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Abstract: The use of recycled polypropylene in industry to reduce environmental impact is increasing.
Design for manufacturing and process simulation is a key stage in the development of plastic parts.
Traditionally, a trial-and-error methodology is followed to eliminate uncertainties regarding geometry
and process. A new proposal is presented, combining simulation with the design of experiments and
creating prediction models for seven different process and part quality output features. These models
are used to optimize the design without developing additional time-consuming simulations. The
study aims to compare the precision and correlation of these models. The methods used are linear
regression and artificial neural network (ANN) fitting. A wide range of eight injection parameters and
geometry variations are used as inputs. The predictability of nonlinear behavior and compensatory
effects due to the complex relationships between this wide set of parameter combinations is analyzed
further in the state of the art. Results show that only Back Propagation Neural Networks (BPNN)
are suitable for correlating all quality features in a single formula. The use of prediction models
accelerates the optimization of part design, applying multiple criteria to support decision-making.
The methodology is applied to the design of a plastic support for induction hobs. Furthermore, this
methodology has demonstrated that a weight reduction of 27% is feasible. However, it is necessary
to combine process parameters that differ from the standard ones with a non-uniform thickness
distribution so that the remaining injection parameters, material properties, and dimensions fall
within tolerances.

Keywords: injection; simulation; recycled; quality prediction; linear regression; neural network;
polypropylene

1. Introduction

Manufacturing of polymers using injection molding has been in use since the early
1950s. The benefits of this process are well known in terms of productivity and free shapes
design, etc. [1]. Recent research has been focused on developing new technologies based on
injection molding, such as gas-assisted injection molding [2], low-pressure technologies [3],
and multi-material injection molding [4], among others, and other research has focused on
the optimization of the quality of product and process [5]. Traditionally, quality features of
injection molding technology can be roughly classified into three categories: (i) the dimen-
sional and mechanical properties of the part, (ii) the adequacy of processing parameters
to volumetric homogeneity of the parts, indicating how well the parts have been packed
during injection molding, and how low warpage or thermally induced residual stresses are
expected, and (iii) quality of the robustness of the process.

In order to achieve optimization purposes, from the point of view of quality, pro-
ductivity, or mold design, simulation techniques have been used since the 1970s [6] apart
from experimental trial-and-error methodology. Nowadays, the support of simulation
techniques is essential in the design and development process of thermoplastic parts using
injection molding carried out in four key stages of the design procedure. The first key
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stage is the feasibility analysis; the second one is when finishing the part design and mold
pre-project, which is known as design for manufacturing. The third stage is during mold
development, and finally, it arrives at the stage of continuous improvement during series
production [7].

Despite the benefits of simulation, different reasons make results extrapolation difficult,
among which the following reasons stand out: the complexity of thermal distribution
and fluid flow [8], or the injection molding process and the nonlinearities affecting its
physics [9,10], handling of incomplete data, and noise due to external uncertain factors. The
interrelations between process parameters and design features, well known as design for
manufacturing, forced the simulations of each geometry modification, becoming a highly
engineering time-consuming task [11].

Therefore, the need for a multi-criteria design optimization approach to fit the quality
requirements arises because any modification in process parameters, part thickness, or
material properties will have consequences on process results, dimensions, weight, or part
quality. The final solution should come from a combination or even superposition of the
individual effects of the different parameters, making it almost impossible to predict the
result if each simulation is not run step by step. This method implies a time-consuming
engineering task requiring new procedures to achieve multi-criteria optimization, such as
predictive models.

Injection Molding (IM) simulations are beneficial for plastic part designers because
they predict the qualities and properties of components. They provide results about the pro-
cess (temperatures, pressures), part homogeneity (volumetric shrinkage, residual stresses),
and part quality (weight and control dimensions). Inputs are mainly part geometry and
process parameters. They require both computational resources and expertise.

Machine Learning (ML) is a subset of artificial intelligence (AI) that focuses on de-
veloping algorithms and models that allow computers to learn and make predictions or
decisions from data without being explicitly programmed. With Machine Learning (ML),
it is possible to generate a predictive model of the results based on a limited number of
Injection Molding (IM) simulations. The use of Machine Learning (ML) requires expertise
but accelerates the process simulation, speeding up 1000 or more times the acquisition
of desired results after prediction model generation. Back Propagation Neural Networks
(BPNN) are Machine Learning processes. They are trainable with the results of a set of
simulations. Then, they can predict these results using complex functions. Prediction
models allow for the generation of newer simulation results without performing additional
and complete simulations that take much time. BPNNs are used in relevant research, as
shown below.

Artificial neural network (ANN) [12,13], genetic algorithm (GA) [14,15], regression
methods [16,17], Taguchi experimental design method [18], and fuzzy [19] are the most
preferred predictive and optimization methods found in the literature. ANN is an advan-
tageous method for predicting linear and non-linear systems that has been widely used
for modeling and prediction purposes in many fields [17]. The back propagation neural
network is an algorithm that modifies the ANN so that numerical procedure is easier to
evaluate and less computationally expensive, and it has the powerful ability of non-linear
interpolation [13,20].

In the field of injection molding processes, most of the literature refers to prediction
models where a single output variable is predicted. Many researchers have focused their
efforts on predicting and controlling the behavior of injection machines [21,22] or nozzle
positions [23] by managing the machine’s hydraulic system. The literature presents models
to predict a dimension of the component based on general regression neural networks
(GRNN) [24], ANN combined with GA [25], response surface methodology [26], or multiple
linear regression [27,28]. Most of the studies in the literature focus on some parameters
directly related to dimensions, such as shrinkage [12,18,29] and mainly warpage [30–35].
Weight is another indicator of part quality, and so some prediction models have been
developed using genetic neural fuzzy [11], non-linear partial component regression [17],
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and, more recently, transfer learning procedures [36,37]. Some attempt has also been made
to predict short shot [38] or weld lines [39,40], taking as input parameter gate location. Other
research has been conducted to develop prediction models related to material parameters
such as mechanical properties [41–44], fiber orientation [45], or even the selection of the
thermoplastic material itself by transfer learning [46]. Regarding output related to process
conditions, less research is found in the literature. Some authors have developed predictive
models for barrel temperature [47,48] or cavity temperature during the cooling stage [49,50],
but hardly any research is documented related to filling cavity pressure or melt front flow
temperature, which are two of the most outstanding quality process control result, easily
measurable and also related to some part defects.

As previously stated, injection molding is a very complex process in which different
process parameters are interrelated and affected by important nonlinearities. That is why it
is relevant to develop a predictive model considering multi-variables not only as inputs but
also as predictable outputs. Despite this relevance, hardly any research is found considering
multi-output predictable models. An approach is made in [51], where six different linear
dimensions corresponding to a product design are considered as outputs. Similarly, other
studies work with a set of dimensions as predicted values by means of a multilayer
perceptron neural network [52] and a multi-output support vector regression [16]. These
approaches all refer to dimension values as predictable results and do not include any
other kind of result. Other research obtains results for multi-output parameters, but they
implement different methods to convert the multi-objective optimization problem into a
single objective evaluation problem through the entropy weight method [53] or analytic
hierarchy process [54]. Although [55] works with three different outputs, this research
focuses on the different Design of Experiments (DOE) strategies applied to obtain the
training database rather than the outputs themselves. On the other hand, most of the
results found in the literature come from an analysis that only considers process parameters
such as temperatures, times, or packing pressure as inputs for the predictive models, but
hardly any consider mold design features as input [29]. Despite the importance of thickness
as the main geometric feature of an injected component, it is hardly considered in any
reference as an input parameter.

The results could then be applied to the optimization of the design of a plastic support
for induction hobs.

Therefore, a methodology for the simultaneous obtention of seven multi-output quality
features related to material, process, and part quality from eight input variables, including
process and mold design parameters, such as part thickness and flow leader thickness, is
proposed based on the creation of prediction models using simulation results as training
data. In order to find out what the most accurate mathematical model for prediction
is, a comparison between multi-variable and multi-objective linear regression and back
propagation neural network is shown. In the case of BPNN, different architectures are
implemented, comparing their performance when predicting one or all outputs in a single
architecture and comparing different numbers of neurons in the hidden layer.

2. Methodology

The primary aim of the new methodology is to enhance computational efficiency by
simulating numerous cases, leading to the development of numerical prediction models
for the results. During this phase, the developer’s involvement is minimal and mainly
focuses on optimizing the outcomes based on these predictions. The simulation of the cases
predicted as optimal is deferred until the final stage.

The methodology includes the following steps (Figure 1):
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Figure 1. Flow chart of the methodology.

Next, a comprehensive explanation will be given of how to apply this new methodol-
ogy to improve a recycled polypropylene part manufactured through injection molding.

For a better understanding of this methodology, it will be applied to a specific case,
which involves the design of a plastic support—a component with which the authors
already have experience. Previous research [56–59] has demonstrated the feasibility of
replacing fiber-reinforced polyamide with talc-filled polypropylene and subsequently with
recycled polypropylene. The current part thickness is 1.8 mm. A feasibility study focused
on weight reduction by thinning the part. However, reducing its main thickness below
1.5 mm has proved unachievable. Therefore, the new methodology aims to minimize the
weight even further. To achieve this objective, an experimental study will be conducted
to reduce the thickness of the plastic support to 1.0 mm. This will be accomplished by
employing thicker flow leaders to ensure proper filling of the piece while ensuring optimal
quality for all other manufacturing parameters.

2.1. Quality Features and Input Parameters Selection: Design of Experiments

A selection of seven parameters has been applied to quantify the quality of the part
design. These dependent variables are named quality features, as they are the results
whose outcome should ideally remain within an admissible range. The simultaneous
in-depth analysis of them is a holistic approach to understanding the total quality as the
process encompasses process, material, and detailed design. Two features are related to
the quality of the process: Minimum flow front temperature indicates the uniformity of
melt flow front speed and surface quality, while maximum injection pressure indicates
the robustness of the manufacturing process and short shot prevention. The next two
are related to the adequacy of processing parameters to volumetric homogeneity of part:
maximum volumetric shrinkage is an indicator of homogeneity of plastic packing along the
cavity, while average distortion of warpage presence is due to residual stresses. All these
features are related to a recycled homopolymer polypropylene filled with 40% talc. The last
three are direct characteristics of the final part, which must fit the tolerances requirement:
Total part weight is an indicator of plastic savings and potential environmental impact
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reduction. Dimensions 1 and 2 are shown in Figure 2. Dimension 2 corresponds to the
distance between the two snap fits. Dimension 1 corresponds to the part width.
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Figure 2. Control dimensions.

The admissibility range of each feature used during the optimization process is detailed
in Table 1. The range of admissibility for process results is based on the researcher’s
previous experience. Researchers have collaborated broadly with the injection molding
industry, and ranges regarding material and process are normal in the manufacturing
industry. Other ranges, such as weight and dimensions, are requirements of the Original
Equipment Manufacturer (OEM). The minimum flow temperature should not be below
the no-flow temperature of the polymer, and the maximum injection pressure should not
exceed the actual processing one. Volumetric shrinkage and average linear distortion
should fit a suitable value according to the plastic grade properties. Variations below ±8%
are imposed. Finally, small variations in weight (2%) and dimensions (<0.1%) are within
product tolerances.

Table 1. Quality features, range of admissibility for the optimization process.

Parameters Objective Minimum Maximum

Min. Flow Front Temperature (◦C) 160 −15 40
Max. Molding Pressure (Bar) 700 500 725

Max. Volumetric Shrinkage (%) 12.5 11.5 13.5
Average Linear Distortion (%) 0.9 0.83 0.97

Total Part Weight (g) 320 313 327
Dimension 1 (mm) 529.0 528.6 529.4
Dimension 2 (mm) 272.5 272.2 272.8
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The objective of this research is to obtain the predictive model that best fits the outcome
of quality features.

A set of eight dependent variables (from A to G) is defined. They have been carefully
chosen from among all the potential influential variables that can be controlled during the
part design phase. These include six processing parameters and two geometry features.
The most relevant process parameters influencing the quality results of the injected part
are filling time, melt and mold temperature, post-pressure time and pressure, and cooling
time. The main geometry features are the nominal thickness of the part, which determines
the final part weight, and the flow-leaders thickness, which improves the filling flow
pattern and filling of the cavity. The range of variation selected for the input variables is
wide enough to simulate the main defects on the part, as will be described in Section 3.1
Simulation results. A wide range of variations has also been defined to ensure that there
will be outcomes within and outside the range defined in Table 1. All parameters shown in
Table 2 are feasible and fit with the recommended values for the plastic material.

Table 2. Process parameter and geometry variations for factorial analysis.

Parameters Lower Center Upper

A, Filling Time (s) 1.4 1.75 2.1
B, Melt Temperature (◦C) 200 250 300

C, Cooling Time (s) 28 35 42
D, Mold Temperature (◦C) 40 50 60
E, Post-pressure Time (s) 9.6 12 14.4

F, Post pressure (Bar) 320 400 480
G, Part Thickness (mm) 1.0 1.1 1.2

H, Flow Leaders Thickness (mm) 1.5 1.6 1.7

Injection molding simulations are time-consuming. A design of experiments is needed
to minimize the total simulation runs. Using a fractional factorial design [60] or a Plackett–
Burman design [21] increases the number of runs by a power of two or four, respectively, so
we should need 128 runs for eight parameters. A 2k−p = 28−3 = 32 runs fractional factorial
design could be performed according to [60], but not all effects would be considered.
If we want to estimate all the main effects and two-way interactions and afford eight
parameters for errors, 38 runs would be needed following the D-optimal criterion [61,62].
The D-optimal design of experiments is shown in Table 3.

Table 3. D-optimal design of experiments for 8 parameters.

Experiment A B C D E F G H

1 1.75 250 50 12 400 35 1.1 1.6
2 2.1 300 60 14.4 480 28 1.0 1.7
3 2.1 300 60 14.4 320 42 1.0 1.7
4 2.1 300 60 14.4 320 28 1.2 1.7
5 2.1 300 60 9.6 480 42 1.2 1.5
6 2.1 300 40 14.4 480 42 1.2 1.7
7 2.1 300 40 14.4 480 42 1.0 1.5
8 2.1 300 40 14.4 320 28 1.0 1.7
9 2.1 300 40 9.6 480 42 1.0 1.7

10 2.1 300 40 9.6 480 28 1.2 1.5
11 2.1 300 40 9.6 320 42 1.2 1.5
12 2.1 200 60 14.4 480 28 1.2 1.7
13 2.1 200 60 14.4 320 42 1.2 1.7
14 2.1 200 60 14.4 320 28 1.0 1.5
15 2.1 200 60 9.6 480 28 1.0 1.5
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Table 3. Cont.

Experiment A B C D E F G H

16 2.1 200 60 9.6 320 42 1.0 1.5
17 2.1 200 60 9.6 320 28 1.0 1.7
18 2.1 200 40 14.4 480 42 1.2 1.5
19 2.1 200 40 14.4 480 42 1.0 1.7
20 2.1 200 40 14.4 320 28 1.2 1.7
21 2.1 200 40 9.6 480 42 1.2 1.7
22 2.1 200 40 9.6 320 28 1.0 1.5
23 1.4 300 60 14.4 320 42 1.2 1.5
24 1.4 300 60 9.6 480 28 1.2 1.7
25 1.4 300 60 9.6 320 42 1.2 1.7
26 1.4 300 60 9.6 320 28 1.0 1.5
27 1.4 300 40 14.4 480 42 1.0 1.7
28 1.4 300 40 14.4 320 28 1.2 1.5
29 1.4 300 40 9.6 480 42 1.2 1.5
30 1.4 300 40 9.6 320 28 1.2 1.7
31 1.4 200 60 14.4 480 28 1.0 1.5
32 1.4 200 60 14.4 320 28 1.0 1.7
33 1.4 200 60 9.6 480 42 1.0 1.7
34 1.4 200 60 9.6 320 28 1.2 1.5
35 1.4 200 40 14.4 480 42 1.0 1.7
36 1.4 200 40 14.4 320 42 1.0 1.5
37 1.4 200 40 9.6 480 28 1.0 1.7
38 1.4 200 40 9.6 320 42 1.0 1.7

2.2. Injection Molding Simulation and Results Extraction (Cadmould Software)

Cadmould v15.0 (2022), an injection molding simulation tool, has been coupled with
the D-optimal screening design to enhance the simulation process outcomes and quality
feature extraction.

The 3D part model is shown in Figure 3. Four different element groups have been
defined to vary their thickness independently, as shown in Figure 3. Group 1 (dark blue)
is an area of invariable thickness because it affects the thermal behavior of the electronic
components assembled in the part. Group 2 (light blue) is the largest area of the part and
includes the nominal thickness. Any variation in it implies nearly a proportional variation
in total part weight, so it is one independent variable. Group 3 (yellow) is a set of flow
leaders whose thickness is thicker than the nominal value of the part. Additionally, it
is one of the variable inputs because it improves the advance of melt through. Group 4
(red) corresponds to small and thin hinges with specific functions that cannot be modified.
Additionally, four injection points (green circles) have been selected.

A mesh is needed for Finite Element Method calculations. Cadmould uses a surface
model with triangles along the inner and outer surfaces of the part, joined by 1D vectors.
These vectors point from the center of gravity of triangles to the opposite surface and are
normal to them. The thickness of the part is the length of these vectors. Mesh details are
described in Table 4. Local parallel plate flow is simulated using the generalized Hele–
Shaw-Approximation [63]. A study of mesh independence has been developed, decreasing
the mesh size until the distortion remains nearly constant. As a result, a mesh size with
a side length of the elements below 3.5 mm (2.957 mm average) has been selected. This
means the element size is below 0.519% of part dimensions (0.248% average), and a total
number of 1,557,575 calculation points are created.
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Table 4. Mesh details.

Type of Element Number of Elements Number of Nodes Averg. Element
Area (mm2)

Averg. Side
Length (mm)

Averg. Element
Thickness (mm)

10-N tetrahedra 162,860 62,303 3.529 2.957 1.498

The material selected for the simulation is a recycled homopolymer polypropylene
filled with 40% talc. The grade is E-RIALFILL H 07 40 T, and the supplier is Rialti S.P.A.
The main properties are extracted from the Camould database.

Carreau–WLF model is used to determine the influence of temperature and shear rate
on melt viscosity (Equation (1)) [64–66].

η =
aT × P1(

1 + aT × P2 ×
.

γ)
P3

where log(aT) =
8.86 × (T0 − T2)

101.6 × (T0 − T2)
− 8.86 × (T − T2)

101.6 × (T − T2)
(1)

IKV–Schmidt model is used to determine the influence of temperature and pressure
on specific volume (Equations (2)–(4)) [67].

v =
PS1

PS4 + p
+

(
PS2

PS3 + p

)
× T melt range (2)

v =
PF1

PF4 + p
+

(
PF2

PF3 + p

)
× T + PF5 × e(PF6×T−PF7×p) solid range (3)

v = PK1 + PK2 × p transition range (4)

2.3. Obtention of Multivariate Linear Regression Prediction Model

The inputs and outputs of the injection molding simulation previously performed
following the D-optimal screening design are used to create regression models. These
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models have been created using R, version 4.0.5 (31 March 2021). The interface used is
R-commander 2.7.2. [68,69].

The regression model follows this formula (Equation (5)) [70]:

OUTPUTi = ai0 + ai1.A + ai2.A2 + ai2.B + ai3.B2 + ai4.C + ai5.C2 + ai6.D + ai7.D2 +

ai8.E + ai9.E2 + ai10.F + ai11.F2 + ai12.G + ai13.G2 + ai14.H + a15.H2 + ai16.A.B + ai7.A.C

+ ai18.A.D + ai19.A.E + ai20.A F + ai21.A.G + ai22.A H + ai23.B.C + ai25.B.D + ai6.B E

+ ai27.B F + ai28.B G + ai29.B.H + ai30.C.D + ai31.C.E + ai32.C.F + a33.C.G + ai34.C.H +

ai35.D.E + ai36.D.F + ai37.D.G + ai38.D.H + ai39.E.F + ai40.E.G + ai41.E.H + ai42.F.G +

ai43.F.H + ai44.G.H

(5)

where A to H are the input variables (see Table S1) and aij are the coefficients for each
output and term. Coefficients ai0 denote the intercept terms. OUTPUTi refers generically to
output variables (see Table 1). In this research, the subscript “i” will take values from 1 to 7.
OUTPUT1 represents the value prediction that the multivariable linear regression model
obtains for the flow front temperature, OUTPUT2 for the maximum injection pressure, and
so on up to OUTPUT7.

2.4. Obtention of Artificial Neural Network Prediction Model

The inputs and outputs of the injection molding simulation are used to train and
test different back propagation neural networks (BPNN). These fitting models have been
created using the Neural Net Fitting app embedded in MATLAB R2022a for academic use
(9.9.0.1467703) [71].

BPNN has been chosen because they are very precise to fit nonlinear problems. These
artificial neural networks’ architecture consists of:

• Input, a vector with the independent variables.
• Input layer (Ii), where the components of the inputs vector are normalized between

[−1,1];
• Hidden layer, where weights and bias are applied to inputs and sigmoid neurons

(LWi) create newer inputs for the next layer;
• Output layer, where weights and bias are applied to hidden layer outputs and linear

neurons (OWi) generate the outputs between [−1,1];
• Output, where a prediction vector is obtained after denormalizing the output layer;

Three BPNN architectures have been selected from among different options. BPNN1 is
an 8 × 7 net with 8 sigmoid neurons connected to all inputs and bias in the hidden layer and
7 linear neurons connected to all hidden neurons and bias in the output layer. BPNN1 is the
most straightforward design to predict 7 outputs from 8 independent inputs, considering
certain similarities in the nonlinear behavior of the predictions. The main advantage of
BNN1 design is the prediction of all outputs with just one complex function. BPNN2 is an 8
× 1 net with 8 sigmoid neurons connected to all inputs and bias in the hidden layer and just
one linear neuron connected to all hidden neurons and bias in the output layer. BPNN2 is an
accurate design to predict one output from 8 independent inputs considering the nonlinear
behavior of this relationship. Different BPNN2 weights matrices and bias vectors have
been developed for each output, similarly to the case of linear regression. The advantage of
BPNN2 is the prediction of outputs independently of each other with an increased precision
even above regression. BPNN3 is a 24 × 7 net with 24 sigmoid neurons connected to all
inputs and bias in the hidden layer and 7 linear neurons connected to all hidden neurons
and bias in the output layer. BPNN3 is more complex than others. It is possible with it
to predict 7 outputs from 8 independent inputs with just one function, decreasing the
cross-influence between outputs and considering nonlinear behavior with more complex
functions. The main advantage of BPNN3 is the increased correlation between all inputs
and outputs simultaneously. Other architectures, such as fewer neurons in the hidden
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layer, have been discarded because of the lack of benefits in the results. Additionally,
the increase of up to 2 hidden layers has been discarded because the complexity of the
fitted model lays further the focus of this research as it increases the computational and
results post-processing effort. Any increment in the number of neurons in the hidden layer
improves the results of the cases described in this section.

All BPNNs have been trained with the data of 38 injection molding simulations and
tested afterward with the rest described in Section 3.2. The algorithm used is Bayesian
Regularization. It offers better results than Levenberg–Marquardt or Scaled Conjugate
Gradient with a small input data set. Although the calculation time is greater, the small
number of experiments makes it negligible. All BPNN have been retrained until the Mean
Squared Error (MSE) has been minimized and R-Squared (R2) maximized simultaneously
for training and testing experiments. Epochs, the number of iterations, is limited to 1.000,
and these finish when the adaptive weight is minimized. Expected gradients are close to
1.00 × 10−7 in the best cases (see Tables S2–S7 for all BPNNi bias and weight values).

2.5. Validation: Prediction Model Selection by Quality Features Prediction

Once predictive models are obtained, they are used to test the effects of new values
for the inputs on the quality features. This research conducts numerous additional pre-
dictive cases by using the four models. Additionally, subsequent Injection Molding (IM)
simulations are developed to compare their results with the predictions.

These additional IM simulations are helpful in determining which prediction model
is superior. The results of each quality feature of each new case are compared, and the
squared error and percentage error are calculated. For each quality feature, MSE, MPE,
and R2 are calculated. MSE and R2 for each quality feature are the metrics to compare
prediction models. Minimum MSE and maximum R2 are used to decide which prediction
model is the best.

One field of application is the development of a design for a manufacturing project.
In this case, additional results for any combination of values of input parameters can
be obtained with the selected prediction models without additional injection molding
simulations. This is a time-saving process if the prediction model is good enough. The
results of using the predictive model will allow for informed decision-making regarding
improvements in design and manufacturing conditions.

3. Results and Discussion
3.1. Injection Molding Simulation Results

In the design of thermoplastic injected components, it is customary to opt for a uniform
thickness guided by a conservative criterion. The approach to minimizing the component’s
weight involves a combination of thin thicknesses across the majority of the piece, combined
with small, thicker areas that facilitate proper filling. Simulation of the injection process
highlights that this decision carries an inescapable risk. The occurrence of incomplete
filling or warpage, alongside other defects, becomes more likely. Consequently, a more
comprehensive investigation into these defects’ underlying causes becomes imperative to
predict and prevent their appearance.

Short shots can arise from various causes. One of them involves the incorrect selection
of process parameters. A minimum flow front temperature (Tmin) below 135 ◦C could be
dangerous to complete the cavity filling. Additionally, maximum pressure (Pmax) should
not overcome the upper limit. Figure 4 shows the flow front temperature under normal
conditions in Experiment 1 (exp. 1) and the lack of plastic in critical areas (gray holes)
under bad process conditions (exp. 22).
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Figure 4. Flow front temperature for experiments 1 (a) and 22 (b) and short shot appearance.

Short shots can also appear as the result of poor part design. The difference in thickness
between the thinnest piece and the thickest flow leaders can cause a lack of filling due to
the hesitation effect. Figure 5 shows the difference in filling patterns between cases 23 and
9 due to the hesitation effect. Identical processing temperatures and speed are applied,
but the appearance of air traps produces unfilled areas. Short shots can occur even with
high injection and mold temperatures if the injection speed is not as fast as in case 9. Blue
represents the first areas being filled, and red represents the last ones. Filling of the cavity
in exp. 23 is completed, as the thickness difference is only 0.3 mm. However, in exp. 23, it
grows up to 0.7 mm. The flow advances slower in the center of the part, developing a large
red area where the border drawn by black spots reveals air traps and unfilled areas.
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Maximum volumetric shrinkage (Vshrk) and average linear distortion (Distor) are
results mostly influenced by injection molding temperature and post-filling pressure. The
analysis of the results (Table 5) reveals that extreme conditions such as high temperature
or low pressure increase both values and opposite input parameters decrease them. The
greater the volumetric shrinkage or average distortion, the greater the possibility of sink
marks or warpage appearing. A lower value of both would be associated with a highly
residual stressed part. Properly combining process parameters will lead to the desired
intermediate outcomes for these variables. However, this combination does not precisely
align with the one that prevents defects such as short shots, thus necessitating subsequent
optimization. For example, in case 22, outcomes have admissible values of 12.5% volumetric
shrinkage and 0.876% average distortion but show a short shot. The same happens for
cases 15 and 17.
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Table 5. Selected simulation results.

Experiment
Number

Tmin
(◦C)

Pmax
(Bar)

VShrk
(%)

Distor
(%)

Weight
(g)

Dim1
(mm)

Dim2
(mm)

1 163.5 696.4 11.8 0.914 339.5 528.65 272.58
2 163.0 584.9 14.3 0.984 319.2 528.00 272.36
3 163.0 584.9 14.2 0.833 320.6 528.99 272.71
4 187.1 431.2 16.3 0.977 363.3 528.13 272.26
5 181.5 552.9 12.4 0.772 360.3 529.37 272.99
6 187.1 431.2 13.2 0.802 365.4 529.45 272.86
7 164.6 563.8 12.0 0.832 315.4 529.25 272.79
8 163.0 584.9 15.7 0.990 319.0 527.90 272.27
9 132.6 619.3 13.5 0.786 320.9 529.07 272.90
10 181.5 552.9 15.1 0.926 358.6 528.20 272.56
11 181.5 552.9 14.7 0.776 360.3 529.33 272.95
12 143.2 818.8 12.7 1.001 363.3 528.47 272.36
13 143.2 818.8 11.5 0.843 365.1 529.55 272.78
14 127.7 1081.8 12.7 0.986 313.8 528.21 272.36
15 127.0 1407.8 12.5 0.877 314.1 528.19 272.36
16 127.0 1407.8 11.6 0.760 315.6 529.09 272.71
17 127.9 1382.7 12.5 0.879 319.4 528.06 272.37
18 142.8 955.4 11.6 0.848 359.6 529.51 272.80
19 126.8 1019.8 11.5 0.838 320.5 529.33 272.73
20 143.2 818.8 12.5 0.993 363.3 528.50 272.38
21 130.0 908.7 11.5 0.805 365.3 529.51 272.91
22 127.0 1407.8 12.5 0.876 314.1 528.19 272.36
23 224.8 530.1 15.6 0.831 359.7 529.14 272.73
24 218.6 481.0 14.5 0.922 363.9 528.14 272.55
25 218.6 481.0 14.8 0.774 365.5 529.16 272.89
26 191.5 630.3 15.4 0.961 313.9 527.69 272.44
27 202.9 594.5 12.5 0.832 320.6 528.92 272.78
28 224.8 530.1 16.5 0.992 357.9 527.96 272.28
29 219.8 571.6 12.8 0.781 360.2 529.17 272.97
30 218.6 481.0 16.1 0.929 363.7 528.04 272.46
31 146.8 1030.4 12.7 1.054 313.2 527.18 272.24
32 148.7 1053.5 12.8 1.034 318.6 527.56 272.25
33 129.4 1121.8 11.7 0.831 320.4 528.65 272.78
34 156.6 1072.6 12.7 1.008 357.2 526.85 272.37
35 159.6 828.9 11.6 0.852 364.9 529.44 272.74
36 146.8 1030.4 11.5 0.886 314.8 529.24 272.69
37 129.4 1121.8 12.5 0.978 318.5 527.49 272.39
38 163.5 696.4 11.8 0.914 339.5 528.65 272.58

Although the results described so far serve to control a quality process, the objective
with the weight of the part is its minimization. Obviously, the minimum weight values are
reached with the thinnest piece and leaders. The representative thickness of the component
is provided in the flat area and is originally 1.8 mm. The expected weight is approximately
432 ± 1 g. Achieving a uniform reduction in this thickness allows for the design of a
feasible component at 1.5 mm, resulting in a target weight of 372 ± 1 g. This research aims
to ascertain the feasibility of combining overall thicknesses between 1.0 and 1.2 mm with
flow leaders ranging from 1.5 to 1.7 mm to achieve a minimum weight. Outcomes go from
313 g of case 31 to 365.4 g of case 6. However, in many cases, they are associated with poor
results from the rest of the variables that basically would imply physical restrictions that
would prevent the feasibility of the part. Part weight is also slightly influenced by melt
temperature and post-injection pressure. Variations of about ±2 g depending on process
conditions are simulated, so posterior optimization work is needed.

Finally, Dimensions 1 (Dim1) and 2 (Dim2) are key factors for the dimensional quality
of the part and correct assembly in the mechanical system. Both dimensions should vary in
the same direction with changes in the injection parameters; however, this is not the case.
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The value of Dimension 2 varies mainly with thermo-volumetric changes, so any decrease
in temperature or increase in pressure will increase its value. In the second, distortion has
more influence. Distortion is inherent to the injection molding process and is increased by
residual stresses, which also increase with decreasing temperature or increasing pressure.
As the increase in distortion implies a shortening of Dimension 1, the opposite effect
happens with respect to Dimension 2.

The result of these opposing effects can be seen in Figure 6. A cross-section of the
part distortion through Dimensions 1 and 2 is represented for Experiments 1, 5, 7, and
32. The rest of the experiments follow one of these shapes, more or less. Experiment
1 (top) simulates the recommended process parameters and should fit the dimensional
tolerances. The deformed part exhibits different curvatures along the section, positive
in the center (Dim.1) and negative in the extremes (Dim.2). Warpage of the part causes
shortening of the final dimensional values compared with expected values. Experiment
32 (down) parameters are the highest mold temperature and post-injection pressure and
should compensate for Exp.1 defects. Nevertheless, the part is designed with minimum
thickness and thickest flow leaders, increasing the warpage and reducing Dimension 1 to
1.09 mm and Dimension 2 to 0.3 mm. Exp. 5 (middle top) simulates maximum melt and
mold temperatures and should be smaller than Exp.1 or Exp.32. Part thickness is 1.2 mm,
and flow leaders are 1.5 mm. More uniform thicknesses and higher process temperatures
reduce the warpage significantly, and the part shows a straight cross-section with the
longest Dimension 1, rather than expected, but some warpage reducing Dimension 2.
Exp. 7 (middle down) exhibits a smooth continuous curvature with adequate dimensions
compared to colder or less pressurized parts. This geometry is designed with the smallest
thickness for both part and flow leaders. Minimum distortion allows Dimensions 1 and 2
to fit tolerances, and cavity volume is the minimum. However, process parameters differ
from the recommended ones, so further optimization is needed again.
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The quality features extracted from IM simulations run from the D-optimal design of
experiments are shown in Table 5. These results and all the additional simulation results
for testing and validation will be named targets for further analysis.

3.2. Prediction Models Comparison and Discussion

A linear regression model with both quadratic and mixed terms has been fitted for each
output. Due to the screening design of experiments, all effects are included in the model
so that all 38 residuals are 0, and there are no residual degrees of freedom. The multiple
squared error, R2, is 1. Table S1 in supplementary data shows the predictive model’s
coefficients aij for process parameters, part quality, weight, and dimensional results.

The predicted values for all 38 simulations are exactly the same as the simulation
outcomes.

Three different architectures of back propagation neural networks have been fitted
for the results. The results obtained for BPNN1 are shown in Tables S2 and S3 in the
Supplementary Data. They show weight and bias terms between the input and hidden
layers (Table S2) and weight and bias terms between the hidden and output layer (Table S3).
Tables S4 and S5 show resultant terms for BPNN2, and Tables S6 and S7 for BPNN3.

A set of 114 additional simulations has been created to test the models, comparing
their targets with the prediction outputs. The input parameters for these new simulations
are within the range of the initial ones (Table 2), approximately dividing it by eight, as
shown in Table 6. Only thickness variations remain the same.
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Table 6. Process parameters variations for testing simulations, Octiles (Oct).

Parameters Oct.1 Oct.2 Oct.3 Oct.5 Oct.6 Oct. 7

A, Filling Time (s) 1.5 1.575 1.65 1.85 1.925 2
B, Melt Temperature (◦C) 215 225 240 260 275 285

C, Cooling Time (s) 29.5 31.5 33 37 38.5 40.5
D, Mold Temperature (◦C) 42 45 48 52 55 58
E, Post-pressure Time (s) 10.2 10.8 11.4 12.6 13.2 13.8

F, Post pressure (Bar) 340 360 380 420 440 460

R-squared measures the level of correlation for each output variable, while Mean
Squared Error and Mean Percentage Error (MPE) are effective indicators of the precision.
The comparison of the correlation (R2) and precision (MSE and MPE) of the predictions
obtained with the different models is shown in Tables 7–13.

Table 7. Correlation and errors for minimum flow front temperature.

Term Regression BPNN1 BPNN2 BPNN3

Mean Squared Error (MSE) 13.5456 7.74970 1.50553 0.03878
Mean Percentage Error (MPE) 2.64801 1.90270 0.80820 0.12848

R-Squared (R2) 0.982626 0.98730 0.99767 0.99993

Table 8. Correlation and errors for maximum molding pressure.

Term Regression BPNN1 BPNN2 BPNN3

Mean Squared Error (MSE) 1720.65 5.55311 2.11534 1.78237
Mean Percentage Error (MPE) 5.55165 0.29905 0.17997 0.19770

R-Squared (R2) 0.971839 0.99986 0.99994 0.99995

Table 9. Correlation and errors for maximum volumetric shrinkage.

Term Regression BPNN1 BPNN2 BPNN3

Mean Squared Error (MSE) 1.95318 0.98291 0.02160 0.05527
Mean Percentage Error (MPE) 10.1168 7.79060 1.12097 1.80582

R-Squared (R2) 0.296026 0.29579 0.98470 0.96033

Table 10. Correlation and errors for average linear distortion.

Term Regression BPNN1 BPNN2 BPNN3

Mean Squared Error (MSE) 0.00011 0.00517 1.3461 × 10−5 0.00022
Mean Percentage Error (MPE) 1.15390 8.12836 0.40936 1.72502

R-Squared (R2) 0.968651 0.060989 0.996164 0.940400

Table 11. Correlation and errors for total part weight.

Term Regression BPNN1 BPNN2 BPNN3

Mean Squared Error (MSE) 0.01159 0.27001 0.00471 0.00535
Mean Percentage Error (MPE) 0.03224 0.15546 0.02055 0.02160

R-Squared (R2) 0.999982 0.999438 0.999990 0.999989
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Table 12. Correlation and errors for Dimension 1 (longer).

Term Regression BPNN1 BPNN2 BPNN3

Mean Squared Error (MSE) 0.02873 0.20477 0.00257 0.01626
Mean Percentage Error (MPE) 0.03210 0.08565 0.00960 0.02416

R-Squared (R2) 0.899864 0.240797 0.990435 0.93946

Table 13. Correlation and errors for Dimension 2 (shorter).

Term Regression BPNN1 BPNN2 BPNN3

Mean Squared Error (MSE) 0.00215 0.03412 9.8153 × 10−5 0.00105
Mean Percentage Error (MPE) 0.01700 0.06777 0.00363 0.01189

R-Squared (R2) 0.929677 0.019345 0.996713 0.964266

Linear regression shows a good correlation for all results (R2 > 0.899) except the
maximum for volumetric shrinkage. BPNN1 shows a poor correlation for maximum
volumetric shrinkage and average linear distortion and none for Dimensions 1 and 2. This
lack of correlation is due to the fact that the prediction of the dimensions is more complex
than that of the average shrinkage. Warping appearance is a consequence of the residual
stresses, as explained in Section 2, and modifies the predictions of the dimensions from
what is expected. Additionally, BPNN1 simultaneously combines the same results of hidden
layer neurons in all output layer neurons, while linear regression estimates each output
independently. The combination of these two factors demonstrates the need for a more
complex neural network design to improve the results. Special consideration should be
given to the prediction of the flow parameters (flow front temperature and max pressure),
which is better with BPNN1. The reason is that they depend only on the mold-filling
parameters and are quite independent of the rest of the inputs and outputs. The good
correlation obtained for the prediction of the final weight of the piece is remarkable. The
explanation is that the thickness variation is substantially more influential than the rest of
the inputs. The analysis of the weights of BPNN1 ratifies this argument. Flow parameters
and part weight predictions are mainly weighted by neurons LW07, LW04, and LW01,
respectively. In turn, these are weighted mainly by the part thickness. The predominance of
one variable over the others increases the correlation between inputs and output. The case
of Dimensions 1 and 2 is very different. For them, the weighting is similar in all neurons,
and no input predominates in its prediction model. This is an additional source for the lack
of correlation.

Linear regression shows good precision for most of the results with high correlation.
In the case of minimum flow front temperature and maximum pressure, their MPE is 2.65%
and 5.55%, respectively. It seems not to be a high-accuracy prediction, but it could be
enough for an early design stage during the part development process. For Dimensions 1
and 2, MPE seems to be better (0.032% and 0.017%), but it corresponds to a deviation around
0.170 mm and 0.047 mm, respectively, which is too high for tolerance analysis. In the case
of BPNN1, only flow properties or part weight predictions show an acceptable precision.

BPNN2 significantly improves correlation and precision in all outputs. The reason is
that each neural network is fitted to predict one output only, respectively. So, none of the
other outputs influence the predictions. R2 goes from 0.99 for Dimension 1 up to 0.99999
for part weight. Analyzing in detail the output neurons, a similar weight from hidden
layer neurons is seen within the range of 0.497–0.998. Significantly, the contribution of any
input is not negligible in the prediction of Dimension 1. The precision is now more than
acceptable for Dimensions 1 and 2. The results for MPE (0.0096% and 0.0036%) correspond
to a deviation of around 0.0567 mm and 0.0099 mm, respectively, which is suitable for
tolerance analysis.

Finally, BPNN3 corrects the insufficiencies observed in BPNN1 in terms of correlation
and accuracy. It also improves those of linear regression. Correlation is achieved for all
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outputs where BPNN1 and regression could not. This is because it uses a greater number of
sigmoidal neurons in the hidden layer, substantially reducing the interdependence on the
output predictions. In contrast, the higher quality of the BPNN3 is achieved at the cost of a
greater use of computational resources. R2 goes from 0.93946 for Dimension 1 to 0.99998
for total part weight. The precision is now slightly lower for Dimensions 1 and 2. The
results for MPE (0.0241% and 0.0118%) correspond to a deviation of around 0.121 mm and
0.027 mm, respectively, which are accurate enough for tolerance analysis.

4. Conclusions

• A new methodology has been developed and tested for the early design of complex
plastic parts, making it possible to predict features of the final part by combining the
optimal design of experiments, process simulation, regression, neural network fitting,
and prediction model generation and application.

• Results present different prediction models for seven required output features simul-
taneously related to material, part, and process quality. These models predict newer
results in real time, varying eight input molding and part thickness design parameters
without launching additional time-consuming simulations.

• Simulation has shown the near unpredictable part dimensions due to the combination
of thermo-volumetric and residual stress effects. The results of these could be additive
or compensatory and then modify the dimensions of the part. A trial-and-error
simulation process based on rules of thumb cannot overcome this situation. For this
reason, the creation and application of a predictive model accounting for these effects
is the fastest way to achieve an optimal solution.

• A multivariable and multicriteria prediction model based on BPNN is recommended for
the prediction model. The prediction model obtained from a BPNN with 24 sigmoidal
neurons in the hidden layer (BPNN3) has shown the best precision and highest corre-
lation when predicting all 7 quality features with just one function. This number of
neurons is a multiple of 8 because the 8 inputs are the independent variables. It is also a
multiple of 3 because even though there are 7 output features, they have been selected
from three distinct fields: process, material, and part quality. The product of these two
figures explains the sufficient number of neurons. Results obtained from this model
allow better design options complying with the restrictions defined for the outputs.
For a future research study, the authors propose developing an optimization algorithm
based on the selected predictive model. Additionally, deep research is needed to in-
clude new criteria in this methodology, taking into account inputs from active agents
in the decision-making process: designers, mold makers, and converters. Moreover,
research has to focus on including high-level variables to make this knowledge and
application transferable.

• The main novelty of the paper lies in the fact that prediction models can define
seven different outputs simultaneously from eight different input parameters. Input
parameters are related not only to process conditions but also to design features such
as part thickness and flow leader thickness. Outputs are related to process, material,
and part quality, such as cavity temperature and pressure during injection, volumetric
shrinkage, distortion after ambient conditions are reached, or weight and critical
dimensions of the part.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/polym15193915/s1, Table S1: Predictive model coefficients for Min. Flow Front Temperature, Max.
Molding Pressure, Max. Volumetric Shrinkage and Average Linear Distortion, part weight dimension 1
and 2., Table S2: Weight and bias between input layer and hidden layer (BPNN1)., Table S3: Weight and
bias between hidden layer and output layer (BPNN1)., Table S4: Weight and bias between input layer
and hidden layer (BPNN2) for Dim1 prediction., Table S5: Weight and bias between hidden layer and
output layer (BPNN2) for Dim1 prediction., Table S6: Weight and bias between input layer and hidden
layer (BPNN3)., Table S7: Weight and bias between hidden layer and output layer (BPNN3).
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