2.45E-03 1.25E-22 3.34E-03 

10 1,090.200 6849.929 9.08E-21 1.02E-02 3.60E-21 

      

  
TOTAL 4.12E-02 0.16211 0.19483 
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B.1.6. Fuerza 60 N. 
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57 

 

MODO 7 

 
 
 
 

MODO 8 

 

MODO 9 

 
 
 
 

MODO 10 

 

   
MASA EFECTIVA 

MODO FRECUENCIA (ciclos/tiempo) FRECUENCIA (rad/tiempo) X Y Z 

1 11.885 74.676 2.79E-02 1.68E-22 1.02E-01 

2 45.504 285.910 2.49E-23 0.10828 3.48E-22 

3 60.637 380.994 2.69E-03 6.27E-23 5.42E-02 

4 167.030 1049.480 8.35E-03 8.34E-25 2.03E-02 

5 261.480 1642.927 3.04E-26 2.08E-02 3.99E-26 

6 334.970 2104.679 4.75E-03 4.40E-25 9.23E-03 

7 558.920 3511.798 3.79E-03 1.94E-25 5.37E-03 

8 586.360 3684.209 7.89E-31 2.39E-02 1.48E-27 

9 842.090 5291.008 2.82E-03 5.52E-23 3.46E-03 

10 1,086.600 6827.309 4.35E-21 9.60E-03 2.08E-21 

      

  
TOTAL 5.03E-02 0.1626 0.19461 
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B.1.7. Fuerza 70 N. 
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MODO 7 

 
 
 
 

MODO 8 

 

MODO 9 

 
 
 
 

MODO 10 

 

   
MASA EFECTIVA 

MODO FRECUENCIA (ciclos/tiempo) FRECUENCIA (rad/tiempo) X Y Z 

1 12.345 77.566 3.37E-02 3.95E-22 9.67E-02 

2 42.420 266.533 1.16E-22 0.1091 4.90E-22 

3 60.493 380.089 2.84E-03 2.65E-23 5.72E-02 

4 165.950 1042.695 9.23E-03 2.31E-24 2.17E-02 

5 257.290 1616.601 8.10E-27 2.14E-02 4.22E-25 

6 333.900 2097.956 5.27E-03 4.52E-26 9.67E-03 

7 557.780 3504.635 4.18E-03 1.18E-24 5.58E-03 

8 571.680 3591.971 4.96E-25 2.33E-02 1.50E-25 

9 841.100 5284.787 3.09E-03 1.94E-25 3.58E-03 

10 1,080.900 6791.495 1.51E-21 9.19E-03 7.45E-22 

      

  
TOTAL 5.83E-02 0.16303 0.19439 
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B.1.8. Fuerza 80 N. 
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MODO 7 

 
 
 
 

MODO 8 

 

MODO 9 

 
 
 
 

MODO 10 

 

   
MASA EFECTIVA 

MODO FRECUENCIA (ciclos/tiempo) FRECUENCIA (rad/tiempo) X Y Z 

1 12.797 80.406 3.90E-02 3.81E-22 9.17E-02 

2 40.225 252.741 1.13E-22 0.10981 5.28E-22 

3 60.409 379.561 2.87E-03 4.65E-23 6.00E-02 

4 165.020 1036.851 9.85E-03 2.90E-25 2.29E-02 

5 253.230 1591.091 2.11E-25 2.20E-02 4.21E-26 

6 332.950 2091.987 5.66E-03 2.68E-25 1.01E-02 

7 556.770 3498.289 4.47E-03 1.35E-22 5.78E-03 

8 559.680 3516.573 2.77E-23 2.27E-02 3.84E-23 

9 840.210 5279.195 3.29E-03 1.03E-23 3.68E-03 

10 1,074.600 6751.911 1.40E-21 8.91E-03 3.55E-21 

      

  
TOTAL 6.52E-02 0.16345 0.19419 
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B.1.9. Fuerza 90 N. 
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MODO 7 

 
 
 
 

MODO 8 

 

MODO 9 

 
 
 
 

MODO 10 

 

   
MASA EFECTIVA 

MODO FRECUENCIA (ciclos/tiempo) FRECUENCIA (rad/tiempo) X Y Z 

1 13.249 83.246 4.40E-02 2.43E-22 8.72E-02 

2 38.635 242.751 7.12E-23 0.11043 3.77E-22 

3 60.404 379.530 2.83E-03 5.49E-23 6.25E-02 

4 164.260 1032.076 1.03E-02 3.65E-25 2.41E-02 

5 249.540 1567.906 9.00E-25 2.25E-02 8.99E-25 

6 332.130 2086.834 5.95E-03 9.84E-25 1.05E-02 

7 549.830 3454.684 2.41E-24 2.22E-02 3.32E-24 

8 555.880 3492.697 4.68E-03 1.44E-23 5.96E-03 

9 839.420 5274.231 3.44E-03 3.31E-23 3.78E-03 

10 1,068.300 6712.327 7.69E-23 8.71E-03 5.83E-21 

      

  
TOTAL 7.12E-02 0.16385 0.194 
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B.1.10. Fuerza 100 N. 
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MODO 7 

 
 
 
 

MODO 8 

 

MODO 9 

 
 
 
 

MODO 10 

 

   
MASA EFECTIVA 

MODO FRECUENCIA (ciclos/tiempo) FRECUENCIA (rad/tiempo) X Y Z 

1 13.667 85.872 4.85E-02 9.17E-24 8.30E-02 

2 37.429 235.173 8.27E-25 0.11099 7.97E-23 

3 60.418 379.617 2.73E-03 6.74E-23 6.48E-02 

4 163.600 1027.929 1.05E-02 1.16E-24 2.52E-02 

5 246.110 1546.355 1.30E-27 2.29E-02 7.41E-25 

6 331.390 2082.185 6.17E-03 7.21E-27 1.08E-02 

7 541.580 3402.847 6.17E-24 2.17E-02 6.71E-24 

8 555.070 3487.608 4.84E-03 2.66E-23 6.13E-03 

9 838.680 5269.582 3.56E-03 7.92E-23 3.87E-03 

10 1,062.100 6673.371 6.74E-22 8.56E-03 8.74E-21 

      

  
TOTAL 7.64E-02 0.16423 0.19382 

 
  



 

B.2. Gráficas Modo-Frecuencia.
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B.3. Relación Fuerza-Frecuenci
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Frecuencia del MODO 1. 
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ANEXO C: Análisis Temporal MATLAB. 

C.1. Código de MATLAB implementado. 
 
 
clear all  
close all  
%Parámetros  
N=2^16;                              %Constante  
n=[0:N-1];                           %Número de puntos a calcular  
t_final=20;                          %Tiempo Final  
t=t_final/N*n;                       %Como incrementa el tiempo  
%Calculamos la ecuación de segundo orden  
[t,y]=ode45(@solucion,t,[0;0;0;0]);     %Nos devuelve un vector 
velocidad, aceleración, desplazamiento, Fuerza del Resorte.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%GRÁFICAS%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
a=figure;  
plot(t,y(:,1));                     %Dibuja Tiempo-DesplAzamiento  
xlabel( 'Tiempo (s)' );  
ylabel( 'Desplazamiento (m)' )  
b=figure;  
plot(t,y(:,2));                     %Dibuja Tiempo-Velocidad  
xlabel( 'Tiempo (s)' );  
ylabel( 'Velocidad (m/s)' )  
d=figure;  
plot(y(:,1),y(:,2));                %Dibuja Desplazamiento-
Velocidad  
xlabel( 'Desplazamiento (m)' );  
ylabel( 'Velocidad (m/s)' );  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%TRANSFORMADADEFOURIER%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
ts=t_final/(N-1);  
fs=1/ts;  
X=fft(y(:,2),N)/N;  
k=fs/2*linspace(0,1,N/2+1);  
AmplitudEspectro=abs(X);  
FrecuenciaEjes=0:fs/2;  
g=figure;  
plot(FrecuenciaEjes,AmplitudEspectro(1:fs/2+1));  
title( 'Transformada de Fourier' );  
xlabel( 'Frecuencia' );  
ylabel( 'Amplitud (velocidad)' );  
%Create axes  
  
%Create semilogy  
semilogy(k,2*abs(X(1:N/2+1)), 'Color' ,[1 0 0]);  
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Esta codificación siguiente es una función a parte que es llamada por la anterior. 
 
function  du = solucion(t, y )  
%parametros ecuaciones  
wexcitacion_inicio=0;  
wexcitacion_final=30;  
t_final=20;  
wexcitacion=wexcitacion_inicio+(t*(wexcitacion_fina l-
wexcitacion_inicio)/t_final);  
masa=(-0.5378*y(1)^2+0.0151+y(1)+0.1276);  
K0=494.9;  
K1=12.034;  
K2=1254.4;  
K3=1128.3;  
K4=-3770.4;  
amortiguamiento=0.005*(4*(K0+K1*abs(y(1))+K2*abs((y (1)^2))+K3*abs(
(y(1)^3))+K4*abs((y(1)^4)))/masa)^0.5;  
Fuerza=2.0;  
%%%%%%%%%%%%%%%%%%%%%%% 
Fresorte=(K0+K1*abs(y(1))+K2*abs((y(1)^2))+K3*abs(( y(1)^3))+K4*abs
((y(1)^4)))*y(1);  
du=zeros(4,1);  
du(1)=y(2);  
du(2)=((Fuerza*(sin(2*pi*wexcitacion*t)))-(Fresorte )-
(amortiguamiento*y(2)))/masa;  
end  
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C.2. Fuerza de 0.1 N. 
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C.3. Fuerza de 0.2 N. 
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C.4. Fuerza de 0.3 N. 
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C.5. Fuerza de 0.4 N. 
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C.6. Fuerza de 0.5 N. 
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C.7. Fuerza de 0.6 N. 
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C.8. Fuerza de 0.7 N. 
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C.9. Fuerza de 0.8 N. 
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C.10. Fuerza de 0.9 N. 
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C.11. Fuerza de 1 N. 
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C.12. Fuerza de 1.5 N. 
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C.13. Fuerza de 2 N. 
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C.14. Fuerza de 5 N. 
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C.15. Fuerza de 10 N. 
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C.16. Fuerza de 20 N. 
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ANEXO D: Análisis Frecuencial MATLAB. 

D.1. Fuerza de 0.1 N. 

 

 

 

D.2. Fuerza de 0.2 N. 

 

 

 

D.3. Fuerza de 0.3 N. 
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D.4. Fuerza de 0.4 N. 

 

 

 

D.5. Fuerza de 0.5 N. 

 

 

 

D.6. Fuerza de 0.6 N. 
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D.7. Fuerza de 0.7 N. 

 

 

 

D.8. Fuerza de 0.8 N. 

 

 

 

D.9. Fuerza de 0.9 N. 
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D.10. Fuerza de 1 N. 

 

 

 

D.11. Fuerza de 1.5 N. 

 

 

 

D.12. Fuerza de 2 N. 
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D.13. Fuerza de 5 N. 

 

 

 

D.14. Fuerza de 10 N. 

 

 

 

D.15. Fuerza de 20 N. 
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ANEXO E: Análisis Dinámino No Lineal ABAQUS. 

D.1. Fuerza de 0.1 N. 

 

 

D.2. Fuerza de 0.2 N. 
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D.3. Fuerza de 0.3 N. 
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D.4. Fuerza de 0.4 N. 

 

 

 

D.5. Fuerza de 0.5 N. 
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D.6. Fuerza de 0.6 N. 
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D.7. Fuerza de 0.7 N. 

 

 

 

D.8. Fuerza de 0.8 N. 
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D.9. Fuerza de 0.9 N. 
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D.10. Fuerza de 1 N. 

 

 

 

D.11. Fuerza de 1.5 N. 
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D.12. Fuerza de 2 N. 
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D.13. Fuerza de 5 N. 

 

 

 

D.14. Fuerza de 10 N. 
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D.15. Fuerza de 20 N. 

 

 

 


