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A B S T R A C T   

The accumulation of fuel and the homogenization of the landscape in Mediterranean forests are leading to an 
increasingly hazardous behavior of wildfires, fostering larger, more intense, severe, and frequent wildfires. The 
onset of climate change is intensifying this behavior, fostering the occurrence of extreme forest fires threatening 
the persistence of forest communities. 

In this study we present an assessment of the post-fire recovery potential of the most representative tree-forest 
communities affected by fire in Spain: Pinus halepensis, Pinus nigra, Pinus pinaster and Quercus ilex. A large 
database of field data collected during specific campaigns -carried out 25 years after the fire- is used in com
bination with remote sensing, forest inventory and geospatial data to build an empirical model capable of 
predicting the chances of recovery. The model, calibrated using Random Forest, combines information on burn 
severity (remote sensing estimates of the Composite Burn Index), local topography (slope and terrain aspect) and 
climatic data (mean values and trends of temperature and precipitation) to provide information on the degree of 
similarity (vegetation height, horizontal cover of the vegetation layer along vertical strata, aboveground biomass 
and species diversity) between the plots burned in the summer of 1994 and the unburned control. 

Overall, only 33 out of the 131 burned plots could be considered as recovered, that is, reaching a similar state 
to unburned stands in neighboring areas. Our results suggest a primary role played by burn severity (the higher 
the severity the lower the probability of recovery), but strongly modulated by local topographic features (higher 
probability of recovery on steep north-facing slopes). In turn, increasingly warm and wetter conditions increased 
the chance of recovery.   

1. Introduction 

In the last decades we have witnessed unprecedented waves of 
wildfires and record-breaking fire seasons around the globe. Chile in 
2017 (Bowman et al., 2019), Australia in 2019 (Clarke et al., 2022), 
California in 2020 (Keeley and Syphard, 2021) or Europe in 2022 
(Rodrigues et al., 2022) are just some of the most recent examples, all of 
them localized in Mediterranean environments. The wildfire research 
community points to climate warming, fuel accumulation and the ho
mogenization of the landscape, along with the lack of proactive man
agement, as the main culprits behind extreme wildfire seasons. Shifting 
fire regimes into larger, more intense and severe wildfires are envisaged 

in most Mediterranean countries (Bedia et al., 2014; Ruffault et al., 
2020; Turco et al., 2018), threatening the persistence of forest ecosys
tems and communities and thus the long-term provision of forest-related 
services (Fernandes, 2013; Jones et al., 2022; Moreira et al., 2020; 
Tangney et al., 2022; Wunder et al., 2021). 

Plant communities and species in fire-prone ecosystems are facing 
increasingly extreme and frequent fires that endanger their persistence 
(Pausas et al., 2017). Mediterranean-type ecosystems have co-evolved 
with fire, nurturing plant species and forest communities into the 
development of different adaptive traits (e.g., serotiny, resprouting or 
bark thickness) to coexists with, promote or resist it (Keeley, 2012; 
McLauchlan et al., 2020; Pausas et al., 2017). Though, repeated stress 
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due to increased short-term fire recurrence or intense burning may 
hinder the ability of fire-adapted species to recover from fire (Nolan 
et al., 2021; Smith-Ramírez et al., 2022). Moreover, wildfires are colo
nizing new territories, affecting forest communities that lack adaptive 
traits and strategies (Nolan et al., 2021). These communities experience 
long fire-free intervals that contribute to maintain cool and moist mi
croclimates that hinder flammability. However, under extremely dry 
and/or windy conditions fire may be enabled, shifting an otherwise 
fire-free ecosystem, fostering successional trajectories into a more 
flammable forest (Pausas and Bond, 2020). 

Monitoring and analyzing the post-fire trajectories of forest com
munities is of paramount importance to understand their recovery po
tential and its driving factors. A large body of literature has been 
devoted to the assessment of post-fire vegetation recovery, with a 
prominent role of the use of remote sensing (RS) techniques, as high
lighted in a recent review article (Pérez-Cabello et al., 2021). RS is often 
advantageous since it enables the analysis of large regions, provides 
repeated observations and is an inexpensive source of information. Most 
satellite-borne spectral sensors record information on multiple wave
lengths, enabling the assessment of relevant vegetation-related features 
such as photosynthetic activity through indices leveraging the near 
infrared, e.g., normalized vegetation index, or NDVI (Carlson et al., 
1997) or moisture content (through assessment based on the short-wave 
infrared) (Nolan et al., 2016). Spectral RS is indeed the preferred source, 
while active sensors (radar and laser-based sensors) are gaining in 
importance, either in stand-alone analysis or complementing spectral 
analyses, proving insights into structural features (canopy height, cover 
or vertical variability) (Ameztegui et al., 2021; Domingo et al., 2021; 
Gelabert et al., 2020; Tanase et al., 2011, 2010). Yet there are several 
drawbacks and caveats that preclude RS approaches from providing a 
complete picture of post-fire dynamics and recovery. First, there is a lack 
of clarity and inhomogeneity in the definition of the term ‘recovery’ 
itself (Bartels et al., 2016) and the connection between the spectral 
response and ecological processes is fuzzy (Pickell et al., 2016). In fact, 
studies focused on spectral indicators are prone to overestimate recovery 
rates since the response saturates and stagnates early and holds limited 
ability to infer the structural traits of the vegetation layer, possibly due 
to the background signal of recovering understory in burned forest 
ecosystems (Pérez-Cabello et al., 2021; Tanase et al., 2011). To over
come these limitations field measurements and the combination of 
active (e.g., LiDAR) and optical (e.g., spectral response) sensors are 
widely recommended (Key and Benson, 2006; Szpakowski and Jensen, 
2019; Tomppo et al., 2008). 

RS is a widely known tool for the estimation of burn severity, espe
cially useful when there is no possibility to perform field assessments 
immediately after the fire. Compared to methods based on field mea
surement of different variables associated with fire impacts, such as the 
Composite Burn Index - CBI (Key and Benson, 2006), optical RS provides 
an overarching view of fire scar that allows assessing the spatial varia
tion of burn severity. RS-based estimations of severity can be acquired 
using empirical models through spectral indices (e.g., the Normalized 
Burn Ratio; Key and Benson, 1999), or by applying simulation models 
based on radiative transfer equations (Chuvieco et al., 2006). The latter, 
such as GeoCBI (De Santis and Chuvieco, 2009), being based on physical 
principles, have a much greater generalization capacity than empirical 
models, adapting to more global situations. 

In this work we feature an assessment of the potential for recovery of 
Mediterranean woodland tree-forest communities affected by wildfires. 
Our approach combines RS estimations of burn severity, fire size (via 
spectral RS), topographic features (via airborne laser scanner data) and 
climate conditions (via the ERA5-Land reanalysis dataset) with field 
measurements of canopy and understory structural features and species 
composition. We developed and exemplified a procedure combining 
unsupervised (cluster analysis; Murtagh and Legendre, 2014) and su
pervised learning (random forest classification; Breiman, 2001) tech
niques to determine the level of recovery comparing burned and 

unburned control plots to then investigate the main drivers of recovery, 
namely burn severity, topography, reproductive strategy, and climate 
(Bastos et al., 2011; Bousquet et al., 2022; Pickell et al., 2016). A field 
campaign dedicated to forest and species inventory surveys was con
ducted in 6 large wildfires (>500 ha) occurred in 1994. Field mea
surements were retrieved in 2017 and 2018, approximately 25 years 
after fire, hence providing an assessment of the mid-term recovery po
tential of forest communities (Rodrigues et al., 2014). Thus, the findings 
would be of high relevance for predicting recovery potential and 
unraveling the relative importance of its drivers at this temporal scale, 
thereby contributing greatly to advancing the current understanding of 
post-fire regrowth mechanisms. Ultimately, this would support and 
guide post-fire management and pre-fire mitigation planning (e.g., fuel 
treatments or prescribed burns). 

2. Materials and methods 

2.1. Description of the plot network and burned sites 

The assessment of post-fire recovery was conducted in a set of 6 large 
wildfires that occurred during the summer of 1994 (Fig. 1, Table 1 and 
Table S1). The 1994 season is, to date, the most severe wave of wildfires 
occurred in Spain, with 92 large fires (>500 ha), burning 335,359 out of 
the 437,635 ha burned that season (Ministerio de Medio Ambiente, 
1995; Rodrigues et al., 2023). The 6 selected fire sites cover a variety of 
climate conditions in the Mediterranean environment (Bsk, Csa, Cfa and 
Cfb according to the Köppen-Geiger classification codes; Beck et al., 
2018) and tree forest communities (Table 2). None of them experienced 
fire recurrence. 

A network of plots was surveyed during several field campaigns in 
the years 2017 and 2018, approximately 25 years after the fires. Plots 
were in zones with no post-fire management (aside from dead wood 
removal, which is conducted systematically in Spain). We devised a 
stratified sampling procedure according to the fire size, the represen
tativeness of the forest communities in terms of species (Pinus halepensis 
Mill., Pinus nigra Arnold subsp. salzmanni, Pinus pinaster and Quercus ilex 
sp.) reproductive strategies (seedling - serotinous or non- serotinous- or 
recruiting), the burned severity level, and topography (slope and 
aspect). 

Burn severity was determined using GeoCBI (De Santis et al., 2009; 
De Santis and Chuvieco, 2009) in the context of the SERGISAT research 

Fig. 1. Location of the surveyed fire sites, burned in the season 1994. Red dots 
indicate the location of the selected fire sites and the gray polygons the 
administrative division in regions and provinces in Spain. 
Source: Instituto Geográfico Nacional, Ministerio de Transportes, Movilidad y 
Agenda Urbana, Gobierno de España. 
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project. GeoCBI is based on the adaptation of the radiative transfer 
models Prospect and Geosail, generating different severity scenarios and 
assuming interactions between simulation variables (soil colour, leaf 
colour, leaf area, and tree shape); the Spectral Angle Mapper (SAM) 
algorithm was used for the inversion of the simulation models. 

Below we show the distribution of plots by fire (Table 1), severity 
classes and reproductive strategy of the dominant forest community 
(Table 2), and by severity classes and topographic features (Table 3). 
Surveyed plots were located inside the boundaries of the burned scar 
perimeters (outlined using Landsat 5 Thematic Mapper imagery; see 
Table 1) and in a selection of unburned sites in neighboring areas with 
similar characteristics that served as control conditions. We surveyed a 
total of 203 field plots (15 m radius), 72 unburned controls and 131 
burned (92 high severity, 20 medium severity and 19 low severity). 

2.2. Characterizing the level of post-fire recovery 

The level of recovery was characterized by comparing burned plots 
to unburned plots. The assumption for assessing recovery was that 
burned plots that most resembled the unburned control stands would be 
considered as "recovered," while the remaining plots would be labeled as 
“not yet recovered”. The degree of similarity was assessed by comparing 

the main characteristics of the stands including: the height of the tree 
layer (maximum and mean height were measured using a Haglöf Swe
den® Vertex instrument; meters), the fraction of cover along the vertical 
gradient of strata was assessed visually according to the Braun-Blanquet 
scale (Braun-Blanquet, 1979; stratum 1 <0.5 m, stratum 2 0.5–1 m, 
stratum 3 1–3 m, stratum 4 3–5 m, stratum 5> 5 m; percent cover), the 
amount of above-ground biomass of tree (based on breast height 
diameter at 1.3 m, using a Mantax Precision Blue diameter caliper 
Haglöf Sweden®) and shrub species (based on shrub mean height and 
canopy cover), separately (tons/ha), using the specific allometric 
equations proposed by Montero et al., (2013, 2005), and the abundance 
of species including tree, shrub, and herbaceous species (number of 
distinct species) present in the plot. All these variables were surveyed 
and measured in the field via forest inventory. Stands were also char
acterized in term of the burn severity level at 1994 (low-medium-high 
interval classes based on the CBI - Composite Burned Index, via Landsat 
imagery and radiative transfer models; De Santis and Chuvieco, 2009) 
and the pre-fire dominant reproductive strategy (resprouting and obli
gate seedling) of the forest community extracted from the Spanish Forest 
Map 1:200,000 (Ministerio de Medio Ambiente, 1997; Rodrigues et al., 
2014). 

Data on stand characteristics were submitted to cluster analysis to 
organize plots (both burned and unburned) into specific groups based on 
their degree of similarity. The rationale for cluster analysis lies in 
assigning observations to a set of cluster groups so that the character
istics of each observation in a group are more similar among them than 
to those of the remaining groups. This enables us to determine the level 
of recovery by identifying the burned plots that share group with most of 
the unburned stands, i.e., burned plots that resemble the unburned 
control. We applied hierarchical clustering using the Euclidean distance 
to measure similarity/dissimilarity and Ward.D2 as agglomeration cri
terion (Estivill-Castro and Yang, 2004). The number of cluster classes 
was optimized based on the Silhouette index (Rousseeuw, 1987). Vari
ables for stand characteristics were previously submitted to principal 
component analysis (PCA), a common procedure in cluster analysis 
(Hair et al., 1998). In this case, we leveraged multigroup PCA analysis, a 
variant of classic PCA that allows us to investigate possible differences in 
the component loadings and scores based on a grouping factor (Eslami 
et al., 2015). Since our focus was establishing the levels of recovery, we 
explored possible differences depending on the reproductive strategy of 
the dominant community, a crucial trait modulating post-fire vegetation 
dynamics. PCA scores for those components meeting the Kaiser criterion 
were retained and subsequently submitted to cluster analysis. All ana
lyses were developed using the R environment for statistical computing, 
v4.1.2 (R Core Team, 2021). Multigroup PCA was conducted using the 
multigroup package (Eslami et al., 2015); cluster analysis was performed 

Table 1 
Description of the fire sites, summary of surveyed plots and RS imagery used to 
outline fire perimeters.  

Municipality  
of origin 

Fire  
size (ha) 

Ignition  
Date 

Number  
of plots 

Inventory  
dates 

Post-fire 
image  
date 

Montmajor 43,774.45 1994/ 
07/04  

36 2017/07/ 
18–2017/07/ 
24 

1994/ 
07/24 

Requena 38,750.15 1994/ 
07/05  

62 2017/11/ 
11–2018/01/ 
10 

1995/ 
08/01 

Moratalla 28,352.83 1994/ 
07/04  

24 2018/02/ 
14–2018/02/ 
15 

1994/ 
08/16 

Uncastillo 10,120.41 1994/ 
07/15  

22 2016/07/ 
07–2017/06/ 
30 

1994/ 
08/23 

Villarluengo 29,118.80 1994/ 
07/01  

39 2017/07/ 
08–2017/07/ 
16 

1994/ 
08/16 

Yeste 12,669.33 1994/ 
08/07  

20 2018/12/ 
23–2018/12/ 
24 

1994/ 
08/23  

162,785.97   203    

Table 2 
Number of surveyed plots by severity class and reproductive strategy. Serotinous 
cones: Pinus halepensis and Pinus pinaster; non-serotinous cones: Pinus nigra; 
Resprouters: Quercus ilex.  

Burn severity  
(CBI-based classes) 

Reproductive  
strategy 

Number of plots 

Unburned Serotinous cones  46 
Non-serotinous cones  22 
Resprouters  4 

Low 
(CBI 0.5–2.00) 

Serotinous cones  1 
Non-serotinous cones  18 
Resprouters  0 

Medium 
(CBI >2.0–2.75) 

Serotinous cones  7 
Non-serotinous cones  5 
Resprouters  8 

High 
(CBI >2.75) 

Serotinous cones  66 
Non-serotinous cones  12 
Resprouters  14    

203  

Table 3 
Number of surveyed plots by severity class and topographic features.  

Burn severity  
(CBI-based classes) 

Aspect exposure Slope Number  
of plots 

Number of plots  
per severity class 

Unburned North-facing <15 % 21 72 
>15 % 16 

South-facing <15 % 19 
>15 % 16 

Low 
(CBI 0.5–2.00) 

North-facing <15 % 5 19 
>15 % 4 

South-facing <15 % 4 
>15 % 6 

Medium 
(CBI >2.0–2.75) 

North-facing <15 % 3 20 
>15 % 5 

South-facing <15 % 5 
>15 % 7 

High 
(CBI >2.75) 

North-facing <15 % 24 92 
>15 % 23 

South-facing <15 % 23 
>15 % 22     

203  
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using the nbClust package (Charrad et al., 2014). 

2.3. Modeling the likelihood of recovery and its driving factors 

The likelihood of post-fire recovery was assessed using classification 
algorithms. We used the three outcome groups from cluster analysis to 
establish the recovery classes as follows. Those burned plots grouped 
with the unburned control were tagged as ‘recovered’ and those burned 
plots placed in the most distant group to the unburned plots were tagged 
as ‘unrecovered’. Note that unburned plots were disregarded further on. 
Then we trained and tested several random forest (RF; Breiman, 2001) 
models combining the aforementioned classes and a set of predictor 
variables related with the recovery potential. We analyzed burn severity 
classes, the dominant reproductive strategy, the aspect and slope of the 
relief, and climate conditions in terms of average precipitation and 
temperature and their observed trends. Burn severity was estimated 
using the CBI (see Table 2). Slope (%) and aspect (azimuth degrees) were 
computed from a digital elevation model obtained from Airborne Laser 
Scanning (ALS) data provided by the Spanish Geographic Institute (IGN) 
via the National Plan for Aerial Orthophotography (PNOA). The datasets 
were captured between 2008 and 2011 using a small-footprint dis
crete-return airborne sensor operating at near infrared wavelength 
(1.064 µm) and ± 28º scan angle from the nadir. The nominal point 
density in the study area is 0.5 point/m2, with a vertical accuracy of 
±0.2 m and a horizontal accuracy of ≤0.3 m. Climate variables were 
extracted from the ERA5-Land reanalysis dataset (Copernicus Climate 
Service, 2017). We retrieved monthly data on average temperature and 
accumulated precipitation in the period 1995–2017 (i.e., from the first 
year after fire to first the year of the field survey). From that information 
we computed the yearly average temperature (ºC) and the average of 
annual precipitation (mm). Trends in temperature and precipitation 
were computed using the Sen’s Slope (Sen, 1968), a non-parametric test 
complementary to Mann-Kendall’s procedure for trend detection (Mann, 

1945). Sen’s Slope returns the strength of the monotonic trend in a time 
series. Positive values indicate an increase over time and vice versa 
(Pohlert, 2020). Trends were used to portray climate dynamics during 
the period between the fires and the field surveys. 

We explored 1000 realizations of RF combining balanced random 
samples equal in number of observations of 33 recovered and 33 unre
covered plots. The selection of the number of observations came from 
the classification into clusters. We retained the number of observations 
assigned to "tree-dominated" forest and " shrubs and grasslands". The 
minimum number of plots observed in one of these groups was used as a 
reference value in the sampling procedure, i.e., 33 plots in this case. 
Each model realization was optimized in terms of number of trees to fit 
in the RF (ntree) and the number of predictor variables that intervene in 
each split (mtry), using 80 % of the selected plots. The remaining 20 % 
was retained for validation purposes. From each realization we calcu
lated the performance in terms of Area Under the Receiver Operating 
Characteristics Curve (further referred to as AUC; Hanley and McNeil, 
1982) using the test sample. In addition, predictors were ranked in 
importance and explored via partial dependence plots (PDPs), a 
graphical representation of the relationship between a covariate and the 
predicted response (Greenwell, 2017). Models were trained and vali
dated in R using the packages caret (Kuhn, 2008), pdp (Greenwell, 2017), 
pROC (Robin et al., 2011) and randomForest (Liaw and Wiener, 2002). 

3. Results 

3.1. Post-fire forest structural typologies 

The PCA allowed synthesizing the 10 original variables into 5 
meaningful components (PC). Fig. 2 summarizes the comparison be
tween normal PCA (all plots together) and multigroup PCA (splitting the 
data according to the dominant reproductive strategy in the stand). 
Differences between the two approaches were minor, both in terms of 

Fig. 2. Summary of PCA and multigroup PCA outcomes. Colored bars indicate the loadings obtained for each variable at a given component in the multigroup 
approach. The color of the bars indicates the domain to which a variable belongs to. Hollow squares show the common loadings from regular PCA. 
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the loadings of the original variables on each PC and in the proportion of 
variance explained by PC. The first 5 components in regular PCA 
explained up to 85.2 % percent of the original variance whereas the 
multigroup approach ranged from 79.1 % in resprouter communities to 
83.1 % and 88.4 % in seeding communities (with non-serotinous and 
serotinous cones, respectively). Hence, differences between reproduc
tive strategy in terms of structure, biomass, coverage and diversity in the 
surveyed plots were slim. 

Overall, we identified the following components: PC1, tree- 
dominated stands (maximum height, mean height, %stratum 5, tree 
biomass) with biodiverse grassland communities (N. of species, %stra
tum 1) and no significant presence of shrub understory layers; PC2, 
transitional forests (%stratum 4 and 3, Shrub biomass) with significant 
presence of trees (Tree biomass); PC3, medium-sized shrubs (%stratum 
3) with high number of species (N. species); PC4, large shrubs (%stratum 
4 and 2) with high number of species (N. species); and PC5, stands 
dominated by grassland communities (%stratum 1) with moderate 
species abundance. 

From these 5 PCs’ scores we identified 3 different clusters (Fig. 3). 
Each cluster showed a distinct forest structural type that will later serve 
as baseline to assess the recovery stage (see Section 3.2). We identified 
‘tree-dominated forest’ stands with a well-developed tree canopy layer, 
displaying above-average (Z-score>0) maximum and average height, 
percent coverage of stratum 5 and tree biomass, and number of species. 
These stands also showed below average cover of intermediate strata 
(2–4) and higher than average cover of stratum 1 (herbaceous species), 
indicating a well-developed tree forest with a dense canopy layer and a 
bare understory. A second group with plots in a ‘transitional woodland’ 
stage, with significant above-average cover in stratum 4, high shrub 
biomass loads, and below-average number of species. These stands 
corresponded to homogeneous tree and shrub communities with a dense 
understory. In the third cluster, named ‘shrub and grasslands’, we 
identified those stands with dominance of low strata (2 and 3) with low 
biomass loads, and small trees and shrubs. 

3.2. Post-fire recovery likelihood and its drivers 

The recovery state (Fig. 4) was inferred from the association between 
forest structural typologies (Fig. 3) and (i) burn severity level, (ii) 
topographic conditions and (iii) dominant reproductive strategy. As can 
be seen, unburned plots (shown in light yellow) were mainly placed in 
the ‘tree-dominated forest’ typology. In contrast, most of the plots 
affected by high severity burning were classified as either ‘transitional 
woodlands’ or ‘shrubland and grassland’. There were notable 

differences in the level of burn severity according to the dominant 
reproductive strategy. Plots dominated by serotinous species (Pinus 
halepensis and Pinus pinaster) were the most frequently affected by high 
severity fires while resprouting (Quercus ilex) and especially non- 
serotinous (Pinus nigra) communities were more frequently affected by 
low to medium severity burns (Table 2). However, serotinous commu
nities (and resprouting communities to a lesser extent) were more 
frequently classified (8 plots) as ‘tree-dominated’ when affected by high 
severity levels, whereas non-serotinous communities were normally 
assigned to that group mostly when affected by medium and low 
severity burns (2 plots with high severity, 15 with low or medium). 
However, the outcome of the classification seemed to be modulated by 
topographic conditions. The majority of burned plots showing recovery 
traits (‘tree-dominated’ or ‘transitional woodland’ typology) were 
located on steep north-facing slopes whereas those classified as ‘shrub
land and grassland’ tend to appear in southern slopes. 

The RF models provided a more in-depth understanding of the main 
forces of post-fire recovery. The models were trained considering the 33 
burned plots classified as "tree-dominated forest" as recovered (or nearly 
recovered; 12 experiencing high burn severity, 9 mid burn severity and 
12 low burn severity) and the 49 plots classified as "shrub and grassland" 
as not yet recovered. Plots in the ‘transitional woodland’ category were 
disregarded since we considered them to be in an intermediate stage. 
Despite a certain degree of variability, the models attained high classi
fication accuracy (AUC=0.87 ± 0.02, n = 1000; Fig. 5A). The range of 
importance of the predictors (Fig. 5B) reinforced the prominent role 
played by severity level, slope, and aspect. These three factors were 
consistently the most influential. Severity was the main restraining 
factor of post-fire recovery, with approximately 0.35 less chance of re
covery when experiencing high severity burns (Fig. 6A). Steep slopes 
(>15 % of incline) and northwest facing (270–360 degrees azimuthal) 
enhanced the chances of recovery in 0.20 (Fig. 6C and D). To a lesser 
extent, climatic conditions were observed to modulate recovery. In 
general, cooler temperatures increased the likelihood of recovering 
(Fig. 6H). But the largest effect was exerted by climatic trends in both 
temperature and precipitation. It was observed that with increasing 
mean annual temperatures and annual precipitation, the chances of 
recovery increased by a margin of 0.15. Dominant reproductive strategy 
(Fig. 6B) was the least important factor. We observed a lower probability 
of recovery attributed to serotinous communities, although we believe 
this is related to the fact that this community was more frequently 
affected by burning during the 1994 fires, and hence in our network of 
plots. It can be argued that the smaller difference in the probability by 
reproductive strategies (0.05) compared to severity levels (0.30) 

Fig. 3. Description of forest structural typology from cluster analysis. Color indicates the domain to which a variable belongs to. The values of the original variables 
(x-axis) were expressed as Z-scores (number of standard deviations around the mean centered in 0) to reflect the variety of units of measurement in a common and 
comparable scale. 
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indirectly indicates a positive effect on the recovery of serotinous 
communities. 

4. Discussion 

In this work we featured an assessment of the potential for post-fire 
recovery in representative Mediterranean forest communities, namely 
Pinus halepensis mill., Pinus pinaster, Pinus nigra and Quercus ilex spp. 
forests. The approach was rooted in field inventories that characterized 
the main traits (tree height, vegetation covers along the vertical strata, 
biomass loads and species diversity) of forest communities 25 years after 
burning. Our approach was based on the comparison between burned 
and unburned controls to determine the recovery potential. We defined 
recovery in terms of similarity, considering burned stands that most 
resembled the unburned controls as potentially recovered. Many studies 
on recovery, notably those based on RS, refer to the comparison between 
post-fire and pre-fire conditions, setting the latter as a strict threshold to 
be reached to achieve recovery. Optical sensors can only record the plant 
vigor signal independently of the structure, which we accounted from 

field inventories (Bastos et al., 2011; Chen et al., 2011; Tanase et al., 
2011; Viana-Soto et al., 2022a). Moreover, the ability of RS-based ap
proaches in evaluating post-fire regeneration is often limited by the 
sensitivity of the sensor to capture the signal of regrowth, being better 
suited for short-term assessments. Our definition of recovery is advan
tageous in several ways. For instance, we established a direct compari
son between the actual communities burned 25 years ago with 
analogous and neighboring stands not affected by fire. Assessments 
based on pre-fire conditions alone assume no-succession during the 
post-fire regrowth and, thus, that the same community recovers from the 
fire, which is not necessarily true. Moreover, we based our character
ization on specific dasometric information, in line with the recommen
dation by Bartels et al. (2016). 

4.1. About the recovery time after a wildfire disturbance 

RS is one of most widespread sources of information used to estimate 
regrowth trajectories and recovery time after fire (Pérez-Cabello et al., 
2021). Multispectral satellite imagery offers a good proxy for green 

Fig. 4. Distribution of surveyed stands in terms of severity, dominant reproductive strategy, topography, and development stage.  

Fig. 5. A) summary of model performance in the 1000 model realizations. Vertical red lines indicate the mean (solid line) and the ±1sd threshold (dashed lines) of 
the AUC values of all models. B) Rank in percent importance of the analyzed drivers. 
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vegetation regrowth in terms of coverage (e.g., Leaf Area Index or LAI), 
though it is prone to early saturation and overestimation of recovery and 
lacks the capability to monitor changes in structure. Tanase et al. (2011) 
reported a saturation period of approximately 15 years in the spectral 
response of NIR-based indices (NDVI) in Mediterranean pine forest, 
compared to the recovery of forest structure estimated from SAR sen
sors, which identified longer recovery periods. Likewise, the study by 
Bastos et al. (2011) in Portugal, reported recovery times up to 65 months 
although Gouveia et al. (2010) found a shorter interval. Spectral-based 

approaches are limited by their inability to capture vegetation structure 
or composition, though it is possible to overcome this limitation by 
coupling it with measurements from active sensors and/or field cam
paigns (Chu and Guo, 2014; Tanase et al., 2011), such as the one we 
presented here. In this line, a recent study by Viana-Soto et al. (2022a), 
(2022b) in the ‘Yeste’ fire (Table 1) revealed that vegetation cover 
would reach pre-fire levels, but 50 % of the area would still display 
significant differences in height. Our findings suggested that this same 
situation applies to the coetaneous fires we analyzed (Figs. 1, 3 and 4). 

Fig. 6. Relationship profiles between the likelihood of recovery and the analyzed drivers. The solid line represents the average response among the models while the 
purple area indicates the degree of dispersion among models (the darker the more variability). A) level of severity; B) dominant reproductive strategy; C) aspect 
(azimuth degrees); D) slope of the terrain (%); E) trend in annual rainfall (Sen’s slope); F) trend in annual rainfall (Sen’s slope); G) average annual rainfall (mm); H) 
average annual temperature (ºC). 
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Studies based on the reproductive traits of the communities from an 
ecological perspective reported longer recover time frames. Overall, 
resprouter tree communities may need approximately 20 years to 
recover from a fire (Luis and Tárrega, 1989; Martínez Ruiz, 2005) while 
the response of seeding communities ranges from about 15 in serotinous 
pines and 45 in non-serotinous (Barbéro et al., 1998; Martínez Ruiz, 
2005). Our findings (Fig. 4) suggest that, after a period of 25 years, most 
fire-affected communities have not yet recovered (understood as 
reaching a similar state to unburned communities) from the disturbance, 
especially those experiencing high severity burnings. Many serotinous 
pine species and resprouter communities still undergo a transitional 
woodland stage, while non-serotinous species show a wider range of 
situations fostered by the lower level of burn severity observed. 

4.2. Driving forces of post-fire recovery 

One of the main novelties of our work lies in the isolation of the 
marginal effects of burn severity and topography, while providing in
sights into the influence of climatic conditions and the dominant 
reproductive traits (seeding and resprouting). Burn intensity and 
severity are known to determine post-fire dynamics in most forest 
communities (Keeley, 2009), hence high severity fires have attracted 
most of the attention in risk assessment frameworks and recovery as
sessments, assuming that it causes the highest level of damage and 
vulnerability (Chuvieco et al., 2014; Rodrigues et al., 2014; Román 
et al., 2013). In line with the literature, our findings (Fig. 5) suggest that 
severity is the main factor driving post-fire recovery (Chen et al., 2011; 
Smith-Ramírez et al., 2022). We observed a 0.30 decrease in the prob
ability of recovery after a high severity burn (Fig. 6A). In Mediterranean 
environments, such as the ones analyzed here, the severity level is 
closely associated to the type of forest community. Pinus halepensis for
ests, which are well adapted to wildfires and show a rapid recovery 
response, often experience high severity burnings (Pausas et al., 2008). 
Likewise, resprouter communities are often considered as a buffer given 
its high resilience mechanisms (Nolan et al., 2021). On the other hand, 
non-serotinous recruiters (e.g., Pinus nigra) tend to experience lower 
severity levels (Fig. 4) fostered by cool and moist conditions (Pausas and 
Bond, 2020). Serotinous communities displayed the highest rates of 
recovery after high severity burnings (Fig. 4), though the marginal effect 
from the RF models was possibly biased due to the higher frequency of 
high severity fires observed in this type of community (Table 3). 

The chances of recovery were strongly modulated by the shape of the 
relief. The effect of severity was closely followed by local topographic 
features (Fig. 5B), with a probability of recovery 0.20 higher under the 
adequate topographic conditions. Slopes steeper than 15 % and facing 
northwest were the optimal conditions for recovery (Fig. 6C and D). The 
combination of these settings exerts a sheltering effect from insolation 
that helps in preserving vegetation and soil moisture. There is consensus 
on the fact that north-facing slopes favor vegetation development, but it 
has been pointed out that the slope of the terrain favors (Smith-Ramírez 
et al., 2022, 2021) or limits (Viana-Soto et al., 2020) post-fire recovery. 
We expected –and confirmed– a positive effect of slope (the steeper the 
slope the likelier the recovery) since we assessed former tree-dominated 
communities with well-developed soils able to sustain vegetation. Hence 
the fire-enhanced soil erosion and loss that steep slopes may reinforce 
(Parente et al., 2022) should not hinder recovery in the presence of 
developed soils with sufficient organic matter. Our findings are in line 
with Smith-Ramírez et al. (2022) who combined spectral RS and field 
data to assess post-fire recovery in a Mediterranean region of Chile. The 
assessment by Viana-Soto et al. (2020) in the ‘Requena’ and ‘Yeste’ fires 
(also analyzed here; Table 1) attributed a weaker and elusive link with 
slope, with shifting relationships depending on the recovery profile and 
the post-fire stage. Viana-Soto et al. (2020), however, based their 
assessment solely on time-series of RS spectral profiles. It is thus possible 
that the post-fire development of green vegetation is less dependent on 
topography than structure and composition are. 

Climate factors modulated the chances of recovery to a lesser degree. 
The dynamics of temperature and rainfall were more influential than the 
average conditions (Fig. 6F–H). Increasingly warmer and wetter condi
tions enhanced the likelihood of recovery by 0.15. The weaker effect 
played by regional climate conditions compared to topography implies 
that microclimatic conditions were more relevant. Temperature is the 
main limiting factor for the physiological development of tree species on 
a global scale (Körner and Paulsen, 2004). Likewise, the abundance of 
precipitation during spring and fall are key in the establishment and 
growth of Mediterranean species like Pinus halepensis (Touchan et al., 
2017). Nonetheless, post-fire weather exerts a key effect regarding the 
degree of early coverage of the unprotected soil after burning and 
consequent modulation of the kinetic action of the precipitation. 
Although we did not accounted for this effects, historical weather re
cords indicate persistent warm and dry conditions along the Mediter
ranean rim of Spain (3-month Standardized Precipitation Evaporation 
Index < 0.85; Beguería, 2017) from early summer (June) until 
fall-winter (September) of 1994. 

4.3. Considerations and implications for forest management 

The results of our assessment are relevant for fire risk mitigation and 
forest planning, although they need to be framed appropriately. The 
footprint of wildfires is still noticeable in most burned stands. Out of the 
131 burned stands, only 33 were classified as recovered tree-dominated 
forest, and most of these still show differences from neighboring un
burned tree forest communities. This suggests that a longer recovery 
time is needed. However, our temporal benchmark was set at 25 years 
after burning, imposed by the timing of the field campaigns which 
matched the average recovery time estimated for most Mediterranean 
communities (Rodrigues et al., 2014). Therefore, our results are mainly 
representative of mid-term post-fire conditions and should be under
stood as such. For example, ‘recovered’ stands may have reached that 
state earlier, whereas we do not know how long or whether ‘not yet 
recovered’ stands will recover in the future. 

On the other hand, the fact that severity is the main driver of re
covery backs the suitability of low intensity/severity burnings as a tool 
for fuel management, capable of controlling fuel availability while 
ensuring the persistence of the forest community (Clarke et al., 2022). 
Although our findings on medium-low severity were primarily repre
sentative of resprouting communities and non-serotinous pines, these 
communities were highly resilient when experiencing moderate burn 
severity, thus being particularly suitable for prescribed burning 
campaigns. 

Water availability and soil/vegetation moisture were both prompted 
as factors governing the chances of recovery. In this sense, forest man
agement targeting the preservation and enhancement of water balance 
in forest shall be encouraged (Morán-Ordóñez et al., 2020). Under an 
scenario of increasing hazardous wildfire conditions (Bedia et al., 2014; 
Ruffault et al., 2020; Turco et al., 2018), adequate forest management 
holds the potential to compensate or even mitigate extreme fire behavior 
while preserving ecosystem services (Miezïte et al., 2022). 

5. Conclusions and final remarks 

In this work we analyze the potential for post-fire recovery in a 
collection of wildfires that occurred in the summer of 1994. We combine 
data on the structure and composition of fire-affected communities and 
unburned control plots to determine the effect of burn severity, topog
raphy, climate, and reproductive strategy on mid-term recovery poten
tial. We analyzed a set of 203 field plots of Mediterranean tree forests 
dominated by Pinus halepensis, Pinus pinaster, Pinus nigra and Quercus 
ilex. 

After 25 years, 75 % of the burned plots (98 out of 131) could not yet 
be considered as recovered, being still in a transitional forest stage. The 
25 % that reached a state sufficiently similar to the unburned control did 

M. Rodrigues et al.                                                                                                                                                                                                                             



Forest Ecology and Management 552 (2024) 121587

9

so when they were either affected by moderate burn severity or were in 
environmental settings that favored recovery. The shading effect of the 
northwest facades of steep slopes was key to meeting consistent canopy 
layer development. A warmer and more humid climate also improved 
the chances of recovery. 
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