000129347 001__ 129347
000129347 005__ 20240319081016.0
000129347 0247_ $$2doi$$a10.1063/5.0120149
000129347 0248_ $$2sideral$$a130963
000129347 037__ $$aART-2022-130963
000129347 041__ $$aeng
000129347 100__ $$0(orcid)0000-0001-5561-5457$$aCollado, F. J.$$uUniversidad de Zaragoza
000129347 245__ $$aVoid fraction thermo-kinematics for subcooled flow boiling
000129347 260__ $$c2022
000129347 5060_ $$aAccess copy available to the general public$$fUnrestricted
000129347 5203_ $$aThis work presents some preliminary results about a new void fraction model in subcooled flow boiling based on brand new mass and energy balances developed by the author over the past years. As main novelties, the new mass balance is based on the liquid velocity and the mixture specific volume, whereas the new heat balance is a function of the mixture enthalpy, based on the thermodynamic quality, and explicitly includes the mean vapor–liquid velocity ratio, or the slip ratio. The core of the model is to predict the slip ratio profile and then to calculate the mixture enthalpy from the new heat balance and, finally, to derive the void fraction. In this work, it is shown that the continuity of the first derivative of the mixture specific volume just at saturation establishes a first equation to obtain the slip evolution. A second kinematic equation between the onset of nuclear boiling (ONB) and the vapor velocity is also found. Three additional parameters, related to the ONB and the point of net vapor generation, are needed for void fraction profiles predictions, which have been found by trial and error, searching the best fitting to the measured void fraction. The new model is compared to eight full axial void fraction profiles data for upward subcooled flow of water at high pressure.
000129347 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000129347 590__ $$a4.6$$b2022
000129347 591__ $$aPHYSICS, FLUIDS & PLASMAS$$b2 / 34 = 0.059$$c2022$$dQ1$$eT1
000129347 591__ $$aMECHANICS$$b24 / 137 = 0.175$$c2022$$dQ1$$eT1
000129347 592__ $$a1.083$$b2022
000129347 593__ $$aComputational Mechanics$$c2022$$dQ1
000129347 593__ $$aCondensed Matter Physics$$c2022$$dQ1
000129347 593__ $$aMechanics of Materials$$c2022$$dQ1
000129347 593__ $$aMechanical Engineering$$c2022$$dQ1
000129347 593__ $$aFluid Flow and Transfer Processes$$c2022$$dQ1
000129347 594__ $$a6.4$$b2022
000129347 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000129347 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000129347 773__ $$g34, 12 (2022), 123302 (9 pp.)$$pPhys. fluids$$tPhysics of Fluids$$x1070-6631
000129347 8564_ $$s2003384$$uhttps://zaguan.unizar.es/record/129347/files/texto_completo.pdf$$yVersión publicada
000129347 8564_ $$s1417105$$uhttps://zaguan.unizar.es/record/129347/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000129347 909CO $$ooai:zaguan.unizar.es:129347$$particulos$$pdriver
000129347 951__ $$a2024-03-18-15:41:23
000129347 980__ $$aARTICLE