000129316 001__ 129316
000129316 005__ 20231215094307.0
000129316 0247_ $$2doi$$a10.1088/0953-2048/29/8/085012
000129316 0248_ $$2sideral$$a96057
000129316 037__ $$aART-2016-96057
000129316 041__ $$aeng
000129316 100__ $$0(orcid)0000-0002-5637-0081$$aNúñez-Chico, A. B.
000129316 245__ $$aEnhanced quench propagation in 2G-HTS coils co-wound with stainless steel or anodised aluminium tapes
000129316 260__ $$c2016
000129316 5060_ $$aAccess copy available to the general public$$fUnrestricted
000129316 5203_ $$aEarly quench detection and thermal stability of superconducting coils are of great relevance for practical applications. Magnets made with second generation high temperature superconducting (2G-HTS) tapes present low quench propagation velocities and therefore slow voltage development and high local temperature rises, which may cause irreversible damage. Since quench propagation depends on the anisotropy of the thermal conductivity, this may be used to achieve an improvement of the thermal stability and robustness of 2G-HTS coils. On pancake type coils, the thermal conductivity along the tapes (coil''s azimuthal direction) is mostly fixed by the 2G-HTS tape characteristics, so that the reduction of anisotropy relies on the improvement of the radial thermal conductivity, which depends on the used materials between superconducting tapes, as well as on the winding and impregnation processes. In this contribution, we have explored two possibilities for such anisotropy reduction: by using anodised aluminium or stainless steel tapes co-wound with the 2G-HTS tapes. For all the analysed coils, critical current distribution, minimum quench energy values and both tangential and radial quench propagation velocities at different temperatures and currents are reported and compared with the results of similar coils co-wound with polyimide (Kapton®) tapes.
000129316 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T12$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2014-52105-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2011-22719
000129316 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000129316 590__ $$a2.878$$b2016
000129316 591__ $$aPHYSICS, CONDENSED MATTER$$b21 / 67 = 0.313$$c2016$$dQ2$$eT1
000129316 591__ $$aPHYSICS, APPLIED$$b38 / 147 = 0.259$$c2016$$dQ2$$eT1
000129316 592__ $$a0.966$$b2016
000129316 593__ $$aCeramics and Composites$$c2016$$dQ1
000129316 593__ $$aCondensed Matter Physics$$c2016$$dQ1
000129316 593__ $$aMetals and Alloys$$c2016$$dQ1
000129316 593__ $$aMaterials Chemistry$$c2016$$dQ1
000129316 593__ $$aElectrical and Electronic Engineering$$c2016$$dQ1
000129316 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000129316 700__ $$0(orcid)0000-0003-4839-5286$$aMartínez, E.$$uUniversidad de Zaragoza
000129316 700__ $$0(orcid)0000-0001-5685-2366$$aAngurel, L. A.$$uUniversidad de Zaragoza
000129316 700__ $$0(orcid)0000-0002-4140-4058$$aNavarro, R.$$uUniversidad de Zaragoza
000129316 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000129316 773__ $$g29, 8 (2016), 085012 [9 pp.]$$pSupercond. sci. technol.$$tSuperconductor Science and Technology$$x0953-2048
000129316 8564_ $$s596785$$uhttps://zaguan.unizar.es/record/129316/files/texto_completo.pdf$$yPostprint
000129316 8564_ $$s1507949$$uhttps://zaguan.unizar.es/record/129316/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000129316 909CO $$ooai:zaguan.unizar.es:129316$$particulos$$pdriver
000129316 951__ $$a2023-12-14-13:16:44
000129316 980__ $$aARTICLE