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Resumen	
  
	
  
	
  
Este	
  trabajo	
  se	
  ha	
  desarrollado	
  en	
  el	
  Departamento	
  de	
  Ingeniería	
  Mecánica,	
  dentro	
  del	
  

área	
   de	
  Mecánica	
   de	
  Medios	
   Continuos	
   y	
   Teoría	
   de	
   Estructuras.	
   Su	
   principal	
   objetivo	
   es	
   la	
  
estimación	
  de	
   las	
   cargas	
   aplicadas	
   en	
   la	
   tibia	
   de	
  un	
  paciente	
   concreto	
  mediante	
  un	
  método	
  
basado	
   en	
   Redes	
   Neuronales	
   Artificiales	
   y,	
   posteriormente,	
   utilizar	
   estas	
   cargas	
   para	
   la	
  
evaluación	
  del	
  efecto	
  de	
  distintos	
   tipos	
  de	
  prótesis	
  de	
  rodilla	
  de	
  revisión	
  en	
   la	
   remodelación	
  
ósea.	
  

	
  
El	
   hueso	
   está	
   sometido	
   a	
   un	
   proceso	
   continuo	
   de	
   renovación	
   que	
   se	
   conoce	
   con	
   el	
  

nombre	
  de	
  remodelación	
  ósea.	
  Este	
  proceso	
  adaptativo	
  se	
  produce	
  debido	
  a	
  los	
   importantes	
  
cambios	
  morfológicos	
   que	
   sufre	
   el	
   hueso	
   en	
   respuesta	
   a	
   la	
   situación	
  mecánica	
   a	
   la	
   que	
   se	
  
encuentra	
   solicitado.	
   Al	
   incorporar	
   una	
   prótesis	
   al	
   hueso,	
   se	
   modifica	
   la	
   distribución	
   de	
  
tensiones	
   a	
   la	
   que	
   se	
   encuentra	
   sometido,	
   produciendo	
   una	
   formación	
   o	
   reabsorción	
   ósea	
  
dependiendo	
  de	
  la	
  zona	
  del	
  hueso	
  y	
  del	
  tipo	
  de	
  prótesis.	
  

	
  
Un	
  aspecto	
  poco	
  estudiado	
  en	
  este	
  campo	
  es	
   la	
  determinación	
  de	
   las	
  cargas	
  reales	
  a	
  

las	
  que	
  es	
  sometida	
  la	
  tibia	
  de	
  un	
  paciente	
  concreto.	
  Este	
  complejo	
  problema	
  se	
  ha	
  intentado	
  
abordar	
   en	
   este	
   Trabajo	
   Fin	
   de	
   Master	
   mediante	
   una	
   combinación	
   del	
   método	
   de	
   los	
  
Elementos	
  Finitos	
  y	
   las	
  Redes	
  Neuronales	
  Artificiales.	
  Para	
  ello	
  este	
  trabajo	
  se	
  ha	
  dividido	
  en	
  
dos	
  partes:	
  la	
  primera	
  parte	
  se	
  centra	
  en	
  la	
  determinación	
  de	
  las	
  cargas	
  que	
  afectan	
  a	
  la	
  tibia	
  
de	
  un	
  paciente	
   concreto	
  mediante	
  un	
  método	
  basado	
  en	
  Redes	
  Neuronales,	
   y	
   la	
   segunda	
   la	
  
utilización	
   de	
   dichas	
   cargas	
   para	
   analizar	
   la	
   reabsorción	
   ósea	
   que	
   producen	
   cuatro	
   tipos	
  
distintos	
  de	
  prótesis	
  de	
  rodilla	
  de	
  revisión.	
  

	
  
Para	
   la	
  primera	
  parte	
  del	
   trabajo	
  se	
  ha	
  analizado	
  el	
  problema	
  de	
  remodelación	
  ósea,	
  

aplicando	
  un	
  rango	
  de	
  condiciones	
  de	
  carga	
  al	
  modelo	
  3D	
  de	
  una	
  tibia	
  real.	
  De	
  este	
  análisis	
  se	
  
han	
   obtenido	
   unas	
   densidades	
   óseas,	
   que	
   sirven	
   de	
   entrada	
   para	
   la	
   Red	
  Neuronal	
   Artificial.	
  
Después	
   de	
   entrenar	
   la	
   red	
   con	
   una	
   función	
   sigmoidea	
   como	
   función	
   de	
   entrada,	
   distinto	
  
número	
  de	
  neuronas	
  en	
  la	
  capa	
  intermedia	
  y	
  una	
  función	
  lineal	
  como	
  salida,	
  se	
  han	
  obtenido	
  
unas	
  cargas,	
  las	
  cuales	
  se	
  han	
  comparado	
  con	
  las	
  condiciones	
  de	
  carga	
  aplicadas	
  inicialmente	
  y	
  
se	
  ha	
  obtenido	
  un	
  error	
  de	
  cálculo.	
  Tras	
  determinar	
  el	
  número	
  de	
  entradas	
  y	
  neuronas	
  de	
   la	
  
capa	
   intermedia	
  más	
   adecuado,	
   se	
   han	
   introducido	
   las	
   cargas	
   obtenidas	
   en	
   el	
  modelo	
   de	
   la	
  
tibia	
  con	
  distintas	
  prótesis,	
  evaluando	
  su	
  efecto	
  en	
  la	
  remodelación	
  ósea.	
  

	
  
Como	
   parte	
   clínica	
   de	
   este	
   trabajo	
   se	
   asistió	
   a	
   una	
   intervención	
   quirúrgica	
   en	
   el	
  

Hospital	
   Clínico	
  Universitario	
   Blesa,	
   en	
   la	
   que	
   se	
   realizó	
   un	
   recambio	
   de	
   prótesis	
   de	
   rodilla.	
  
Además	
   se	
   han	
   mantenido	
   reuniones	
   periódicas	
   con	
   médicos	
   del	
   Departamento	
   de	
  
Traumatología	
  de	
  dicho	
  hospital.	
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1.	
  Introducción	
  

	
  
1.1. La	
  Biomecánica	
  
	
  
La	
   biomecánica	
   es	
   una	
   disciplina	
   científica	
   que	
   tiene	
   por	
   objetivo	
   el	
   estudio	
   de	
   las	
  

estructuras	
  de	
  carácter	
  mecánico	
  que	
  existen	
  en	
  los	
  seres	
  vivos,	
  fundamentalmente	
  del	
  cuerpo	
  
humano.	
  Esta	
  área	
  de	
  conocimiento	
   se	
  apoya	
  en	
  diversas	
   ciencias	
  biomédicas,	
  utilizando	
   los	
  
conocimientos	
  de	
  la	
  mecánica,	
   la	
   ingeniería,	
   la	
  anatomía,	
   la	
  fisiología	
  y	
  otras	
  disciplinas,	
  para	
  
estudiar	
   el	
   comportamiento	
   del	
   cuerpo	
   humano	
   y	
   resolver	
   los	
   problemas	
   derivados	
   de	
   las	
  
diversas	
   condiciones	
   a	
   las	
   que	
   puede	
   verse	
   sometido.	
   La	
   biomecánica	
   ha	
   tenido	
   un	
   gran	
  
desarrollo	
  en	
  relación	
  con	
  aplicaciones	
  de	
  la	
  ingeniería,	
  informática	
  y	
  de	
  modelos	
  matemáticos,	
  
para	
  el	
  conocimiento	
  de	
  los	
  sistemas	
  biológicos	
  y	
  de	
  partes	
  del	
  cuerpo	
  humano,	
  facilitando	
  su	
  
aplicación	
  práctica	
  y	
  su	
  utilización	
  como	
  nuevos	
  métodos	
  de	
  valoración	
  y	
  diagnóstico.	
  	
  

El	
   objetivo	
   de	
   la	
   biomecánica	
   es	
   resolver	
   los	
   problemas	
   que	
   surgen	
   de	
   las	
   diversas	
  
condiciones	
   a	
   las	
   que	
   puede	
   verse	
   sometido	
   nuestro	
   cuerpo	
   en	
   distintas	
   situaciones.	
   Las	
  
posibilidades	
  que	
   la	
  biomecánica	
  ofrece	
  al	
  plantear	
  y	
  resolver	
  problemas	
  relacionados	
  con	
   la	
  
mejora	
   de	
   nuestra	
   salud	
   y	
   calidad	
   de	
   vida	
   la	
   han	
   consolidado	
   como	
   un	
   campo	
   de	
  
conocimientos	
   en	
   continua	
   expansión,	
   capaz	
   de	
   aportar	
   soluciones	
   científicas	
   y	
   tecnológicas	
  
muy	
  beneficiosas	
  para	
  nuestro	
  entorno	
  más	
  inmediato.	
  

La	
  proyección	
  industrial	
  de	
  la	
  biomecánica	
  ha	
  alcanzado	
  a	
  diversos	
  sectores,	
  sirviendo	
  
de	
   base	
   para	
   la	
   concepción	
   y	
   adaptación	
   de	
   numerosos	
   productos:	
   técnicas	
   de	
   diagnóstico,	
  
implantes	
   e	
   instrumental	
   quirúrgico,	
   prótesis,	
   ayudas	
   técnicas	
   a	
   personas	
   con	
   discapacidad,	
  
sistemas	
   de	
   evaluación	
   de	
   nuestras	
   actividades,	
   herramientas	
   y	
   sistemas	
   de	
   seguridad	
   en	
  
automoción,	
  entre	
  otros	
  muchos.	
  

Uno	
   de	
   los	
   desarrollos	
   más	
   importantes	
   de	
   la	
   biomecánica	
   está	
   asociado	
   con	
   la	
  
ortopedia.	
  Este	
  campo	
  se	
  ha	
  convertido	
  en	
  una	
  disciplina	
  utilizada	
   tanto	
  en	
   la	
  vertiente	
  más	
  
relacionada	
  con	
  la	
  ingeniería,	
  para	
  el	
  desarrollo	
  de	
  nuevos	
  implantes	
  y	
  materiales,	
  como	
  en	
  el	
  
terreno	
  de	
  la	
  biología,	
  en	
  investigaciones	
  sobre	
  los	
  procesos	
  experimentados	
  por	
  las	
  células	
  en	
  
relación	
  a	
  las	
  tensiones	
  y	
  esfuerzos,	
  así	
  como	
  en	
  simulaciones	
  de	
  tejidos	
  (cartílagos,	
  tendones,	
  
huesos...).	
  

Debido	
   al	
   envejecimiento	
  de	
   la	
   población	
   y	
   al	
   aumento	
  de	
   los	
   accidentes	
   de	
   tráfico,	
  
uno	
  de	
  los	
  grandes	
  retos	
  a	
   los	
  que	
  se	
  enfrentan	
  tanto	
  médicos	
  como	
  ingenieros	
  es	
   la	
  mejora	
  
de	
   los	
   diseños	
   de	
   prótesis.	
   La	
   incorporación	
   en	
  un	
  hueso	
   fracturado	
  de	
   un	
   implante,	
   ya	
   sea	
  
provisional	
  o	
  definitivo,	
  produce	
  una	
  redistribución	
  de	
  tensiones	
  que	
  afectan	
  a	
  las	
  propiedades	
  
del	
   hueso	
  modificándolas.	
   La	
   aparición	
   de	
   pérdidas	
   óseas,	
   el	
   aflojamiento	
   entre	
   implante	
   y	
  
hueso,	
  y	
  la	
  falta	
  de	
  estabilización	
  de	
  la	
  fractura	
  son	
  efectos	
  importantes	
  como	
  consecuencia	
  de	
  
la	
  inclusión	
  de	
  un	
  implante	
  protésico.	
  

El	
  desarrollo	
  de	
  técnicas	
  de	
  simulación	
  por	
  ordenador	
  del	
  comportamiento	
  de	
  huesos	
  y	
  
tendones	
  hace	
  posible	
  conocer	
  de	
   forma	
  más	
  aproximada	
  cuál	
  será	
   la	
   respuesta	
  del	
  hueso	
  a	
  
largo	
  plazo.	
  Es	
   importante	
  señalar	
  que	
  el	
  uso	
  de	
  técnicas	
  computacionales,	
  aunque	
  sean	
  más	
  
rentables,	
   no	
   pueden	
   sustituir	
   completamente	
   a	
   las	
   técnicas	
   experimentales.	
   Los	
   resultados	
  
obtenidos	
  mediante	
  sistemas	
  informáticos	
  deben	
  ser	
  validados	
  con	
  ensayos	
  en	
  laboratorio.	
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1.2. La	
  articulación	
  de	
  la	
  rodilla	
  y	
  sus	
  prótesis	
  de	
  revisión	
  
	
  

1.2.1.	
  	
  	
  	
  	
  	
  Anatomía	
  de	
  la	
  rodilla	
  
	
  
La	
  rodilla	
  es	
   la	
  articulación	
  más	
  grande	
  del	
  cuerpo	
  humano,	
  así	
  como	
  una	
  de	
   las	
  más	
  

complejas.	
  Está	
  compuesta	
  por	
  el	
  juego	
  de	
  tres	
  huesos,	
  fémur,	
  tibia	
  y	
  rótula.	
  Los	
  dos	
  primeros	
  
conforman	
   el	
   cuerpo	
   principal	
   de	
   la	
   articulación,	
   que	
   soporta	
   el	
   peso	
   corporal,	
   y	
   la	
   rótula	
  
cumple	
  una	
  misión	
  atípica,	
  a	
  modo	
  de	
  polea	
  sobre	
  la	
  que	
  se	
  apoyan	
  los	
  tendones	
  cuadricipital	
  
y	
  rotuliano	
  (Figura	
  1.1)	
  

Es	
   además	
   una	
   articulación	
   bicondílea.	
   Los	
   dos	
   cóndilos	
   femorales	
   ruedan	
   sobre	
   la	
  
superficie	
  casi	
  plana	
  de	
  los	
  platillos	
  tibiales.	
  El	
  apoyo	
  de	
  un	
  hueso	
  sobre	
  otro	
  es	
  libre,	
  sin	
  topes	
  
óseos	
  para	
  mantenerla	
  y	
  necesita	
  el	
  amarre	
  de	
  los	
  ligamentos.	
  

Las	
  superficies	
  de	
  contacto	
  entre	
  los	
  huesos	
  están	
  cubiertas	
  por	
  una	
  capa	
  de	
  cartílago.	
  
Todo	
  el	
  conjunto	
  está	
  envuelto	
  por	
  una	
  cápsula	
  articular,	
  constituyendo	
  un	
  espacio	
  cerrado.	
  La	
  
cubierta	
  íntima	
  de	
  la	
  cápsula	
  es	
  la	
  membrana	
  sinovial,	
  cuya	
  misión	
  principal	
  es	
  la	
  secreción	
  del	
  
líquido	
  del	
  mismo	
  nombre,	
  fundamental	
  en	
  la	
  fisiología	
  articular	
  con	
  misiones	
  de	
  lubricación	
  y	
  
defensa.	
  El	
  exceso	
  de	
  secreción	
  da	
  lugar	
  a	
  un	
  cúmulo	
  sinovial	
  que	
  causa	
  aumento	
  de	
  la	
  presión	
  
intrarticular	
  y	
  genera	
  el	
  molesto	
  y	
  conocido	
  derrame.	
  

	
  
	
  

	
  
 

Figura 1.1. Articulación de la rodilla 
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1.2.2.	
  	
  	
  	
  	
  	
  Artroplastia	
  total	
  de	
  rodilla	
  

	
  
	
   El	
   reemplazo	
   total	
   de	
   rodilla	
   (RTR)	
   es	
   un	
   procedimiento	
   quirúrgico	
   que	
   se	
  

realiza	
   para	
   reemplazar	
   la	
   articulación	
   de	
   la	
   rodilla	
   por	
   una	
   prótesis	
   artificial.	
   Es	
   también	
  
llamado	
  artroplastia	
  de	
  rodilla,	
  artroplastia	
  total	
  de	
  rodilla,	
  o	
  artroplastia	
  tricompartimental	
  de	
  
rodilla.	
  

Esta	
  técnica	
  fue	
  realizada	
  por	
  primera	
  vez	
  en	
  el	
  año	
  1968	
  y	
  es	
  uno	
  de	
  los	
  avances	
  más	
  
importantes	
   de	
   la	
   cirugía	
   ortopédica.	
   Cada	
   año,	
   se	
   llevan	
   a	
   cabo	
   aproximadamente	
  478	
   000	
  
reemplazos	
  totales	
  de	
  rodilla	
  en	
  los	
  Estados	
  Unidos.	
  

El	
  RTR	
  es	
  normalmente	
  efectuado	
  en	
  pacientes	
  que	
  tienen	
  desgastes	
  o	
  daños	
  severos	
  
en	
   la	
   articulación,	
   debido	
   a	
   la	
   artritis	
   o	
   a	
   una	
   lesión.	
   En	
   estos	
   casos	
   las	
   personas	
   pueden	
  
presentar	
  dificultad	
  para	
  realizar	
  sus	
  actividades	
  de	
  la	
  vida	
  diaria	
  tales	
  como	
  caminar	
  o	
  subir	
  y	
  
bajar	
  escaleras	
  e	
  incluso	
  pueden	
  sentir	
  molestias	
  estando	
  sentado	
  o	
  acostado.	
  	
  

Al	
  restaurar	
  las	
  superficies	
  dañadas	
  y	
  desgastadas	
  de	
  la	
  rodilla,	
  la	
  cirugía	
  de	
  reemplazo	
  
total	
  de	
  rodilla	
  puede	
  aliviar	
  el	
  dolor,	
  corregir	
  la	
  deformidad	
  de	
  la	
  pierna	
  y	
  ayudarle	
  a	
  realizar	
  
las	
  actividades	
  cotidianas.	
  

La	
  operación	
  proporciona	
  un	
  alivio	
  del	
  dolor,	
  para	
  que	
  la	
  persona	
  pueda	
  ser	
  capaz	
  de	
  
llevar	
   a	
   cabo	
   las	
   actividades	
   del	
   diario.	
   La	
   rodilla	
   artificial	
   podría	
   permitirle	
   retornar	
   a	
   sus	
  
actividades	
  deportivas	
   o	
   laborales,	
   pero	
   las	
   actividades	
  que	
   sobrecarguen	
   la	
   rodilla	
   artificial,	
  
deben	
  ser	
  evitadas.	
  	
  

	
  
1.2.3.	
  	
  	
  	
  	
  	
  Prótesis	
  de	
  rodilla	
  de	
  revisión	
  

	
  
	
   Las	
   prótesis	
   primarias	
   pueden	
   sufrir	
   un	
   fallo	
   por	
   aflojamiento,	
  
metalosis	
  o	
  diversas	
  infecciones.	
  En	
  ese	
  caso	
  se	
  realiza	
  una	
  cirugía	
  de	
  revisión	
  
en	
   la	
   que	
   se	
   sustituyen	
   la	
   prótesis	
   primaria	
   por	
   una	
   prótesis	
   con	
  
características	
  diferentes	
  y	
  cuya	
  diferencia	
   fundamental	
  es	
  que	
   los	
  vástagos	
  
(femoral	
   y	
   tibial)	
   tienen	
   una	
   mayor	
   longitud.	
   A	
   estas	
   prótesis	
   se	
   les	
   llama	
  
prótesis	
  de	
  revisión.	
  
	
  

Prótesis	
  de	
  vainas	
  TC3	
  (Depuy,	
  Johnson	
  &	
  Johnson) 
	
   	
  
El	
  aflojamiento	
  aséptico	
  y	
  el	
  desgaste	
  son	
  las	
  principales	
  causas	
  de	
  las	
  

revisiones	
   de	
   rodilla	
   en	
  más	
   del	
   40%	
   de	
   los	
   pacientes.	
   La	
   bandeja	
   de	
   esta	
  
prótesis	
  (Figuras	
  1.2	
  y	
  1.3)	
  proporciona	
  libertad	
  de	
  rotación	
  para	
  distribuir	
  las	
  
fuerzas	
   de	
   aflojamiento,	
   haciéndola	
   adecuada	
   para	
   aumentar	
   la	
   restricción	
  
mecánica.	
  

	
  
	
  
Su	
   bandeja	
   universal	
   la	
   hace	
   compatible	
   con	
   todas	
   las	
  

inserciones	
   de	
   plataforma	
   giratoria	
   de	
   las	
   prótesis	
   constreñidas	
   y	
  
con	
  bisagra.	
  Las	
  vainas	
  metafisarias	
  cargan	
  el	
  hueso	
  para	
  formar	
  una	
  
base	
   sólida,	
   evitando	
   la	
   resección	
   ósea	
   excesiva	
   y	
   ayudando	
   a	
  
preservar	
  la	
  restauración	
  de	
  la	
  articulación.	
  A	
  través	
  de	
  una	
  serie	
  de	
  
mejoras	
   diseñadas	
   para	
   aumentar	
   la	
   artroplastia	
   total	
   de	
   rodilla,	
  
esta	
   solución	
   quirúrgica	
   puede	
   resultar	
   en	
   soluciones	
   más	
  
personalizadas	
  y	
  una	
  mayor	
  facilidad	
  de	
  uso.	
  

	
  
	
  

Figura 1.2. Prótesis de 
vainas TC3 (Depuy)	
  

Figura 1.3. Prótesis de 
vainas TC3 (Depuy) 
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Prótesis	
  con	
  offset	
  LCCK	
  (Zimmer) 
	
  
	
  
El	
   componente	
   femoral	
   NexGen	
   Legacy	
   LCCK	
   (Figura	
   1.4)	
   ha	
   sido	
  

desarrollado	
  para	
  pacientes,	
  que	
  según	
  el	
  cirujano,	
  requieran	
  una	
  estabilización	
  
protésica	
   adicional	
   debido	
   a	
   una	
   función	
   defectuosa	
   de	
   los	
   ligamentos	
   tanto	
  
laterales	
  como	
  cruzados	
  y	
  además	
  requieran	
  bloques	
  de	
  aumento	
  y/o	
  vástagos	
  
de	
  extensión	
  debido	
  a	
  stocks	
  óseos	
  inadecuados.	
  Los	
  componentes	
  LCCK	
  están	
  
disponibles	
  únicamente	
  en	
  una	
  versión	
  no	
  recubierta	
  para	
  fijación	
  cementada.	
  

	
  
	
  

	
  
	
  
	
  
	
  
Para	
   pacientes	
   con	
   unos	
   ligamentos	
   laterales	
   no	
   funcionales	
   o	
  

para	
   aquellas	
   rodillas	
   que	
   no	
   pueden	
   ser	
   estabilizadas	
   mediante	
   las	
  
usuales	
   liberaciones	
   de	
   ligamentos,	
   la	
   rodilla	
   LCCK	
   presenta	
   una	
  
eminencia	
   tibial	
   elevada	
   y	
   un	
   cajón	
   intercondíleo	
   más	
   profundo.	
   Un	
  
ajuste	
  adecuado	
  entre	
   la	
  eminencia	
  y	
  el	
   cajón	
  proporciona	
  estabilidad	
  a	
  
medida	
   que	
   el	
   rollback	
   natural	
   es	
   inducido,	
   inhibiendo	
   la	
   subluxación	
  
posterior,	
   limitando	
   el	
   movimiento	
   en	
   varo/valgo	
   a	
   1.25	
   grados	
   y	
   la	
  
rotación	
   interna/externa	
   a	
   2	
   grados.	
   Este	
   diseño	
   acomoda	
   un	
   rango	
   de	
  
movimiento	
  teórico	
  superior	
  a	
  los	
  120	
  grados	
  (Figura	
  1.5).	
  

	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  

	
  
	
  

	
   	
  

Figura 1.4. Prótesis 
LCCK (Zimmer) 

Figura 1.5. Vástago 
en offset	
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1.3. Objetivos	
  
	
  

El	
   hueso	
   está	
   sometido	
   a	
   un	
   proceso	
   continuo	
   de	
   renovación	
   que	
   se	
   conoce	
   con	
   el	
  
nombre	
  de	
  remodelación	
  ósea.	
  Este	
  proceso	
  adaptativo	
  se	
  produce	
  debido	
  a	
  los	
   importantes	
  
cambios	
  morfológicos	
   que	
   sufre	
   el	
   hueso	
   en	
   respuesta	
   a	
   la	
   situación	
  mecánica	
   a	
   la	
   que	
   se	
  
encuentra	
  solicitado.	
  La	
  incorporación	
  de	
  una	
  prótesis	
  acelera	
  este	
  proceso	
  adaptativo.	
  

	
  
Uno	
   de	
   los	
   aspectos	
   menos	
   estudiado	
   y	
   más	
   complejo	
   en	
   este	
   campo	
   es	
   la	
  

determinación	
  de	
  las	
  cargas	
  que	
  actúan	
  en	
  la	
  tibia.	
  De	
  ahí	
  que	
  uno	
  de	
  los	
  principales	
  objetivos	
  
de	
  este	
  TFM	
  sea	
  la	
  estimación	
  de	
  las	
  cargas	
  que	
  actúan	
  sobre	
  la	
  tibia	
  de	
  un	
  paciente	
  concreto	
  
a	
  partir	
  de	
  la	
  distribución	
  de	
  su	
  densidad	
  ósea.	
  

	
  
Para	
  alcanzar	
  este	
  objetivo	
  se	
  va	
  a	
  plantear	
  una	
  metodología	
  que	
  combina	
  el	
  método	
  

de	
  los	
  elementos	
  finitos	
  con	
  las	
  redes	
  neuronales.	
  Para	
  extrapolar	
  este	
  problema	
  a	
  la	
  vida	
  real	
  
y	
   obtener	
   unos	
   resultados	
   más	
   concretos	
   se	
   puede	
   utilizar	
   información	
   de	
   un	
   paciente	
   en	
  
particular	
   como	
   su	
   geometría	
   del	
   hueso	
   y	
   la	
   distribución	
   de	
   densidad	
   ósea.	
   En	
   realidad,	
   el	
  
problema	
  que	
  se	
  plantea	
  es	
  de	
  dinámica	
  inversa.	
  Partiendo	
  de	
  una	
  distribución	
  de	
  densidades,	
  
se	
   quiere	
   saber	
   qué	
   cargas	
   generan	
   estas	
   densidades,	
   esto	
   se	
   debe	
   a	
   que	
   la	
   estructura	
  
morfológica	
   del	
   hueso	
   varía	
   en	
   función	
   de	
   las	
   condiciones	
   de	
   carga	
   (remodelación).	
   La	
  
aplicación	
  de	
  estas	
  metodologías	
  de	
  dinámica	
  inversa	
  es	
  muy	
  compleja	
  y	
  costosa,	
  sin	
  embargo,	
  
existen	
  otras	
  técnicas	
  que	
  requieren	
  un	
  tiempo	
  computacional	
  menor.	
  Por	
  ello,	
  en	
  este	
  trabajo	
  	
  
se	
  va	
  a	
  utilizar	
  una	
  metodología	
  que	
  consiste	
  en	
  la	
  aplicación	
  de	
  redes	
  neuronales,	
  en	
  concreto,	
  
MLP	
  perceptrón	
  multicapa	
  y	
  el	
  análisis	
  por	
  elementos	
  finitos	
  con	
  un	
  modelo	
  de	
  remodelación	
  
ósea.	
  

	
  
El	
   segundo	
   objetivo	
   de	
   este	
   TFM	
   es	
   la	
   aplicación	
   de	
   las	
   cargas	
   anteriormente	
  

obtenidas	
  para	
  determinar	
  la	
  prótesis	
  de	
  rodilla	
  de	
  revisión	
  más	
  adecuada	
  para	
  un	
  paciente	
  
concreto.	
  Cuando	
  se	
  incorpora	
  un	
  implante	
  en	
  el	
  hueso,	
  se	
  produce	
  una	
  importante	
  alteración	
  
del	
  estado	
   tensional	
   sobre	
  el	
   tejido.	
  Por	
  ejemplo,	
  el	
   implante,	
  que	
  posee	
  una	
  mayor	
   rigidez,	
  
absorbe	
   las	
  cargas	
  a	
   las	
  que	
  se	
  somete	
  el	
  hueso,	
  dejando	
  el	
  hueso	
  descargado.	
  Esta	
   falta	
  de	
  
estímulos	
   mecánicos	
   en	
   el	
   hueso	
   provoca	
   un	
   proceso	
   degenerativo	
   conocido	
   como	
  
reabsorción	
  ósea.	
  Para	
  mantener	
  sus	
  propiedades	
  mecánicas,	
  el	
  hueso	
  necesita	
  un	
  cierto	
  nivel	
  
de	
   estímulo	
   mecánico.	
   Se	
   pretende	
   analizar	
   entre	
   varios	
   diseños	
   de	
   prótesis	
   de	
   rodilla	
   de	
  
revisión	
   (prótesis	
   de	
   vainas,	
   prótesis	
   en	
   offset	
   sin	
   suplemento,	
   prótesis	
   en	
   offset	
   con	
  
suplemento	
  y	
  prótesis	
  con	
  vástago	
  recto)	
  el	
  más	
  adecuado	
  para	
  el	
  paciente.	
  

	
  
	
  

1.4. Descripción	
  del	
  trabajo	
  
	
  
Este	
  Trabajo	
  Fin	
  de	
  Máster	
  está	
  dividido	
  en	
  4	
  capítulos,	
  seguidamente	
  se	
  realizará	
  una	
  

breve	
  descripción	
  de	
  cada	
  uno	
  de	
  ellos.	
  
	
  
En	
   el	
   Capítulo	
   1	
   hace	
   una	
   breve	
   introducción	
   a	
   la	
   biomecánica,	
   la	
   anatomía	
   de	
   la	
  

rodilla	
  y	
  los	
  tipos	
  de	
  prótesis	
  estudiados	
  en	
  este	
  trabajo.	
  
	
  
En	
   el	
   Capítulo	
   2	
   se	
   realiza	
   una	
   breve	
   explicación	
   de	
   qué	
   son	
   las	
   redes	
   neuronales	
  

artificiales,	
  el	
  procedimiento	
  llevado	
  a	
  cabo	
  para	
  la	
  determinación	
  de	
  las	
  cargas	
  en	
  la	
  tibia	
  de	
  
un	
  paciente	
  concreto	
  y	
  los	
  resultados	
  y	
  conclusiones	
  obtenidas	
  del	
  mismo.	
  

 



 11 

En	
   el	
  Capítulo	
   3	
   se	
   explica	
   la	
  metodología	
   seguida	
   para	
   el	
   análisis	
   de	
   remodelación	
  
ósea	
   tras	
   la	
   incorporación	
   de	
   una	
   prótesis	
   de	
   revisión,	
   utilizando	
   las	
   cargas	
   obtenidas	
   en	
   el	
  
capítulo	
   2.	
   De	
   este	
   procedimiento	
   se	
   analizará	
   la	
   influencia	
   de	
   cada	
   tipo	
   de	
   prótesis	
   en	
   la	
  
reabsorción	
   ósea,	
   con	
   su	
   consiguiente	
   aplicación	
   a	
   la	
  mejora	
   de	
   los	
   diseños	
   aplicados	
   a	
   un	
  
paciente	
  concreto.	
  

  
En	
   el	
   Capítulo	
   4	
   se	
   detallan	
   los	
   resultados	
   y	
   conclusiones	
   finales	
   de	
   los	
   puntos	
  

anteriormente	
  citados.	
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2.	
  Redes	
  neuronales	
  aplicadas	
  a	
  la	
  
determinación	
  de	
  cargas	
  en	
  la	
  tibia	
  de	
  
un	
  paciente	
  concreto	
  

	
  
2.1 .	
  	
   Redes	
  neuronales:	
  Introducción	
  
	
  
Las	
   redes	
   neuronales	
   artificiales	
   (RNA)	
   son	
   modelos	
   matemáticos	
   que	
   intentan	
  

reproducir	
   el	
   funcionamiento	
   del	
   sistema	
   nervioso.	
   Como	
   todo	
   modelo	
   realizan	
   una	
  
simplificación	
  del	
  sistema	
  real	
  que	
  simula	
  y	
  toma	
  las	
  características	
  principales	
  del	
  mismo	
  para	
  
la	
  resolución	
  de	
  una	
  tarea	
  determinada.	
  

La	
  neurona	
  artificial	
  es	
  un	
  elemento	
  de	
  procesamiento	
  simple	
  que	
  a	
  partir	
  de	
  un	
  vector	
  
de	
  entradas	
  produce	
  múltiples	
  salidas.	
  En	
  general	
  podemos	
  encontrar	
  tres	
  tipos	
  de	
  neuronas	
  
artificiales:	
  de	
  entrada,	
  ocultas	
  y	
  de	
  salida.	
  

Una	
   vez	
   definida	
   el	
   tipo	
   de	
   neurona	
   que	
   se	
   utilizará	
   en	
   un	
  modelo	
   de	
   redes	
   neuronales	
  
artificiales	
   es	
   necesario	
   definir	
   la	
   topología	
   de	
   la	
   misma.	
   La	
   organización	
   y	
   disposición	
   de	
   las	
  
neuronas	
  dentro	
  de	
  una	
  red	
  neuronal	
  se	
  denomina	
  topología,	
  y	
  viene	
  dada	
  por	
  el	
  número	
  de	
  capas,	
  
la	
  cantidad	
  de	
  neuronas	
  por	
  capa,	
  el	
  grado	
  de	
  conectividad,	
  y	
  el	
  tipo	
  de	
  conexión	
  entre	
  neuronas.	
  

Una	
  red	
  puede	
  estar	
  formada	
  por	
  una	
  única	
  capa	
  de	
  neuronas.	
  En	
  este	
  caso	
  hablamos	
  de	
  
redes	
  monocapa,	
   y	
   las	
   neuronas	
   que	
   conforman	
   dicha	
   capa	
   cumplen	
   la	
   función	
   de	
   neuronas	
   de	
  
entrada	
  y	
  salida	
  simultáneamente.	
  Cuando	
  la	
  red	
  está	
  compuesta	
  por	
  dos	
  o	
  más	
  capas	
  hablamos	
  de	
  
redes	
   multicapa.	
   A	
   su	
   vez,	
   hablamos	
   de	
   redes	
   neuronales	
   con	
   conexión	
   hacia	
   delante	
   (redes	
  
feedforward)	
  cuando	
  las	
  conexiones	
  entre	
  las	
  distintas	
  neuronas	
  de	
  la	
  red	
  siguen	
  un	
  único	
  sentido,	
  
desde	
   la	
   entrada	
  de	
   la	
   red	
  hacia	
   la	
   salida	
  de	
   la	
  misma.	
  Cuando	
   las	
   conexiones	
  pueden	
   ser	
   tanto	
  
hacia	
  delante	
  como	
  hacia	
  atrás	
  hablamos	
  de	
  redes	
  recurrentes	
  (redes	
  feedback).	
  

Durante	
   la	
   operatoria	
   de	
   una	
   red	
   neuronal	
   podemos	
   distinguir	
   claramente	
   dos	
   fases	
   o	
  
modos	
  de	
  operación:	
  la	
  fase	
  de	
  aprendizaje	
  o	
  entrenamiento,	
  y	
  la	
  fase	
  de	
  operación	
  o	
  test.	
  Durante	
  
la	
  primera	
   fase,	
   la	
   fase	
  de	
  aprendizaje,	
   la	
   red	
  es	
  entrenada	
  para	
   realizar	
  un	
  determinado	
   tipo	
  de	
  
procesamiento.	
   Una	
   vez	
   alcanzado	
   un	
   nivel	
   de	
   entrenamiento	
   adecuado,	
   se	
   pasa	
   a	
   la	
   fase	
   de	
  
operación,	
  donde	
  la	
  red	
  es	
  utilizada	
  para	
  llevar	
  a	
  cabo	
  la	
  tarea	
  para	
  la	
  cual	
  fue	
  entrenada.	
  

El	
   algoritmo	
   de	
   entrenamiento/aprendizaje	
   supervisado	
   más	
   común	
   utilizado	
   para	
   una	
  
MLP	
  (multilayer	
  perceptron),	
  es	
  el	
  algoritmo	
  llamado	
  Backpropagation.	
  Este	
  algoritmo	
  surgió	
  de	
  la	
  
búsqueda	
  de	
  un	
  algoritmo	
  para	
  entrenar	
  específicamente	
  a	
  la	
  MLP.	
  Es	
  un	
  tanto	
  complejo	
  ya	
  que	
  se	
  
toma	
  la	
   información	
  del	
  comportamiento	
  de	
  la	
  red	
  en	
  el	
  sentido	
  directo	
  de	
  la	
  red	
  y	
  en	
  el	
  sentido	
  
inverso,	
  esto	
  se	
  realiza	
  por	
  la	
  necesidad	
  de	
  modificar	
  el	
  comportamiento	
  de	
  las	
  capas	
  ocultas.	
  

El	
   algoritmo	
   Backpropagation	
   tiene	
   como	
   objetivo	
   usar	
   la	
   diferencia	
   entre	
   las	
   salidas	
  
deseadas	
  y	
  las	
  salidas	
  actuales	
  en	
  la	
  capa	
  de	
  salida	
  de	
  la	
  red	
  para	
  cambiar	
  los	
  pesos	
  (indicados	
  con	
  
valores	
  aleatorios	
  pequeños)	
  con	
  el	
   fin	
  de	
  reducir	
  al	
  mínimo	
  esta	
  diferencia	
   (error).	
  Esto	
  se	
   logra	
  
mediante	
  una	
  serie	
  de	
  interacciones	
  donde	
  se	
  modifica	
  cada	
  peso	
  de	
  derecha	
  a	
  izquierda	
  (sentido	
  
inverso	
   de	
   la	
   propagación	
   de	
   información	
   en	
   la	
   red)	
   hasta	
   modificarse	
   los	
   pesos	
   de	
   la	
   capa	
   de	
  
entrada	
  prosiguiendo	
  nuevamente	
  con	
  la	
  propagación	
  de	
  la	
  información	
  de	
  entrada,	
  esto	
  hasta	
  que	
  
la	
  diferencia	
  entra	
  la	
  salida	
  deseada	
  y	
  la	
  obtenida	
  en	
  cada	
  neurona	
  de	
  salida	
  sea	
  mínima.	
  
	
   Más	
  detalle	
  de	
  las	
  redes	
  neuronales	
  se	
  encuentran	
  en	
  el	
  Anexo	
  I.	
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2.2.	
   Planteamiento	
  de	
  la	
  metodología	
  desarrollada	
  
	
  

En	
   este	
   trabajo	
   se	
   ha	
   desarrollado	
   una	
   metodología	
   que	
   consiste	
   en	
   resolver	
   dos	
  
problemas	
   y	
   comparar	
   los	
   resultados	
   obtenidos;	
   estos	
   dos	
   problemas	
   son	
   el	
   problema	
   de	
  
remodelación	
  ósea	
  y	
  el	
  problema	
  inverso	
  de	
  remodelación	
  ósea	
  (Figura	
  2.1).	
  

El	
  problema	
  de	
  remodelación	
  ósea	
  se	
  ha	
  resuelto	
  utilizando	
  un	
  modelo	
  de	
  elementos	
  
finitos	
  3D	
  de	
  una	
  tibia	
  real	
  de	
  un	
  paciente	
  concreto.	
  Este	
  modelo	
  de	
  remodelación	
  ósea	
  se	
  ha	
  
calculado	
   varias	
   veces	
   con	
   el	
   objetivo	
   de	
   obtener	
   un	
   amplio	
   rango	
   de	
   densidades	
   óseas	
  
debidas	
  a	
  la	
  acción	
  de	
  diversas	
  cargas.	
  Esta	
  variación	
  de	
  carga	
  se	
  ha	
  realizado	
  con	
  el	
  objetivo	
  
de	
   suplir	
   la	
   carencia	
  de	
  datos,	
   en	
   referencia	
  a	
  diferentes	
   casos	
  de	
  pacientes	
  específicos.	
  Por	
  
ello,	
   se	
   ha	
   cogido	
   una	
   geometría	
   real	
   de	
   un	
   único	
   paciente	
   y	
   se	
   ha	
   sometido	
   a	
   diferentes	
  
condiciones	
  de	
  carga,	
  obteniéndose	
  diversas	
  distribuciones	
  óseas.	
  

	
  Por	
   otro	
   lado,	
   la	
   resolución	
   del	
   problema	
   inverso	
   de	
   remodelación	
   ósea	
   nos	
   dará	
  
como	
   datos	
   de	
   salida	
   el	
  módulo	
   de	
   carga	
   y	
   el	
   porcentaje	
   de	
   dicha	
   carga	
   repartido	
   en	
   cada	
  
cóndilo	
   que	
   genera	
   una	
   determinada	
   distribución	
   de	
   densidad.	
   Para	
   obtener	
   estos	
   datos	
   de	
  
salida	
  se	
  hace	
  necesaria	
  la	
  utilización	
  de	
  un	
  modelo	
  matemático.	
  En	
  este	
  trabajo	
  se	
  ha	
  utilizado	
  
el	
  modelo	
  de	
  red	
  neuronal	
  artificial	
  (RNA).	
  Una	
  vez	
  establecido	
  el	
  modelo	
  matemático	
  a	
  utilizar	
  
debemos	
   determinar	
   los	
   parámetros	
   de	
   entrada,	
   en	
   nuestro	
   caso	
   corresponden	
   a	
   los	
  
elementos	
  seleccionados	
  de	
   la	
  malla	
  3D	
  de	
  elementos	
  finitos	
  de	
   la	
  tibia	
  de	
  mayor	
  desviación	
  
típica	
   de	
   densidad,	
   los	
   cuales	
   se	
   han	
   obtenido	
   del	
   problema	
   de	
   remodelación	
   ósea	
   anterior	
  
(Figura	
  2.1).	
  

	
  	
  Para	
   finalizar,	
   se	
   validarán	
   los	
   datos	
   de	
   carga	
   obtenidos	
   mediante	
   las	
   redes	
  
neuronales	
  con	
  las	
  condiciones	
  de	
  carga	
  introducidas	
  en	
  el	
  modelo	
  de	
  remodelación	
  ósea,	
  las	
  
cuales	
   se	
   corresponden	
   con	
   los	
   datos	
   de	
   carga	
   del	
   paciente.	
  Dicho	
   desarrollo	
   del	
   trabajo	
   se	
  
expone	
  en	
  el	
  siguiente	
  esquema,	
  ver	
  figura	
  2.1.	
  

 
 

	
  

Error de cálculo 

Estimación de 
cargas 

ANN 

Datos de 
entrada 

Modelo 3D de una 
tibia real 

Análisis de 
remodelación ósea 

por E.F. 

Estimación de las 
densidades óseas 

Condiciones de carga 

Problema de remodelación ósea 
Dinámica inversa del 

problema de remodelación 
ósea 

Figura 2.1. Esquema de la metodología desarrollada en el trabajo 
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2.3.	
   Definición	
  del	
  problema	
  de	
  remodelación	
  ósea	
  
 

A	
  continuación,	
  se	
  exponen	
  en	
  este	
  apartado	
  los	
  pasos	
  seguidos	
  para	
  la	
  resolución	
  del	
  
problema	
  de	
  remodelación	
  ósea.	
  

	
  En	
  primer	
  lugar,	
  es	
  necesario	
  tomar	
  como	
  referencia	
  para	
  la	
  resolución	
  del	
  problema,	
  
un	
  modelo	
  de	
  remodelación	
  ósea	
  que	
  se	
  aproxime	
  al	
  comportamiento	
  real	
  del	
  hueso	
  ante	
   la	
  
acción	
  de	
  diversas	
  cargas.	
  

Una	
  vez	
  seleccionado	
  el	
  modelo	
  de	
  	
  remodelación	
  ósea	
  más	
  adecuado,	
  se	
  ha	
  realizado	
  
un	
  modelo	
  3D	
  de	
  elementos	
  finitos	
  de	
  la	
  tibia	
  del	
  paciente.	
  Posteriormente,	
  y	
  a	
  fin	
  de	
  simular	
  
diferentes	
  casos	
  del	
  paciente,	
  se	
  ha	
  sometido	
  al	
  modelo	
  3D	
  de	
  la	
  tibia	
  a	
  diferentes	
  condiciones	
  
de	
  carga.	
  Al	
  final	
  como	
  resultado	
  del	
  problema	
  de	
  remodelación	
  ósea	
  obtendremos	
  una	
  serie	
  
de	
  distribuciones	
  de	
  densidad	
  ósea.	
  

En	
   los	
   siguiente	
   apartados	
   se	
   expone	
   detalladamente	
   los	
   pasos	
   seguidos	
   en	
   el	
  
problema	
   de	
   remodelación	
   ósea,	
   hasta	
   la	
   consecución	
   de	
   las	
   citadas	
   distribuciones	
   de	
  
densidad	
  ósea	
  en	
  la	
  tibia	
  del	
  paciente.	
  

 
 

2.3.1.	
  	
  	
  	
  Modelo	
  de	
  remodelación	
  ósea	
  
 

El	
  hueso	
  es	
  un	
  material	
  poroso,	
  heterogéneo	
  y	
  anisótropo.	
  Además	
  es	
  un	
  tejido	
  vivo	
  en	
  
constante	
   cambio.	
   Estos	
   cambios	
   que	
   se	
   producen	
   en	
   el	
   hueso	
   son	
   importantes	
   cambios	
  
morfológicos	
   en	
   respuesta	
   a	
   la	
   situación	
   mecánica	
   a	
   la	
   que	
   se	
   encuentra	
   solicitado,	
  
modificando	
  su	
  geometría	
  externa	
  y	
  su	
  estructura	
  interna.	
  Este	
  proceso	
  adaptativo	
  se	
  conoce	
  
con	
  el	
  nombre	
  de	
   remodelación	
  ósea	
  adaptativa.	
  En	
  concreto	
  este	
  proceso	
  de	
   remodelación	
  
puede	
  ser	
  externo,	
  en	
  que	
  la	
  forma	
  geométrica	
  externa	
  cambia	
  con	
  el	
  tiempo,	
  o	
  interno,	
  en	
  el	
  
que	
  las	
  propiedades	
  del	
  material	
  cambian	
  con	
  el	
  tiempo	
  sin	
  alterar	
  su	
  forma.	
  
 

	
  Estos	
   procesos	
   suceden	
   simultáneamente.	
   Para	
   el	
   desarrollo	
   de	
   este	
   trabajo	
   se	
   ha	
  
utilizado	
   un	
   modelo	
   anisótropo	
   de	
   remodelación	
   ósea	
   desarrollado	
   por	
   Doblaré	
   y	
   García	
  
[2002].	
  

Doblaré	
   y	
   García	
   [2002]	
   plantean	
   la	
   utilización	
   de	
   los	
   conceptos	
   de	
   la	
  Mecánica	
   del	
  
Daño	
  anisótropo	
  como	
  marco	
  general	
  para	
  la	
  formulación	
  del	
  problema	
  de	
  remodelación	
  ósea.	
  
Es	
  de	
  destacar	
  que	
  en	
  este	
  modelo	
  el	
  estímulo	
  no	
  es	
  una	
  medida	
  del	
  microdaño,	
  sino	
  que	
  el	
  
estímulo	
   vuelve	
   a	
   ser	
   la	
  medida	
   del	
   estado	
   de	
   las	
   deformaciones	
   locales	
   e	
   instantáneas	
   del	
  
hueso.	
  Por	
   tanto,	
  cuando	
  se	
  habla	
  de	
  variables	
  de	
  daño	
  habrá	
  que	
  entender	
  mejor	
  variables	
  
internas	
  microestructurales	
  sin	
  identificación	
  con	
  ningún	
  daño	
  real.	
  

Este	
   modelo	
   de	
   remodelación	
   se	
   basa	
   en	
   los	
   principios	
   de	
   la	
   Mecánica	
   del	
   Daño	
  
Continuo	
  utilizando	
  la	
  teoría	
  de	
  daño	
  como	
  herramienta	
  matemática	
  para	
  la	
  formulación	
  de	
  la	
  
capacidad	
   de	
   la	
   remodelación	
   ósea.	
   Este	
   modelo	
   es	
   capaz	
   de	
   predecir	
   la	
   distribución	
   ósea	
  
anisotrópica	
  y	
  no	
  homogénea	
  en	
  el	
  hueso.	
  

Las	
  variables	
  independientes	
  internas	
  son	
  las	
  que	
  definen	
  la	
  microestructura	
  del	
  hueso,	
  
la	
   densidad	
   aparente	
   y	
   el	
   “fabric	
   tensor”.	
   La	
   densidad	
   aparente	
   cuantifica	
   el	
   grado	
   de	
  
porosidad	
  del	
  hueso	
  y	
  el	
  “fabric	
  tensor”	
  que	
  mide	
  el	
  grado	
  de	
  anisotropía	
  de	
  la	
  estructura	
  ósea.	
  	
  
El	
  “fabric	
   tensor”	
  se	
  demuestra	
  que	
  está	
  alineado	
  con	
  el	
   tensor	
  de	
  elasticidad,	
  mientras	
  que	
  
utilizando	
  los	
  principios	
  de	
  la	
  teoría	
  respecto	
  a	
  las	
  variable	
  internas	
  queda	
  demostrado	
  que	
  las	
  
direcciones	
  de	
  ortropía	
  coinciden	
  con	
  los	
  ejes	
  principales	
  de	
  daño.	
  	
  	
  

El	
  modelo	
  de	
  remodelación	
  ósea	
  está	
  implementado	
  en	
  una	
  subrutina	
  de	
  Abaqus.	
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2.3.2.	
  	
  	
  	
  Modelo	
  3D	
  de	
  elementos	
  finitos	
  de	
  la	
  tibia	
  
 

El	
   método	
   de	
   elementos	
   finitos	
   (MEF)	
   es	
   un	
   método	
   numérico	
   general	
   para	
   la	
  
aproximación	
  de	
  soluciones	
  de	
  ecuaciones	
  diferenciales	
  muy	
  utilizado	
  en	
  diversos	
  problemas	
  
de	
  ingeniería	
  y	
  física.	
  

El	
  método	
  de	
  elementos	
   finitos	
  es	
  muy	
  usado	
  debido	
  a	
   su	
  generalidad	
  y	
   facilidad	
  de	
  
introducir	
  dominios	
  de	
   cálculo	
   complejos	
   (en	
  dos	
  o	
   tres	
  dimensiones).	
  Dada	
   la	
   imposibilidad	
  
práctica	
  de	
  encontrar	
   la	
   solución	
  analítica	
  de	
  estos	
  problemas,	
   con	
   frecuencia	
  en	
   la	
  práctica	
  
ingenieril	
   los	
   métodos	
   numéricos,	
   y	
   en	
   particular	
   los	
   elementos	
   finitos	
   se	
   convierten	
   en	
   la	
  
única	
  alternativa	
  práctica	
  de	
  cálculo.	
  

Para	
  la	
  obtención	
  del	
  modelo	
  3D	
  de	
  elementos	
  finitos	
  de	
  la	
  tibia	
  se	
  han	
  seguido	
  varios	
  
pasos,	
  los	
  cuales	
  se	
  exponen	
  a	
  continuación,	
  ver	
  figura	
  2.2:	
  
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figura 2.2. Proceso realizado para la obtención del modelo 3D	
  

 
En	
  primer	
  paso	
  del	
  proceso	
  realizado,	
  consiste	
  en	
   la	
   reconstrucción	
  geométrica	
  de	
   la	
  

tibia,	
   la	
   cual	
   se	
   ha	
   realizado	
   mediante	
   el	
   programa	
   comercial	
   Mimics.	
   Se	
   ha	
   partido	
   de	
  
imágenes	
  médicas	
  de	
  una	
   tibia	
  humana	
  de	
  un	
  varón.	
  Dichas	
   imágenes	
  médicas	
  utilizadas	
  en	
  
este	
   trabajo	
   para	
   la	
   reconstrucción	
   de	
   la	
   tibia,	
   fueron	
   obtenidas	
  mediante	
   Tomografía	
   Axial	
  
Computarizada	
  (TAC).	
  

Una	
   vez	
   con	
   las	
   imágenes	
   en	
   el	
   programa	
  Mimics,	
   se	
   inició	
   la	
   reconstrucción	
   de	
   la	
  
geometría.	
   En	
   primer	
   lugar	
   se	
   realizó	
   una	
   segmentación	
   automática	
   a	
   partir	
   de	
   la	
   escala	
   de	
  
grises.	
   A	
   partir	
   de	
   esta	
   segmentación	
   automática,	
   las	
   imágenes	
   se	
   fueron	
   retocando	
  
manualmente.	
   En	
   función	
   de	
   la	
   intensidad	
   de	
   dicha	
   escala	
   se	
   ha	
   podido	
   diferenciar	
   las	
  
diferentes	
  partes	
  de	
  la	
  tibia,	
  esto	
  quiere	
  decir	
  que,	
  según	
  aumenta	
  el	
  nivel	
  de	
  grises	
  aumenta	
  
la	
   densidad	
   del	
   material.	
   A	
   continuación	
   en	
   la	
   figura	
   2.3	
   se	
   puede	
   observar	
   la	
   imagen	
   del	
  
proceso	
  de	
  reconstrucción	
  con	
  Mimics.	
  

	
  

IMÁGENES MÉDICAS 

SEGMENTACIÓN 

ANALISIS 

RECONSTRUCCIÓN 3D 

GENERACIÓN DE LA MALLA 
DE ELEMENTOS FINITOS 

MIMICS 

MIMICS 

HARPOON 

ABAQUS 
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Figura 2.3. Segmentación y proceso de reconstrucción de la tibia mediante Mimics 

 
Una	
  vez	
  realizada	
  la	
  reconstrucción	
  de	
  la	
  tibia,	
  se	
  ha	
  realizado	
  una	
  malla	
  del	
  volumen	
  

generado	
   de	
   la	
   geometría.	
   Para	
   realizar	
   la	
   malla	
   de	
   la	
   tibia,	
   se	
   ha	
   utilizado	
   el	
   programa	
  
comercial	
  Harpoon	
  que	
  nos	
  ha	
  generado	
  dicha	
  malla	
  de	
  forma	
  automática.	
  

Para	
  la	
  construcción	
  del	
  modelo	
  tridimensional	
  de	
  la	
  tibia	
  generado	
  en	
  Mimics,	
  se	
  han	
  
exportado	
   los	
   ficheros	
   en	
   formato	
   “stl”,	
   para	
   posteriormente	
   ser	
   importados	
   al	
   programa	
  
Harpoon.	
   Cabe	
   destacar,	
   que	
   este	
   programa	
   está	
   especialmente	
   indicado	
   para	
   mallar	
  
diferentes	
  volúmenes	
  de	
  forma	
  automática	
  con	
  diferentes	
  niveles	
  de	
  exactitud.	
  

Para	
  el	
  mallado	
  de	
  la	
  tibia	
  se	
  utilizaron	
  elementos	
  tetraédricos	
  C3D4	
  debido	
  a	
  su	
  mejor	
  
adaptabilidad	
   a	
   la	
   geometría,	
   estos	
   elementos	
   se	
   obtuvieron	
   de	
   la	
   librería	
   de	
   elementos	
   de	
  
Abaqus.	
  Una	
  vez	
  obtenida	
  la	
  malla	
  de	
  toda	
  la	
  tibia	
  se	
  obtuvo	
  en	
  todo	
  el	
  modelo	
  de	
  elementos	
  
finitos	
  completo,	
  un	
  total	
  de	
  54047	
  elementos	
  y	
  11074	
  nodos.	
  Cabe	
  destacar,	
  que	
  el	
  tamaño	
  
medio	
  de	
   la	
  malla	
  es	
  de	
  2	
  mm,	
  previamente	
  se	
  realizó	
  un	
  estudio	
  de	
  sensibilidad	
  de	
   la	
  malla	
  
para	
  establecer	
  el	
   tamaño	
  más	
  adecuado	
  de	
   la	
  misma.	
  En	
   la	
   figura	
  2.4	
   se	
  puede	
  observar	
   la	
  
tibia	
  mallada.	
  

 
Figura 2.4. Tibia mallada 
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2.3.3.	
  	
  	
  	
  	
  Condiciones	
  de	
  carga	
  del	
  modelo	
  
	
  
Como	
  condiciones	
  de	
  contorno	
  se	
  ha	
  restringido	
  el	
  movimiento	
  de	
  la	
  parte	
  inferior	
  de	
  

la	
  diáfisis	
  a	
  lo	
  largo	
  de	
  las	
  direcciones	
  vertical	
  y	
  horizontal	
  en	
  cuatro	
  nodos.	
  Se	
  han	
  considerado	
  
tres	
  casos	
  de	
  carga	
  correspondientes	
  a	
  tres	
  etapas	
  de	
  la	
  marcha.	
  Las	
  cargas	
  consideradas	
  son	
  
las	
  fuerzas	
  de	
  reacción	
  que	
  se	
  producen	
  en	
  las	
  superficies	
  condilares	
  (Figura	
  2.5	
  y	
  Tabla	
  2.1).	
  

El	
  primer	
  caso	
  es	
  el	
  momento	
  en	
  el	
  que	
  el	
  pie	
  se	
  encuentra	
  tocando	
  el	
  suelo	
  y	
  la	
  carga	
  
se	
   distribuye	
   uniformemente	
   entre	
   los	
   dos	
   cóndilos	
   y	
   de	
   forma	
   normal	
   a	
   los	
   mismos;	
   el	
  
segundo	
  y	
  tercer	
  caso	
  son	
  los	
  momentos	
  de	
  abducción	
  y	
  aducción,	
  en	
  los	
  cuales	
  se	
  distribuye	
  
la	
  carga	
  en	
  un	
  70	
  y	
  30%,	
  y	
  un	
  30	
  y	
  70%,	
  respectivamente,	
  en	
  ambos	
  casos	
  con	
  un	
  ángulo	
  de	
  
inclinación	
  de	
  5º	
  [Pérez	
  et	
  al	
  2010,	
  Nyman	
  et	
  al	
  2004].	
  

 
Figura 2.5. Modelo 3D de elementos finitos de la tibia con las condiciones de carga aplicadas. Caso 1: Pie entra 

en contacto con el suelo de forma completa. Caso 2: Momento de abducción. Caso 3: Momento de aducción 

Tomamos	
   como	
   punto	
   de	
   partida	
   para	
   la	
   simulación	
   del	
   problema	
   de	
   remodelación	
  
ósea	
   una	
   situación	
   arbitraria	
   (comportamiento	
   isotrópico	
   y	
   una	
   densidad	
   uniforme	
   de	
  
0.5gr/cm3).	
   Para	
   esta	
   situación	
   arbitraria,	
   aplicamos	
   una	
   secuencia	
   de	
   cargas	
   anteriormente	
  
explicada.	
  Los	
  cambios	
  producidos	
  por	
  esta	
  secuencia	
  de	
  cargas	
  nos	
  producirán	
  cambios	
  en	
  la	
  
distribución	
   ósea	
   real	
   de	
   la	
   tibia.	
   Estos	
   cambios	
   son	
   debidos	
   a	
   que	
   durante	
   la	
   simulación	
   la	
  
estructura	
  interna	
  del	
  hueso	
  (densidad	
  y	
  propiedades	
  mecánicas),	
  se	
  adapta	
  a	
  la	
  mecánica	
  del	
  
estímulo.	
  Al	
  final	
  del	
  proceso	
  el	
  hueso	
  posee	
  una	
  distribución	
  de	
  la	
  densidad	
  y	
  del	
  módulo	
  de	
  
Young	
  heterogénea.	
  

Debido	
  al	
  hecho	
  de	
  que	
   las	
  cargas	
  presentan	
  variaciones	
  durante	
  el	
  desarrollo	
  de	
   las	
  
actividades	
   más	
   habituales	
   y	
   ante	
   la	
   imposibilidad	
   de	
   obtener	
   estos	
   datos	
   reales,	
   se	
   han	
  
tomado	
  un	
  amplio	
   rango	
  de	
  cargas.	
  Esta	
  variación	
  se	
  estima	
  en	
  un	
  20%	
  para	
   la	
  magnitud	
  de	
  
fuerza	
  y	
  de	
  70	
  y	
  30%	
  hasta	
  llegar	
  a	
  un	
  30	
  y	
  70%	
  de	
  la	
  carga	
  distribuida	
  entre	
  los	
  cóndilos	
  para	
  
el	
  caso	
  2,	
  y	
  de	
  30	
  y	
  70%	
  hasta	
  llegar	
  a	
  70	
  y	
  30%	
  para	
  el	
  caso	
  3	
  [Bergmann	
  et	
  al	
  2001,	
  Heller	
  et	
  
al	
   2001].	
   Se	
   han	
   simulado	
   500	
   combinaciones	
   de	
   carga	
   dentro	
   de	
   los	
   rangos	
   explicados	
  
anteriormente.	
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Tabla 2.1. Condiciones de carga de la tibia 

 
 

2.4. Definición	
  del	
  problema	
  inverso	
  de	
  remodelación	
  
ósea.	
  

 
El	
   problema	
   inverso	
   de	
   remodelación	
   ósea	
   tiene	
   como	
   objetivo	
   predecir	
   las	
   cargas	
  

musculoesqueléticas	
   (módulo	
   de	
   carga	
   y	
   porcentaje	
   de	
   carga	
   repartido	
   a	
   cada	
   cóndilo)	
  
producidas	
   en	
   la	
   tibia.	
   Estas	
   cargas	
   representan	
   las	
   salidas	
   del	
   problema	
   inverso	
   de	
  
remodelación	
  ósea.	
  

Para	
   obtener	
   estos	
   datos	
   de	
   salida	
   es	
   necesario	
   la	
   utilización	
   de	
   un	
   modelo	
  
matemático.	
   En	
   este	
   trabajo	
   y	
   como	
   ya	
   se	
   explicó	
   en	
   capítulos	
   anteriores	
   se	
   ha	
   utilizado	
   el	
  
modelo	
  de	
  red	
  neuronal	
  artificial	
  (RNA).	
  Una	
  vez	
  establecido	
  el	
  modelo	
  matemático	
  a	
  utilizar	
  
debemos	
  determinar	
   los	
  parámetros	
  de	
  entrada.	
   Para	
   garantizar	
   el	
   correcto	
   funcionamiento	
  
de	
  la	
  red	
  neuronal	
  debemos	
  someterla	
  a	
  un	
  entrenamiento	
  el	
  cual	
  nos	
  permitirá	
  seleccionar	
  la	
  
opción	
  más	
  adecuada	
  para	
  nuestra	
  red	
  neuronal,	
  de	
  esta	
  forma,	
  nos	
  garantiza	
  el	
  menor	
  error	
  
posible.	
  Para	
  finalizar,	
  una	
  vez	
  modelada	
  de	
  forma	
  óptima	
  nuestra	
  red	
  neuronal	
  y	
  predichas	
  las	
  
cargas	
   de	
   salida,	
   se	
   procede	
   a	
   comparar	
   los	
   datos	
   de	
   salida	
   obtenidos	
   mediante	
   la	
   red	
  
neuronal	
  con	
  los	
  datos	
  del	
  paciente.	
  

A	
   continuación	
   se	
   exponen	
  más	
   detalladamente	
   las	
   entradas	
   y	
   salidas	
   del	
   problema	
  
inverso	
  de	
  remodelación	
  ósea,	
  así	
  como	
  las	
  características	
  de	
  la	
  red	
  neuronal	
  utilizada	
  en	
  este	
  
trabajo.	
  

 
 
2.4.1. 	
  	
  	
  Entradas	
  y	
  salidas	
  del	
  problema	
  inverso	
  de	
  remodelación	
  ósea	
  

 
Las	
  entradas	
  del	
  problema	
  inverso	
  corresponden	
  a	
  una	
  selección	
  de	
  puntos	
  de	
  la	
  malla	
  

3D	
  de	
  elementos	
  finitos	
  con	
  mayor	
  desviación	
  de	
  densidad.	
  Para	
  esta	
  selección	
  de	
  puntos	
  de	
  la	
  
malla	
   se	
   han	
   utilizado	
   técnicas	
   estadísticas	
   basadas	
   en	
   la	
  media	
   y	
   desviación	
   típica	
   a	
   fin	
   de	
  
reducir	
  el	
  coste	
  computacional	
  de	
  la	
  red	
  neuronal.	
  	
  

En	
  un	
  primer	
  lugar	
  se	
  generó	
  la	
  media	
  y	
  la	
  desviación	
  típica	
  de	
  densidad	
  de	
  los	
  54047	
  
elementos	
  de	
   la	
  malla	
  3D	
  de	
  elementos	
   finitos	
  de	
   la	
   tibia	
  a	
  partir	
  de	
   los	
  500	
  casos	
  de	
  carga	
  
analizados	
  (sección	
  2.3.3).	
  Con	
  todas	
  estas	
  densidades	
  se	
  seleccionaron	
  los	
  40	
  elementos	
  con	
  
mayor	
  desviación	
  típica,	
  los	
  cuales	
  se	
  han	
  utilizado	
  como	
  entradas	
  para	
  nuestra	
  red	
  neuronal.	
  
Cabe	
   destacar	
   que	
   los	
   40	
   elementos	
   seleccionados	
   no	
   corresponden	
   exactamente	
   a	
   los	
  
elementos	
  de	
  mayor	
  desviación	
  ya	
  que	
  muchos	
  de	
  ellos	
  se	
  localizaron	
  en	
  la	
  zona	
  cortical	
  de	
  la	
  
tibia.	
  Debido	
  a	
  este	
  hecho,	
  se	
  seleccionaron	
  otros	
  con	
  menor	
  desviación	
  típica	
  de	
  densidad	
  a	
  
fin	
   de	
   conseguir	
   una	
   distribución	
   más	
   armoniosa	
   de	
   las	
   entradas	
   de	
   la	
   red	
   neuronal.	
   En	
   la	
  
figura	
   2.6	
   se	
   observa	
   como	
   en	
   la	
   zona	
   del	
   cortical	
   es	
   donde	
   se	
   ha	
   encontrado	
   mayor	
  
concentración	
  de	
  densidades	
  con	
  mayor	
  desviación	
  típica,	
  y	
  de	
  cómo	
  se	
  han	
  seleccionado	
  los	
  
puntos	
  de	
  la	
  forma	
  más	
  homogénea	
  posible	
  a	
  lo	
  largo	
  de	
  la	
  geometría	
  de	
  la	
  tibia.	
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Figura 2.6. Distribución de desviaciones típicas obtenidas en la tibia para las condiciones de carga aplicadas: 
a) Distribución de densidades de los 54047 elementos de la malla 3D de elementos finitos de la tibia. b) 40 

elementos con mayor desviación típica, que representan las entradas para la red neuronal. 

 
 

Las	
  salidas	
  del	
  problema	
  inverso,	
  corresponden	
  a	
  las	
  condiciones	
  de	
  carga	
  (módulo	
  de	
  
carga	
   y	
   porcentaje	
   de	
   carga	
   repartido	
   a	
   cada	
   cóndilo)	
   proporcionadas	
   por	
   la	
   red	
   neuronal	
  
entrenada	
  para	
  una	
  distribución	
  de	
  densidades	
  de	
  un	
  paciente	
  en	
  concreto.	
  El	
  objetivo	
  es	
  que	
  
estos	
  datos	
  de	
  salida	
  proporcionados	
  por	
  la	
  red	
  neuronal	
  sean	
  similares	
  a	
  los	
  proporcionados	
  
por	
  el	
  paciente	
  concreto.	
  	
  

	
  
 

	
   2.4.2.	
  	
  	
  	
  	
  	
  	
  Características	
  de	
  la	
  red	
  neuronal	
  utilizada	
  
 
La	
  red	
  neuronal	
  utilizada	
  en	
  este	
  trabajo	
  consta	
  de	
  40	
  entradas,	
  una	
  capa	
  oculta	
  y	
  dos	
  

salidas	
  las	
  cuales	
  corresponden	
  al	
  módulo	
  de	
  la	
  fuerza	
  y	
  el	
  porcentaje	
  de	
  la	
  misma	
  repartido	
  a	
  
cada	
  cóndilo.	
  Como	
  función	
  de	
  entrada	
  se	
  ha	
  utilizado	
  una	
  función	
  sigmoidea	
  y	
  como	
  función	
  
de	
   salida	
   se	
   ha	
  utilizado	
  una	
   función	
   lineal.	
  Para	
   el	
   entrenamiento	
  de	
   la	
   red	
  neuronal	
   se	
   ha	
  
utilizado	
  el	
  algoritmo	
  Backpropagation	
  (Anexo	
  I).	
  

Para	
   la	
   capa	
   oculta	
   se	
   ha	
   seleccionado	
   entre	
   diferentes	
   opciones	
   con	
   neuronas	
  
intermedias	
  (de	
  3	
  a	
  50	
  neuronas),	
  la	
  capa	
  con	
  un	
  menor	
  error	
  relativo.	
  

En	
   próximos	
   apartados	
   observaremos	
   que,	
   a	
   fin	
   de	
   obtener	
   un	
   entrenamiento	
   más	
  
completo	
  de	
   la	
   red	
  neuronal,	
   se	
  obtuvieron	
  varios	
  modelos	
  de	
  entrenamiento,	
   reduciéndose	
  
las	
  entradas	
  a	
  20.	
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2.5. Resultados	
  
	
  
2.5.1.	
  	
  	
  	
  	
  	
  	
  Evaluación	
  de	
  la	
  red	
  neuronal	
  

 
 

Para	
  evaluar	
   correctamente	
  nuestra	
   red	
  neuronal	
  artificial	
  hemos	
  utilizado	
   la	
   técnica	
  
de	
   validación	
   cruzada.	
   Consiste	
   en	
   dividir	
   los	
   datos	
   de	
   la	
   muestra,	
   en	
   nuestro	
   caso	
   en	
   dos	
  
subconjuntos:	
   un	
   subconjunto	
   utilizado	
   para	
   entrenar	
   al	
   modelo	
   (90%	
   de	
   los	
   datos)	
   y	
   otro	
  
subconjunto	
   utilizado	
   para	
   validar	
   y	
   testear	
   el	
   modelo	
   (10%	
   de	
   los	
   datos).	
   En	
   esta	
   técnica	
  
aleatoria	
  se	
  han	
  realizado	
  10	
  iteraciones	
  y,	
  para	
  cada	
  una	
  de	
  estas	
  iteraciones,	
  el	
  subconjunto	
  
de	
  validación	
  ha	
  ocupado	
  una	
  posición	
  diferente	
  a	
  lo	
  largo	
  de	
  los	
  datos	
  de	
  la	
  muestra.	
  

	
  
La	
   ventaja	
   de	
   la	
   validación	
   cruzada	
   es	
   que	
   utiliza	
   todos	
   los	
   datos	
   disponibles	
   de	
  

entrenamiento	
  y	
  el	
  error	
   final	
  es	
   independiente	
  de	
   los	
  datos	
   seleccionados	
  en	
  cada	
  modelo.	
  
Con	
   el	
   fin	
   de	
   predecir	
   la	
   exactitud	
   de	
   nuestra	
   red	
   neuronal	
   artificial	
   se	
   han	
   utilizado	
   los	
  
siguientes	
  errores:	
  	
  

	
  

Error    relativo = !"#
(! − !)
!

	
  

	
  

Coeficiente  de  correlación(r!") =  	
  
!!"

(!!!!)  
	
  

	
  
Donde	
  x	
  son	
  los	
  datos	
  de	
  predicción,	
  !	
  son	
  los	
  datos	
  reales,	
  !!"	
  es	
  la	
  covarianza	
  y	
  !!    y	
  

  !!	
  son	
  las	
  desviaciones	
  típicas	
  de	
  la	
  variables	
  x	
  e	
  y.	
  
 
Los	
  resultados	
  obtenidos	
  para	
  el	
  error	
  relativo	
  se	
  calculan	
  en	
  base	
  a	
  los	
  subconjuntos	
  

de	
   test	
   y	
   entrenamiento	
   de	
   la	
   validación	
   cruzada.	
   Mediante	
   el	
   coeficiente	
   de	
   correlación	
  
medimos	
  el	
  grado	
  de	
  intensidad	
  de	
  la	
  relación	
  entre	
  los	
  datos	
  de	
  entrenamiento.	
  Estos	
  datos	
  
se	
  utilizan	
  para	
  generar	
  el	
  modelo,	
  de	
  manera	
  que	
  el	
  correspondiente	
  error	
  nos	
  indicará	
  si	
  el	
  
modelo	
  se	
  ha	
  entrenado	
  correctamente.	
  Por	
  otro	
  lado,	
  los	
  datos	
  de	
  test	
  se	
  utilizan	
  para	
  validar	
  
el	
  modelo,	
  de	
  manera	
  que	
  el	
  correspondiente	
  error	
  nos	
  indica	
  si	
  el	
  modelo	
  es	
  adecuado	
  para	
  
simular	
  el	
  problema.	
  

	
  
Antes	
   de	
   introducirnos	
   en	
   los	
   diferentes	
   modelos	
   de	
   entrenamiento	
   utilizados	
   para	
  

nuestra	
  red	
  neuronal	
  	
  y	
  comentar	
  los	
  resultados	
  obtenidos,	
  es	
  importante	
  destacar	
  	
  los	
  valores	
  
que	
  aparecen	
  en	
   las	
  gráficas.	
  Estos	
  valores	
  corresponden	
  a	
   los	
  errores	
  de	
  aprendizaje	
  y	
  a	
   los	
  
errores	
  de	
  test.	
  

	
  
Error	
  de	
  aprendizaje:	
  corresponde	
  a	
  los	
  errores	
  obtenidos	
  en	
  función	
  de	
  los	
  datos	
  con	
  

que	
   se	
   entrena	
   el	
   modelo,	
   es	
   decir,	
   los	
   mismos	
   valores	
   utilizados	
   para	
   enseñar	
   a	
   la	
   red	
  
neuronal.	
  

Error	
  de	
  test:	
  compara	
  el	
  error	
  que	
  se	
  produce	
  al	
   introducir	
  en	
  nuestra	
  red	
  datos	
  no	
  
utilizados	
  anteriormente,	
  	
  comparándolo	
  posteriormente	
  con	
  el	
  obtenido	
  para	
  los	
  datos	
  reales.	
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   2.5.2.	
  	
  	
  	
  	
  	
  	
  Modelo	
  de	
  entrenamiento	
  
 
 

Como	
  modelo	
  inicial	
  de	
  entrenamiento	
  para	
  nuestra	
  red	
  neuronal	
  se	
  han	
  tomado	
  500	
  
casos	
   (para	
   diferentes	
   módulos	
   de	
   carga	
   y	
   porcentaje	
   de	
   la	
   misma	
   distribuida	
   entre	
   los	
  
cóndilos)	
  y	
  40	
  elementos	
  de	
  entrada.	
  	
  

A	
  continuación	
  se	
  exponen	
  en	
  la	
  Tabla	
  2.2	
  para	
  diferentes	
  números	
  de	
  neuronas	
  en	
  la	
  
capa	
  intermedia,	
  los	
  errores	
  obtenidos	
  para	
  el	
  módulo	
  de	
  la	
  carga,	
  el	
  porcentaje	
  de	
  la	
  misma	
  
repartido	
   entre	
   los	
   cóndilos	
   y	
   el	
   error	
   total	
   obtenido,	
   que	
   es	
   suma	
   de	
   los	
   dos	
   anteriores.	
  
También	
   se	
   muestra	
   el	
   coeficiente	
   de	
   correlación.	
   Siempre	
   que	
   hablemos	
   de	
   error	
   nos	
  
estaremos	
   refiriendo	
   a	
   un	
   error	
   relativo,	
   en	
   este	
   caso	
   sería	
   error	
   relativo	
   de	
   carga	
   y	
   error	
  
relativo	
  del	
  porcentaje	
  de	
  carga	
  repartido	
  entre	
  los	
  cóndilos.	
  

 
 

Error	
  relativo	
  (%)	
  y	
  coeficiente	
  de	
  correlación	
  	
  

Neuronas	
  capa	
  intermedia	
  

	
   	
   3	
   5	
   10	
   15	
   20	
   25	
   30	
   40	
   50	
  

Er
ro
r	
  d

e	
  
ca
rg
a	
  
(%

)	
   Test	
   0,0291	
   0,0250	
   0,0354	
   0,0524	
   0,0530	
   0,0475	
   0,0418	
   0,0415	
   0,0404	
  

Aprendizaje	
   0,0210	
   0,0117	
   0,00339	
   3,34E-­‐6	
   1,24E-­‐5	
   4,13E-­‐6	
   1,02E-­‐6	
   3,78E-­‐6	
   7,26E-­‐6	
  

r!"	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
  

Er
ro
r	
  d

e	
  
po

rc
en

ta
je
	
  

(%
)	
  

Test	
   2,6443	
   4,4203	
   2,5281	
   0,11777	
   0,10705	
   0,08199	
   0,05952	
   0,09258	
   0,08050	
  

Aprendizaje	
   4,3831	
   4,3831	
   2,3501	
   0,10589	
   0,10589	
   0,10589	
   0,10589	
   0,07243	
   0,07243	
  

r!"	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
  

Er
ro
r	
  t
ot
al
	
  

(%
)	
  

Test	
   2,67	
   4,45	
  	
   2,56	
   0,17	
   0,16	
   0,13	
   0,101	
   0,134	
   0,121	
  

Aprendizaje	
   4,4	
   4,39	
   2,35	
   0,1059	
   0,1059	
   0,1059	
   0,1059	
   0,07244	
   0,07244	
  

r!"	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
  

 
Tabla 2.7. Error relativo  y coeficiente de correlación para el modelo de entrenamiento de la red neuronal con 

40 entradas  

 
A	
   continuación,	
   en	
   las	
   Figuras	
   2.7	
   y	
   2.8	
   se	
   observa	
   la	
   evolución	
   del	
   error	
   relativo	
  

obtenido	
  respecto	
  al	
  número	
  de	
  neuronas	
  de	
   la	
  capa	
   intermedia,	
  tanto	
  para	
  el	
  módulo	
  de	
   la	
  
carga	
  como	
  para	
  el	
  porcentaje	
  de	
  carga	
  repartido	
  entre	
  cóndilos,	
  respectivamente.	
  

En	
   la	
   Figura	
   2.7	
   se	
  muestran	
   los	
   errores	
   de	
   aprendizaje	
   y	
   de	
   test	
   obtenidos	
   para	
   el	
  
valor	
  del	
  módulo	
  de	
   la	
   carga.	
  Se	
  observa	
  que	
  mientras	
  el	
  error	
  de	
  aprendizaje	
  disminuye	
  de	
  
forma	
   continua	
   según	
   aumenta	
   el	
   número	
   de	
   neuronas,	
   el	
   error	
   de	
   test	
   no	
   sigue	
   una	
  
trayectoria	
   tan	
   homogénea.	
   El	
   error	
   disminuye	
   hasta	
   llegar	
   al	
   entrenamiento	
   de	
   capa	
  
intermedia	
   con	
   5	
   neuronas,	
   posteriormente	
   el	
   error	
   va	
   aumentando	
   progresivamente	
   hasta	
  
alcanzar	
   las	
  20	
  neuronas	
  y	
  vuelve	
  a	
  disminuir	
  hasta	
   llegar	
  al	
  último	
  punto	
  de	
  entrenamiento	
  
que	
  corresponde	
  a	
  la	
  capa	
  intermedia	
  con	
  50	
  neuronas.	
  Cabe	
  destacar	
  que	
  para	
  50	
  neuronas	
  
se	
   alcanza	
   un	
  mínimo	
   relativo,	
   el	
   cual	
   será	
   descartado	
   debido	
   a	
   que	
   es	
   de	
   valor	
   superior	
   al	
  
obtenido	
  para	
  una	
  capa	
  intermedia	
  con	
  5	
  neuronas.	
  	
  

De	
   esta	
   forma	
   y	
   a	
   la	
   vista	
   de	
   los	
   resultados	
   del	
   error	
   de	
   carga,	
   se	
   determina	
   como	
  
solución	
  óptima	
  una	
  capa	
  intermedia	
  con	
  5	
  neuronas.	
  Se	
  ha	
  considerado	
  esta	
  solución	
  ya	
  que	
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a	
  partir	
  de	
  ella	
  nos	
  aparece	
  el	
   llamado	
  sobreentrenamiento,	
  el	
  cual	
  nos	
  produce	
  una	
  pérdida	
  
de	
  generalización	
  por	
  el	
  uso	
  excesivo	
  de	
  neuronas	
  en	
  la	
  capa	
  intermedia	
  de	
  la	
  red	
  neuronal.	
  Es	
  
decir,	
  al	
  aumentar	
  el	
  número	
  de	
  neuronas	
  del	
  modelo	
  el	
  resultado	
  no	
  mejora.	
  
 

Error	
  relativo	
  del	
  módulo	
  de	
  la	
  carga	
  
	
  

 
 

Figura 2.7. Error relativo del módulo de la carga obtenido para el modelo inicial de entrenamiento 
	
  
En	
  la	
  Figura	
  2.8	
  los	
  valores	
  representados	
  corresponden	
  a	
  los	
  errores	
  obtenidos	
  para	
  el	
  

error	
  relativo	
  del	
  porcentaje	
  de	
  carga	
  repartido	
  en	
  cada	
  cóndilo.	
  Tanto	
  el	
  error	
  de	
  test	
  como	
  el	
  
error	
   de	
   aprendizaje	
   tienen	
   unos	
   valores	
   muy	
   similares,	
   los	
   cuales	
   disminuyen	
   según	
  
incrementamos	
  el	
  número	
  de	
  neuronas.	
  Estos	
  errores	
  son	
  de	
  un	
  orden	
  bastante	
  superior	
  a	
  los	
  
obtenidos	
  para	
  el	
  error	
  relativo	
  de	
  carga.	
  Gráficamente	
  es	
  difícil	
  de	
  determinar	
  la	
  solución	
  que	
  
optimice	
  el	
  error,	
  pero	
  si	
  nos	
  dirigimos	
  a	
  la	
  Tabla	
  2.2	
  y	
  a	
  la	
  Figura	
  2.8	
  se	
  observa	
  que	
  el	
  menor	
  
error	
   total	
   (error	
   de	
   test)	
   se	
   consigue	
   para	
   una	
   capa	
   intermedia	
   con	
   30	
   neuronas.	
   De	
   esta	
  
forma,	
  seleccionaremos	
  como	
  solución	
  óptima	
  una	
  capa	
  intermedia	
  con	
  30	
  neuronas.	
  

	
  
Error	
  relativo	
  del	
  porcentaje	
  de	
  carga	
  repartido	
  a	
  cada	
  cóndilo	
  

	
  

 
Figura 2.8. Error relativo del porcentaje de carga repartido entre cóndilos obtenido para el modelo inicial de 

entrenamiento 

0.00E+00	
  

1.00E-­‐02	
  

2.00E-­‐02	
  

3.00E-­‐02	
  

4.00E-­‐02	
  

5.00E-­‐02	
  

6.00E-­‐02	
  

3	
   5	
   10	
   15	
   20	
   25	
   30	
   40	
   50	
  

Er
ro
r	
  
(%

)	
  

Neuronas	
  en	
  la	
  capa	
  intermedia	
  

Error	
  de	
  test	
  

Error	
  de	
  
aprendizaje	
  

0	
  
0.5	
  
1	
  

1.5	
  
2	
  

2.5	
  
3	
  

3.5	
  
4	
  

4.5	
  
5	
  

3	
   5	
   10	
   15	
   20	
   25	
   30	
   40	
   50	
  

Er
ro
r	
  
(%

)	
  

Neuronas	
  en	
  la	
  capa	
  intermedia	
  

Error	
  de	
  
test	
  

Error	
  de	
  
aprendizaje	
  



 23 

Para	
  obtener	
  una	
   visión	
   conjunta	
  del	
  modelo	
   se	
  ha	
  englobado	
   los	
   errores	
  obtenidos	
  	
  
tanto	
  para	
  la	
  carga	
  como	
  para	
  el	
  ángulo.	
  En	
  la	
  Figura	
  2.9	
  se	
  muestra	
  el	
  error	
  total	
  producido	
  en	
  
el	
   modelo	
   de	
   entrenamiento	
   para	
   las	
   diferentes	
   capas	
   intermedias.	
   Los	
   errores	
   relativos	
  
obtenidos	
   para	
   el	
   porcentaje	
   de	
   carga	
   repartido	
   entre	
   cóndilos	
   son	
   de	
   un	
   orden	
   mayor	
  
respecto	
  a	
  los	
  errores	
  relativos	
  del	
  módulo	
  de	
  la	
  carga.	
  De	
  esta	
  manera,	
  será	
  el	
  error	
  relativo	
  
obtenido	
  para	
  el	
  porcentaje	
  de	
   carga	
   repartido	
  entre	
   cóndilos	
  el	
  que	
   tenga	
  mayor	
  peso	
  a	
   la	
  
hora	
  de	
  determinar	
  el	
  número	
  óptimo	
  de	
  neuronas	
  en	
  la	
  capa	
  intermedia.	
  Analizando	
  los	
  datos	
  
numérica	
   y	
   gráficamente,	
   se	
   ha	
   determinado	
   que	
   el	
   número	
   de	
   neuronas	
   de	
   la	
   capa	
  
intermedia	
  que	
  optimizan	
  el	
  funcionamiento	
  del	
  	
  modelo	
  de	
  entrenamiento	
  es	
  de	
  30	
  neuronas.	
  

 
Error	
  relativo	
  total	
  

	
  

 
 

Figura 2.9. Error relativo total obtenido para el modelo inicial de entrenamiento 

 
	
   2.5.3.	
  	
  	
  	
  	
  	
  Reducción	
  del	
  número	
  de	
  entradas	
  para	
  la	
  red	
  neuronal	
  

 
En	
   un	
   primer	
   momento	
   se	
   utilizó	
   una	
   técnica	
   estadística	
   basada	
   en	
   la	
   media	
   y	
  

desviación	
  típica	
  para	
  reducir	
  el	
  número	
  de	
  entradas	
  (valores	
  de	
  densidad	
  de	
  los	
  elementos	
  de	
  
la	
  tibia),	
  ya	
  que	
  si	
  tomamos	
  todas	
  las	
  entradas	
  el	
  coste	
  computacional	
  que	
  obtenemos	
  es	
  muy	
  
elevado	
   (apartado	
   2.4.1).	
   En	
   un	
   principio	
   las	
   entradas	
   se	
   redujeron	
   de	
   los	
   54047	
   puntos	
   de	
  
integración	
  conocidos	
  del	
  modelo	
  de	
  elementos	
  finitos	
  de	
  la	
  tibia	
  a	
  40	
  entradas,	
  se	
  tomó	
  como	
  
criterio	
  de	
  selección	
  aquellos	
  puntos	
  de	
  integración	
  (entradas)	
  con	
  la	
  desviación	
  típica	
  mayor.	
  	
  

Con	
  el	
   fin	
  de	
   reducir	
   aún	
  más	
  el	
   número	
  de	
  datos	
  de	
  entrada	
  y	
  por	
   tanto	
   reducir	
   el	
  
coste	
  computacional	
  de	
  entrenamiento	
  de	
  la	
  red	
  se	
  realizó	
  el	
  siguiente	
  estudio.	
  

Para	
   la	
   reducción	
   de	
   los	
   elementos	
   de	
   entrada	
   a	
   la	
   red,	
   se	
   partió	
   de	
   los	
   datos	
  
obtenidos	
   para	
   el	
  modelo	
   de	
   entrenamiento	
   anterior.	
   Del	
   error	
   total	
   se	
   obtuvo	
   como	
   ya	
   se	
  
explicó	
   en	
   apartado	
   2.5.2	
   una	
   capa	
   intermedia	
   óptima	
   para	
   nuestra	
   red	
   neuronal	
   con	
   30	
  
neuronas.	
   	
  Para	
  esta	
  capa	
  intermedia	
  se	
  evaluó	
  la	
  media	
  de	
   los	
  pesos	
  sinápticos	
  de	
  todas	
   las	
  
entradas	
  (30	
  neuronas,	
  40	
  elementos)	
  y	
  se	
  seleccionaron	
   los	
  20	
  elementos	
  con	
  mayor	
  media	
  
en	
  valor	
  absoluto	
  como	
  nuevos	
  elementos	
  de	
  entrada.	
  

0	
  

0.5	
  

1	
  

1.5	
  

2	
  

2.5	
  

3	
  

3.5	
  

4	
  

4.5	
  

5	
  

3	
   5	
   10	
   15	
   20	
   25	
   30	
   40	
   50	
  

Er
ro
r	
  
(%

)	
  

Neuronas	
  de	
  la	
  capa	
  intermedia	
  

Error	
  de	
  test	
  

Error	
  de	
  
entrenamiento	
  



 24 

En	
  la	
  Figura	
  2.10	
  podemos	
  observar	
  los	
  valores	
  medios	
  en	
  valor	
  absoluto	
  de	
  los	
  pesos	
  
sinápticos,	
   obtenidos	
   para	
   los	
   40	
   elementos	
   de	
   entrada	
   considerados	
   inicialmente.	
   Se	
  
seleccionaron	
  los	
  elementos	
  con	
  mayor	
  media.	
  
 

 
 

Figura 2.10. Valores medios en valor absoluto de los pesos sinápticos para las 40 entradas seleccionadas del 
modelo de elementos finitos de la tibia. 

Cuando	
  se	
  obtuvieron	
  los	
  puntos	
  con	
  mayor	
  desviación	
  típica	
  en	
  la	
  tibia	
  la	
  mayoría	
  de	
  
ellos	
   se	
   localizaron	
  en	
  el	
  borde	
  de	
   la	
   zona	
  cortical	
   y	
  del	
  esponjoso,	
   zona	
  de	
  mayor	
  densidad	
  
ósea	
  del	
  modelo	
  3D	
  (Figura	
  2.11).	
  Con	
  el	
  fin	
  de	
  obtener	
  un	
  mejor	
  estudio	
  de	
  la	
  red	
  neuronal	
  se	
  
tomaron,	
   a	
  pesar	
  de	
   tener	
  menor	
  desviación	
   típica,	
   otros	
  puntos	
  de	
   integración	
   situados	
  en	
  	
  
zonas	
  como	
   las	
  epífisis	
  de	
   la	
   tibia.	
  En	
   las	
   siguientes	
   figuras	
   (Figura	
  2.11.a	
  y	
  Figura	
  2.11.b)	
   se	
  
observa	
  la	
  distribución	
  de	
  estos	
  elementos	
  de	
  entrada	
  a	
  lo	
  largo	
  del	
  modelo	
  3D	
  de	
  la	
  tibia.	
  	
  

	
  

 
Figura 2.11. Distribución de desviaciones típicas obtenidas en la tibia para las condiciones de carga aplicadas: 

a) 40 elementos con mayor desviación típica; b) 20 elementos con mayor desviación típica 
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A	
  continuación	
  se	
  exponen	
  los	
  resultados	
  obtenidos	
  para	
  el	
  modelo	
  de	
  500	
  casos	
  con	
  
los	
   20	
   elementos	
   de	
   entrada	
   seleccionados,	
   ver	
  Figura	
   2.11.b,	
   con	
   el	
   fin	
   de	
   reducir	
   el	
   coste	
  
computacional	
  de	
  la	
  red	
  neuronal	
  (Tabla	
  2.3).	
  Podemos	
  observar	
  a	
  simple	
  vista	
  que	
  los	
  errores	
  
obtenidos	
  para	
  el	
  porcentaje	
  de	
  carga	
  repartido	
  a	
  cada	
  cóndilo	
  (error	
  más	
  influyente	
  a	
  la	
  hora	
  
de	
   obtener	
   el	
   error	
   total)	
   al	
   reducir	
   el	
   número	
   de	
   entradas,	
   son	
  mayores	
   para	
   los	
   primeros	
  
casos	
  de	
  entrenamiento	
  (hasta	
  capa	
  intermedia	
  con	
  20	
  neuronas).	
  Sin	
  embargo,	
  al	
  llegar	
  a	
  los	
  
casos	
   de	
   30,	
   40	
   y	
   50	
   neuronas	
   en	
   la	
   capa	
   intermedia	
   se	
   observa	
   una	
  disminución	
  del	
   error,	
  
llegando	
  a	
  ser	
  prácticamente	
  nulo	
  (Figuras	
  2.13,	
  2.14	
  y	
  2.15).	
  

 

Error	
  relativo	
  (%)	
  y	
  coeficiente	
  de	
  correlación	
  	
  

Neuronas	
  capa	
  intermedia	
  

	
   	
   3	
   5	
   10	
   15	
   20	
   25	
   30	
   40	
   50	
  

Er
ro
r	
  d

e	
  
ca
rg
a	
  
(%

)	
   Test	
   0,0392	
   0,0313	
   0,0343	
   0,0466	
   0,0870	
   0,0632	
   0,0519	
   0,0535	
   0,0548	
  

Aprendizaje	
   0,0318	
   0,0205	
   0,0139	
   4,04E-­‐3	
   3,52E-­‐4	
   1,45E-­‐4	
   4,60E-­‐4	
   9,98E-­‐7	
   1,49E-­‐6	
  

r!"	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
  

Er
ro
r	
  d

e	
  
po

rc
en

ta
je
	
  

(%
)	
  

Test	
   6,04	
   4,68	
   3,51	
   1,80	
   0,811	
   0,104	
   0,158	
   0,0454	
   0,0321	
  

Aprendizaje	
   4,38	
   4,38	
   3,47	
   3,47	
   0,792	
   0,792	
   0,792	
   0,792	
   0,792	
  

r!"	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
  

Er
ro
r	
  t
ot
al
	
  

(%
)	
  

Test	
   6,08	
   4,71	
  	
   3,54	
   1,85	
   0,898	
   0,167	
   0,21	
   0,0988	
   0,0869	
  

Aprendizaje	
   4,41	
   4,40	
   3,48	
   3,47	
   0,793	
   0,793	
   0,793	
   0,792	
   0,792	
  

r!"	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
   0,99999	
  

 
Tabla 2.3. Error relativo  y coeficiente de correlación para el modelo de entrenamiento de 20 entradas 

 

 

Figura 2.13. Error relativo del módulo de la carga obtenido para el modelo de entrenamiento con 20 entradas 

0.00E+00	
  

1.00E-­‐02	
  

2.00E-­‐02	
  

3.00E-­‐02	
  

4.00E-­‐02	
  

5.00E-­‐02	
  

6.00E-­‐02	
  

7.00E-­‐02	
  

8.00E-­‐02	
  

9.00E-­‐02	
  

1.00E-­‐01	
  

3	
   5	
   10	
   15	
   20	
   25	
   30	
   40	
   50	
  

Er
ro
r	
  
(%

)	
  

Neuronas	
  de	
  la	
  capa	
  intermedia	
  

Error	
  de	
  test	
  

Error	
  de	
  
aprendizaje	
  



 26 

 

 
 

Figura 2.14. Error relativo del porcentaje de carga repartido entre cada cóndilo obtenido para el modelo de 
entrenamiento con 20 entradas 

 

 
 

Figura 2.15. Error relativo total obtenido para el modelo de entrenamiento con 20 entradas 

	
  
Al	
  comparar	
  los	
  errores	
  obtenidos	
  con	
  40	
  y	
  20	
  entradas	
  (Figura	
  2.16),	
  observamos	
  que	
  

al	
   disminuir	
   el	
   número	
   de	
   entradas	
   el	
   error	
   relativo	
   total	
   es	
   ligeramente	
   superior.	
   En	
   los	
  
modelos	
   donde	
   se	
   ha	
   utilizado	
   el	
   mayor	
   número	
   de	
   neuronas	
   esta	
   diferencia	
   se	
   hace	
  
insignificante,	
  ya	
  que	
  los	
  errores	
  de	
  ambos	
  modelos	
  se	
  aproximan	
  a	
  cero.	
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Figura 2.16. Error relativo total obtenido para los modelos de entrenamiento con 20 y 40 entradas 

 
A	
   continuación	
   se	
   exponen	
   gráficamente	
   los	
   resultados	
   obtenidos	
   para	
   el	
   coste	
  

computacional	
   de	
   los	
   diferentes	
   modelos	
   de	
   entrenamiento,	
   los	
   cuales,	
   nos	
   ayudarán	
   a	
  
determinar	
  la	
  solución	
  óptima	
  para	
  nuestra	
  red	
  neuronal,	
  ver	
  Figura	
  2.17.	
  

Se	
   puede	
   observar	
   claramente	
   que	
   al	
   aumentar	
   el	
   número	
   de	
   neuronas	
   de	
   la	
   capa	
  
intermedia	
  el	
  tiempo	
  computacional	
  aumenta	
  exponencialmente.	
  Este	
  aumento	
  se	
  produce	
  de	
  
una	
   forma	
   más	
   brusca	
   para	
   todos	
   los	
   modelos	
   de	
   entrenamiento,	
   a	
   partir	
   de	
   la	
   capa	
  
intermedia	
  con	
  15	
  neuronas.	
  De	
  esta	
  forma,	
  queda	
  demostrado	
  que	
  el	
  tiempo	
  computacional	
  
aumenta	
  al	
  aumentar	
  el	
  número	
  de	
  neuronas	
  de	
  la	
  capa	
  intermedia.	
  	
  

Se	
  determina	
  claramente	
  en	
  la	
  figura,	
  cómo	
  al	
  reducir	
  el	
  número	
  de	
  entradas	
  de	
  la	
  red	
  
neuronal,	
  disminuye	
  el	
  tiempo	
  computacional	
  de	
  entrenamiento	
  de	
  la	
  red.	
  
 

 
 

Figura 2.17. Tiempo computacional obtenido para los diferentes modelos de entrenamiento 
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   2.5.4.	
  	
  	
  	
  	
  Validación	
  
 
En	
   este	
   apartado	
   se	
   va	
   a	
   proceder	
   a	
   realizar	
   la	
   validación	
   de	
   la	
   metodología	
  

desarrollada	
  utilizando	
   la	
  red	
  con	
  20	
  entradas	
  para	
  predecir	
   las	
  cargas	
  (módulo	
  de	
   la	
  carga	
  y	
  
porcentaje	
  de	
  la	
  misma	
  repartida	
  entre	
  los	
  cóndilos)	
  para	
  un	
  caso	
  real	
  de	
  un	
  paciente	
  concreto.	
   

El	
   objetivo	
   de	
   esta	
   validación	
   es	
   asegurarnos	
   que	
   la	
   red	
   neuronal	
   seleccionada	
   está	
  
correctamente	
  entrenada.	
  Con	
  bien	
  entrenada	
  se	
  quiere	
  decir,	
  que	
  dicha	
  red	
  puede	
  ser	
  útil	
  a	
  
la	
  hora	
  de	
  predecir	
  las	
  cargas	
  de	
  determinados	
  pacientes	
  específicos,	
  a	
  partir	
  de	
  la	
  distribución	
  
de	
  densidades.	
  	
  

Para	
   la	
   realización	
   de	
   esta	
   validación	
   se	
   han	
   obtenido	
   del	
   TAC	
   las	
   densidades	
  
correspondientes	
  a	
  los	
  20	
  elementos	
  de	
  entrada	
  de	
  las	
  redes	
  a	
  partir	
  del	
  nivel	
  de	
  grises	
  de	
  las	
  
imágenes	
  (HU).	
  Con	
   los	
  HU	
  se	
  ha	
  obtenido	
  el	
  valor	
  de	
   la	
  densidad	
  en	
  cada	
  entrada	
  de	
   la	
  red	
  
(punto	
  de	
  integración	
  del	
  elemento	
  de	
  la	
  malla)	
  utilizando	
  la	
  siguiente	
  expresión	
  propuesta	
  por	
  
Peng	
  et	
  al	
  (2008):	
  

 
 
Una	
  vez	
  obtenidas	
  se	
   introducen	
  en	
   la	
  red	
  neuronal	
  para	
  obtener	
   las	
  cargas	
  que	
  han	
  

dado	
  lugar	
  a	
  esas	
  densidades.	
  Por	
  último	
  se	
  vuelven	
  a	
  introducir	
  esas	
  cargas	
  en	
  el	
  modelo	
  de	
  la	
  
tibia,	
  se	
  realiza	
  el	
  análisis	
  de	
  remodelación	
  ósea	
  y	
  comparamos	
  las	
  densidades	
  resultantes	
  con	
  
las	
  obtenidas	
  del	
  TAC.	
  

	
  
Al	
   realizar	
  una	
  comparación	
  cualitativa	
  entre	
   la	
  distribución	
  de	
  densidades	
  del	
  TAC	
  y	
  

obtenidos	
  tras	
  el	
  análisis	
  de	
  remodelación	
  ósea	
  introduciendo	
  las	
  cargas	
  de	
  la	
  red	
  (Figura	
  2.16),	
  
observamos	
  que	
  obtenemos	
  unos	
  buenos	
  resultados	
  en	
  la	
  zona	
  del	
  cortical,	
  pero	
  obtenemos	
  
cierto	
   error	
   en	
   las	
   zonas	
   de	
   esponjoso,	
   donde	
   se	
   aplicaron	
   las	
   cargas	
   y	
   las	
   condiciones	
   de	
  
apoyo.	
  

	
  

 
 

Figura 2.17. Comparación cualitativa de las densidades (gr/cm3) obtenidas a partir de las HU del TAC y el 
modelo de redes neuronales 
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2.6. Conclusiones	
  
	
  

Como	
   se	
   ha	
   visto	
   en	
   apartados	
   anteriores,	
   cuantas	
   más	
   neuronas	
   usemos	
   para	
  
entrenar	
   nuestra	
   red	
   mayor	
   será	
   el	
   coste	
   computacional	
   y,	
   a	
   su	
   vez,	
   menor	
   será	
   el	
   error,	
  
excepto	
   si	
   traspasamos	
   el	
   límite	
   del	
   sobreentrenamiento.	
   Por	
   otro	
   lado,	
   la	
   disminución	
   del	
  
número	
  de	
  entradas	
  supone	
  una	
  disminución	
  del	
  coste	
  computacional	
  y	
  un	
  ligero	
  aumento	
  del	
  
error.	
  

En	
   función	
   de	
   los	
   resultados	
   obtenidos,	
   tanto	
   para	
   el	
   error	
   relativo	
   como	
   para	
   el	
  
tiempo	
  computacional,	
  podemos	
  determinar	
  como	
  solución	
  óptima	
  para	
  nuestra	
  red	
  neuronal,	
  
el	
  modelo	
  de	
  entrenamiento	
  con	
  20	
  entradas	
  y	
  una	
  capa	
  intermedia	
  con	
  30	
  neuronas.	
  

	
  
El	
  modelo	
  de	
  predicción	
  de	
  las	
  cargas	
  mediante	
  el	
  método	
  de	
  las	
  redes	
  neuronales	
  es	
  

un	
  método	
   útil	
   y	
   preciso	
   para	
   las	
   zonas	
   con	
  mayor	
   densidad	
   ósea.	
   Sin	
   embargo,	
   cuando	
   la	
  
densidad	
  es	
  baja	
  o	
  en	
  las	
  zonas	
  donde	
  se	
  aplican	
  condiciones	
  de	
  contorno	
  el	
  modelo	
  presenta	
  
ciertos	
  errores.	
   Esta	
   inexactitud	
  puede	
   ser	
  debida	
  a	
   los	
   fallos	
  que	
  presentan	
   los	
  modelos	
  de	
  
remodelación	
   ósea	
   que,	
   como	
   se	
   ha	
   dicho	
   anteriormente,	
   producen	
   errores	
   en	
   zonas	
  
trabeculares	
  y	
  donde	
  se	
  aplican	
  las	
  condiciones	
  de	
  contorno.	
  	
   	
  



 30 

3.	
  Diseño	
  de	
  una	
  prótesis	
  de	
  rodilla	
  de	
  
revisión	
  

	
  
3.1.	
   Introducción	
  
	
  

Una	
   vez	
   obtenido	
   un	
   modelo	
   capaz	
   de	
   predecir	
   las	
   cargas	
   que	
   dan	
   lugar	
   una	
  
determinada	
  distribución	
  de	
  densidades,	
  podemos	
  aplicar	
  este	
  modelo	
  al	
  diseño	
  de	
  prótesis	
  
para	
  un	
  paciente	
  concreto.	
  

Partiendo	
   de	
   la	
   tibia	
   utilizada	
   en	
   el	
   capítulo	
   anterior	
   y	
   las	
   cargas	
   obtenidas	
   en	
   el	
  
apartado	
  2.5.4,	
  se	
  ha	
  simulado	
  la	
  colocación	
  de	
  cuatro	
  tipos	
  de	
  prótesis	
  de	
  rodilla	
  de	
  revisión	
  
con	
  ayuda	
  del	
   software	
  Mimics	
  para	
  estudiar	
   su	
  efecto	
  sobre	
  el	
  hueso,	
  en	
  concreto	
  sobre	
   la	
  
reabsorción/formación	
  ósea.	
  

	
  
3.2.	
   Modelos	
  de	
  elementos	
  finitos	
  y	
  remodelación	
  ósea	
  
	
  

Para	
  el	
  estudio	
  de	
  la	
  influencia	
  de	
  cada	
  tipo	
  de	
  prótesis	
  sobre	
  la	
  remodelación	
  ósea	
  de	
  
la	
  tibia,	
  se	
  ha	
  seguido	
  el	
  siguiente	
  esquema	
  (Figura	
  3.1):	
  

	
  

	
  
Figura 3.1. Esquema seguido para la realización del análisis de remodelación ósea 
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Se	
   parte	
   de	
   las	
   Tomografías	
   Axiales	
   Computerizadas	
   (TAC)	
   (Figura	
   3.2)	
   tomadas	
   a	
  
distintos	
  pacientes	
  a	
  los	
  que	
  se	
  le	
  han	
  colocado	
  distintos	
  tipos	
  de	
  prótesis	
  de	
  revisión.	
  Se	
  han	
  
importado	
  las	
   imágenes	
  de	
  cada	
  una	
  de	
  ellas	
  desde	
  el	
  programa	
  Mimics	
  y	
  se	
  ha	
  desarrollado	
  
un	
   modelo	
   tridimensional	
   de	
   la	
   componente	
   tibial	
   del	
   implante,	
   y	
   que	
   una	
   vez	
   suavizado	
  
(Figura	
   3.3),	
   es	
   introducido	
   en	
   la	
   tibia	
   sana	
   utilizada	
   en	
   el	
   capítulo	
   anterior	
   (Figura	
   3.4).	
  
Posteriormente	
  es	
  exportado	
  al	
  programa	
  Harpoon	
  Mesh	
  para	
  realizar	
  un	
  mallado	
  (Figura	
  3.5).	
  
Finalmente	
  se	
  exporta	
  al	
  procesador	
  de	
  cálculo	
  Abaqus	
  CAE	
  v.	
  6.11	
  (Figura	
  3.6)	
  para	
  realizar,	
  
mediante	
  el	
  método	
  de	
  los	
  elementos	
  finitos	
  y	
  el	
  análisis	
  de	
  remodelación	
  ósea.	
  

	
  
	
  

	
  
	
  

Figura 3.2. Tomografías Axiales Computarizadas en el software Mimics 

	
  
	
  

	
  
	
  

Figura 3.3. Modelos 3D de las componentes tibiales de las prótesis de rodilla de revisión: a) Prótesis de vainas. 
b) Prótesis en offset. c) Prótesis en offset con suplemento medial. d) Prótesis con vástago recto. 
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Figura 3.4. Prótesis introducida en la tibia sana 

 

	
  
	
  

Figura 3.5. Modelos 3D de la tibia y la prótesis en offset malladas en Harpoon Mesh 

 

 
 

Figura 3.6. Modelos 3D de la tibia y la prótesis de vainas en Abaqus 
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La	
   densidad	
   ósea	
   o	
   BMD	
   (bone	
   mineral	
   density)	
   es	
   un	
   término	
   médico	
   que	
  

normalmente	
   se	
   refiere	
   a	
   la	
   cantidad	
   de	
   materia	
   mineral	
   por	
   centímetro	
   cuadrado	
   de	
   los	
  
huesos.	
   La	
   densidad	
  ósea	
   se	
   utiliza	
   en	
   la	
  medicina	
   clínica	
   como	
  un	
   indicador	
   indirecto	
   de	
   la	
  
osteoporosis	
   y	
   el	
   riesgo	
   de	
   fractura.	
   Se	
   mide	
   mediante	
   un	
   procedimiento	
   llamado	
  
densitometría,	
  el	
  cual	
  se	
  realiza	
  en	
  el	
  departamento	
  de	
  radiología	
  o	
  de	
  medicina	
  nuclear	
  de	
  los	
  
hospitales	
  o	
  clínicas.	
  La	
  medición	
  es	
  indolora	
  y	
  no	
  invasiva	
  e	
  implica	
  exposición	
  a	
  baja	
  radiación.	
  

El	
   ratio	
   de	
   densidad	
   ósea	
   cuantifica	
   cuánto	
   cambia	
   la	
   densidad	
   ósea	
   a	
   lo	
   largo	
   del	
  
tiempo;	
   si	
   desciende	
   de	
   forma	
   considerable	
   significa	
   que	
   la	
   densidad	
   ósea	
   también	
   ha	
  
descendido,	
   lo	
   que	
   quiere	
   decir	
   que	
   el	
   hueso	
   ha	
   pasado	
   de	
   poseer	
   mayor	
   parte	
   de	
   hueso	
  
cortical	
   (hueso	
  más	
   fuerte)	
   a	
  mayor	
   parte	
   de	
   hueso	
   trabecular	
   (hueso	
   esponjoso)	
   debido	
   al	
  
cambio	
  en	
   la	
   transmisión	
  de	
   las	
  cargas	
  que	
  supone	
   la	
   incorporación	
  de	
   la	
  prótesis.	
  Se	
  puede	
  
determinar	
  el	
  ratio	
  de	
  densidad	
  ósea	
  mediante	
  la	
  siguiente	
  expresión:	
  

	
  
 

Figura 3.7 Expresión utilizada para el cálculo del BMD ratio 

 
El	
   ratio	
   de	
  BMD	
   se	
   ha	
   evaluado	
   en	
   las	
   cuatro	
   prótesis,	
   así	
   como	
   la	
   tensión	
   principal	
  

máxima	
  y	
  la	
  deformación	
  equivalente	
  de	
  Von	
  Mises.	
  

	
  
	
  

3.3.	
   Resultados	
  
	
  
A	
  continuación	
   se	
  muestran	
   las	
  distribuciones	
  de	
  densidades	
  obtenidas	
  al	
   incorporar	
  

las	
  distintas	
  prótesis	
  a	
  la	
  tibia	
  (Figuras	
  3.7	
  a	
  3.14).	
  
En	
   todos	
   los	
   casos	
   se	
   observa	
   un	
   mismo	
   patrón.	
   La	
   densidad	
   en	
   la	
   epífisis	
   va	
  

disminuyendo,	
  es	
  decir,	
  se	
  produce	
  reabsorción	
  ósea,	
  al	
  igual	
  que	
  en	
  el	
  canal	
  medular	
  en	
  torno	
  
al	
  vástago	
  protésico.	
  Por	
  otro	
  lado,	
  se	
  produce	
  un	
  aumento	
  de	
  la	
  densidad,	
  es	
  decir,	
  formación	
  
ósea,	
  en	
  la	
  zona	
  de	
  la	
  punta	
  del	
  vástago	
  y	
  en	
  la	
  diáfisis.	
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Figura 3.7. Evolución de la densidad ósea (gr/cm3) a lo largo del tiempo para la prótesis con vástago en offset 
sin suplemento 

	
  
	
  

	
  
	
  

Figura 3.8. Evolución de la densidad ósea (gr/cm3) a lo largo del tiempo para la prótesis con vástago en offset 
sin suplemento. Vista corte transversal 
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Figura 3.9. Evolución de la densidad ósea (gr/cm3) a lo largo del tiempo para la prótesis con vástago recto 

	
  

	
  
	
  

Figura 3.10. Evolución de la densidad ósea (gr/cm3) a lo largo del tiempo para la prótesis con vástago recto. 
Vista corte transversal 

 



 36 

 
 
Figura 3.11. Evolución de la densidad ósea (gr/cm3) a lo largo del tiempo para la prótesis con vástago en offset 

con suplemento 

 

	
  
	
  
Figura 3.12. Evolución de la densidad ósea (gr/cm3) a lo largo del tiempo para la prótesis con vástago en offset 

con suplemento. Vista corte transversal 
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Figura 3.13. Evolución de la densidad ósea (gr/cm3) a lo largo del tiempo para la prótesis de vainas 

	
  

	
  
	
  
Figura 3.14. Evolución de la densidad ósea (gr/cm3) a lo largo del tiempo para la prótesis de vainas. Vista corte 

transversal 

En	
   la	
  figura	
  3.15	
  se	
  observan	
   las	
  diferencias	
  entre	
   las	
  distribuciones	
  de	
  densidad	
  que	
  
han	
  dado	
  lugar	
  la	
  implantación	
  de	
  las	
  distintas	
  prótesis.	
  Se	
  observa	
  que	
  la	
  prótesis	
  con	
  vástago	
  
recto	
  produce	
  una	
  gran	
  reabsorción	
  ósea	
  en	
  la	
  zona	
  del	
  vástago	
  tibial	
  comparada	
  con	
  el	
  resto,	
  
mientras	
  que	
  en	
  la	
  zona	
  de	
  la	
  diáfisis	
  produce	
  menos	
  reabsorción	
  que	
  las	
  demás,	
  seguida	
  de	
  la	
  
prótesis	
  en	
  offset	
  con	
  suplemento.	
  La	
  prótesis	
  en	
  offset	
  sin	
  suplemento	
  y	
  la	
  prótesis	
  de	
  vainas	
  
dan	
  lugar	
  a	
  densidades	
  similares.	
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Figura 3.15. Comparación de la distribución de densidades (gr/cm3) para las custro prótesis en el último 
incremento. a) Prótesis en offset sin suplemento. b) Prótesis con vástago recto. c) Prótesis en offset con 

suplemento. d) Prótesis con vainas 

En	
   la	
   siguiente	
  gráfica	
   (Figura	
  3.16)	
   se	
  muestran	
   los	
   resultados	
  del	
   ratio	
  de	
  densidad	
  
ósea	
  obtenidos	
  para	
  cada	
  tipo	
  de	
  prótesis.	
  La	
  prótesis	
  con	
  vástago	
  recto	
  es,	
  con	
  diferencia,	
  la	
  
que	
   produce	
   una	
  menor	
   reabsorción	
   ósea,	
   seguida	
   de	
   la	
   prótesis	
   con	
   vástago	
   en	
   offset	
   con	
  
suplemento	
   y	
   por	
   último	
   la	
   prótesis	
   en	
   offset	
   sin	
   suplemento	
   y	
   la	
   prótesis	
   de	
   vainas,	
   que	
  
producen	
  una	
  reabsorción	
  ósea	
  similar.	
  

	
  

	
  
	
  

Figura 3.16. Variación del ratio de densidad ósea con el tiempo 
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También	
  se	
  ha	
  evaluado	
  la	
  tensión	
  máxima	
  principal	
  que	
  produce	
  cada	
  prótesis	
  en	
  el	
  
hueso	
   (Figura	
   3.17	
   y	
   3.18).	
   La	
   tensión	
   principal	
   máxima	
   en	
   el	
   hueso	
   no	
   supera	
   en	
   ningún	
  
momento	
   la	
   resistencia	
   a	
   tracción	
   del	
   hueso	
   (30	
   MPa).	
   Todas	
   las	
   prótesis	
   producen	
  
distribuciones	
  de	
  tensiones	
  similares	
  en	
  el	
  hueso.	
  Las	
  prótesis	
  que	
  producen	
  una	
  mayor	
  zona	
  
de	
  tensiones	
  son	
  la	
  prótesis	
  con	
  vástago	
  recto	
  seguida	
  de	
  la	
  prótesis	
  en	
  offset	
  con	
  suplemento.	
  
En	
  cuanto	
  a	
  la	
  zona	
  donde	
  aparece	
  tensión	
  puede	
  ser	
  debida	
  al	
  estrechamiento	
  de	
  la	
  sección	
  
de	
  la	
  tibia	
  en	
  esa	
  zona,	
  que	
  produce	
  un	
  efecto	
  entalla	
  y	
  actúa	
  como	
  concentrador	
  de	
  tensiones.	
  
Los	
  máximos	
  locales	
  que	
  se	
  producen	
  en	
  los	
  nodos	
  en	
  los	
  que	
  se	
  aplicaron	
  las	
  condiciones	
  de	
  
apoyo.	
  

	
  
Figura 3.17. Tensión principal máxima en el hueso (MPa). a) Prótesis en offset sin suplemento. b) Prótesis con 

vástago recto. c) Prótesis en offset con suplemento. d) Prótesis con vainas 

	
  

	
  
Figura 3.18. Tensión principal máxima en el hueso (MPa). Vista corte transversal. a) Prótesis en offset sin 

suplemento. b) Prótesis con vástago recto. c) Prótesis en offset con suplemento. d) Prótesis con vainas 
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Figura 3.19. Tensiones de Von Mises en el implante (MPa). Vista delantera. a) Prótesis en offset sin 

suplemento. b) Prótesis con vástago recto. c) Prótesis en offset con suplemento. d) Prótesis con vainas 

 
	
  

	
  
Figura 3.20. Tensiones de Von Mises en el implante (MPa). Vista trasera. a) Prótesis en offset sin suplemento. 

b) Prótesis con vástago recto. c) Prótesis en offset con suplemento. d) Prótesis con vainas 

 
En	
  las	
  imágenes	
  anteriores	
  se	
  observa	
  la	
  comparación	
  entre	
  las	
  cuatro	
  prótesis	
  de	
  las	
  

tensiones	
  de	
  Von	
  Mises	
  a	
  las	
  que	
  se	
  encuentran	
  sometidos	
  los	
  vástagos	
  (Figuras	
  3.19	
  y	
  3.20).	
  
La	
   tensión	
   de	
   Von	
  Mises	
   en	
   los	
   implantes	
   no	
   supera	
   en	
   ningún	
  momento	
   la	
   resistencia	
   del	
  
mismo	
   (450	
  MPa).	
   Los	
   mayores	
   valores	
   de	
   tensión	
   se	
   localizan	
   en	
   la	
   punta	
   del	
   vástago.	
   La	
  
prótesis	
  que	
  está	
  sometida	
  a	
  más	
  tensiones	
  es	
   la	
  de	
  vástago	
  recto,	
  mientras	
  que,	
   la	
  prótesis	
  
con	
  offset	
  sin	
  suplemento	
  es	
  la	
  que	
  menos	
  tensiones	
  soporta.	
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3.4. Conclusiones	
  
	
  

La	
  prótesis	
  que	
  mayor	
  reabsorción	
  producen	
  son	
  la	
  prótesis	
  de	
  vainas	
  y	
  la	
  prótesis	
  con	
  
vástago	
  en	
  offset	
  sin	
  suplemento,	
  seguida	
  muy	
  de	
  cerca	
  por	
  la	
  prótesis	
  con	
  vástago	
  en	
  offset	
  
con	
   suplemento.	
   La	
  prótesis	
  que,	
   con	
  diferencia,	
   produce	
  una	
  menor	
   reabsorción	
  ósea	
  es	
   la	
  
prótesis	
  con	
  vástago	
  recto.	
  Esto	
  puede	
  deberse	
  a	
  que	
  no	
  posee	
  un	
  offset	
  ni	
  unas	
  vainas	
  que	
  
puedan	
   actuar	
   como	
   concentradores	
   de	
   tensiones,	
   descargando	
   el	
   hueso	
   y	
   produciendo	
   la	
  
reabsorción	
   ósea.	
   Esto	
   también	
   es	
   debido	
   a	
   que	
   la	
   prótesis	
   con	
   vástago	
   recto	
   es	
   la	
   menos	
  
rígida,	
   por	
   lo	
   que	
   es	
   capaz	
   de	
   transmitir	
   de	
   una	
   manera	
   más	
   uniforme	
   las	
   tensiones,	
  
reduciendo	
   la	
   reabsorción	
  ósea.	
   La	
  prótesis	
   de	
   vainas	
  es	
   la	
  más	
   rígida,	
   de	
   ahí	
   que	
  genere	
   la	
  
mayor	
  reabsorción	
  ósea.	
  

	
  
Las	
   prótesis	
   con	
   vástago	
   en	
   offset	
   son	
   las	
   que	
   producen	
   mayor	
   tensión	
   principal	
  

máxima	
  en	
  el	
  hueso,	
  aunque	
  en	
  ningún	
  momento	
  supera	
  los	
  máximos	
  permitidos.	
  Esto	
  puede	
  
ser	
  debido,	
  como	
  se	
  ha	
  comentado	
  anteriormente,	
  a	
  que	
  el	
  offset	
  actúa	
  como	
  un	
  importante	
  
concentrador	
  de	
  tensiones	
  localizado	
  localmente.	
  En	
  cuanto	
  a	
  la	
  tensión	
  de	
  Von	
  Mises	
  en	
  las	
  
prótesis,	
   los	
   mayores	
   valores	
   aparecen	
   localizados	
   en	
   la	
   punta	
   del	
   vástago,	
   destacando	
   las	
  
tensiones	
  que	
  se	
  encuentran	
  en	
  la	
  prótesis	
  de	
  vástago	
  recto.	
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4.	
  Conclusiones	
  y	
  líneas	
  futuras	
  

	
  
4.1. Resumen	
  
	
  
Este	
  trabajo	
  se	
  ha	
  dividido	
  en	
  dos	
  partes:	
  la	
  primera	
  la	
  determinación	
  de	
  las	
  cargas	
  que	
  

afectan	
  a	
  la	
  tibia	
  de	
  un	
  paciente	
  concreto	
  mediante	
  un	
  método	
  basado	
  en	
  Redes	
  Neuronales,	
  y	
  
la	
   segunda	
   la	
   utilización	
   de	
   dichas	
   cargas	
   para	
   analizar	
   la	
   reabsorción	
   ósea	
   que	
   producen	
  
cuatro	
  tipos	
  distintos	
  de	
  prótesis	
  de	
  rodilla	
  de	
  revisión.	
  

Para	
   la	
  primera	
  parte	
  del	
   trabajo	
  se	
  ha	
  analizado	
  el	
  problema	
  de	
  remodelación	
  ósea,	
  
aplicando	
  un	
  rango	
  de	
  variación	
  de	
  un	
  20%	
  de	
  las	
  condiciones	
  de	
  carga	
  al	
  modelo	
  3D	
  de	
  una	
  
tibia	
  real.	
  De	
  este	
  análisis	
  se	
  han	
  obtenido	
  unas	
  densidades	
  óseas,	
  que	
  sirven	
  de	
  entrada	
  para	
  
la	
  Red	
  Neuronal	
  Artificial.	
  Después	
  de	
  entrenar	
  la	
  red	
  con	
  una	
  función	
  sigmoidea	
  como	
  entrada,	
  
distinto	
  número	
  de	
  neuronas	
  en	
   la	
  capa	
   intermedia	
  y	
  una	
   función	
   lineal	
  como	
  salida,	
   se	
  han	
  
obtenido	
   unas	
   cargas,	
   las	
   cuales	
   se	
   han	
   comparado	
   con	
   las	
   condiciones	
   de	
   carga	
   aplicadas	
  
inicialmente	
  y	
   se	
  ha	
  obtenido	
  un	
  error	
  de	
   cálculo.	
   Tras	
  determinar	
  el	
   número	
  de	
  entradas	
   y	
  
neuronas	
  de	
  la	
  capa	
  intermedia	
  más	
  adecuado,	
  se	
  han	
  introducido	
  las	
  cargas	
  obtenidas	
  en	
  el	
  
modelo	
  de	
  la	
  tibia	
  con	
  distintas	
  prótesis,	
  evaluando	
  su	
  efecto	
  en	
  la	
  remodelación	
  ósea.	
  

	
  
4.2. Conclusiones	
  

	
  
En	
   cuanto	
   a	
   la	
   primera	
   parte	
   de	
   este	
   trabajo,	
   una	
   de	
   las	
   principales	
   conclusiones	
   es	
  

que	
  el	
  modelado	
   la	
  red	
  neuronal	
  se	
  puede	
   llegar	
  a	
  predecir	
  con	
  exactitud	
   las	
  condiciones	
  de	
  
carga	
   de	
   un	
   paciente	
   específico	
   a	
   partir	
   de	
   su	
   distribución	
   de	
   densidades.	
   Gracias	
   a	
   este	
  
método,	
   podemos	
   obtener	
   las	
   cargas	
   que	
   sufre	
   la	
   tibia	
   y	
   sus	
   angulo	
   de	
   aplicación.	
   De	
   esta	
  
forma,	
  el	
  modelo	
  matemático	
  desarrollado	
  en	
  este	
  proyecto	
  puede	
  ser	
  utilizado	
  en	
  la	
  vida	
  real	
  
para	
  predecir	
  las	
  cargas	
  de	
  un	
  paciente,	
  las	
  cuales	
  nos	
  proporcionen	
  la	
  información	
  necesaria	
  
para	
  implantar	
  de	
  forma	
  más	
  eficiente	
  una	
  prótesis	
  para	
  dicho	
  paciente	
  si	
  fuera	
  necesario.	
  	
  

Como	
  conclusiones	
  secundarias	
  se	
  ha	
  observado	
  que	
  cuantas	
  más	
  neuronas	
  se	
  utilicen	
  
para	
  entrenar	
   la	
  Red	
  Neuronal	
  Artificial,	
  mayor	
   será	
  el	
   coste	
   computacional	
   y	
  menor	
   será	
  el	
  
error,	
  hasta	
  llegar	
  a	
  un	
  límite	
  de	
  sobreentrenamiento	
  para	
  el	
  cual	
  el	
  error	
  volverá	
  a	
  aumentar.	
  
La	
   disminución	
   del	
   número	
   de	
   entradas	
   para	
   la	
   Red	
   Neuronal	
   supone	
   una	
   disminución	
   del	
  
coste	
   computacional	
   y	
   un	
   pequeño	
   aumento	
   del	
   error.	
   Con	
   estas	
   conclusiones,	
   hemos	
  
obtenido	
   como	
  modelo	
  óptimo	
  para	
  nuestro	
  problema	
  una	
   red	
   con	
  20	
   entradas	
   y	
   una	
   capa	
  
intermedia	
  con	
  30	
  neuronas.	
  Los	
  resultados	
  obtenidos	
  de	
  la	
  red	
  han	
  sido	
  buenos	
  para	
  las	
  zonas	
  
de	
  cortical,	
  pero	
  en	
  las	
  zonas	
  de	
  baja	
  densidad	
  o	
  donde	
  se	
  aplican	
  las	
  condiciones	
  de	
  contorno	
  
presenta	
  errores	
  de	
  aproximación	
  más	
  altos.	
  

En	
   la	
   segunda	
   parte	
   de	
   este	
   trabajo	
   se	
   han	
   comparado	
   las	
   distintas	
   prótesis.	
   En	
   el	
  
análisis	
  de	
  remodelación	
  ósea	
  realizado	
  se	
  ha	
  visto	
  que	
  la	
  prótesis	
  con	
  vástago	
  recto	
  es	
  la	
  que	
  
menos	
   reabsorción	
  ósea	
  produce,	
   lo	
  que	
  puede	
   ser	
  debido	
  a	
  que	
  no	
   tiene	
  un	
  offset	
  ni	
  unas	
  
vainas	
   que	
   actúen	
   como	
   concentradores	
   de	
   tensiones,	
   descargando	
   el	
   hueso	
   y	
   produciendo	
  
una	
   importante	
  reabsorción	
  ósea	
  y	
  por	
  ser	
  un	
  vástago	
  mucho	
  menos	
  rígido	
  que	
  el	
  resto.	
  Por	
  
este	
   motivo,	
   las	
   prótesis	
   con	
   vástago	
   en	
   offset	
   y	
   con	
   vainas	
   han	
   producido	
   las	
   mayores	
  
tensiones	
  y	
  deformaciones.	
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4.3. Futuras	
  líneas	
  de	
  investigación	
  
	
  

Las	
  conclusiones	
  obtenidas	
  en	
  este	
  proyecto	
  son	
  importantes,	
  pero	
  siempre	
  se	
  puede	
  
mejorar	
  el	
  trabajo	
  realizado	
  y	
  explorar	
  otros	
  aspectos	
  que	
  permitan	
  avanzar	
  en	
  la	
  investigación	
  
realizada.	
  Por	
  lo	
  tanto	
  las	
  futuras	
  líneas	
  de	
  acción	
  que	
  se	
  proponen	
  son	
  las	
  siguientes:	
  

-­‐ Efecto	
  de	
  la	
  incorporación	
  del	
  peroné	
  en	
  las	
  simulaciones	
  de	
  la	
  remodelación	
  ósea	
  
-­‐ Desarrollo	
  de	
  un	
  modelo	
  paramétrico	
  de	
  la	
  tibia	
  válido	
  para	
  cualquier	
  paciente	
  
-­‐ Nueva	
  metodología	
   basada	
   en	
   las	
   redes	
   neuronales	
   donde	
   las	
   entradas	
   sean	
   los	
  

parámetros	
   del	
   modelo	
   paramétrico	
   anterior	
   y	
   que	
   sea	
   capaz	
   de	
   predecir	
   las	
  
cargas	
  de	
  cualquiera	
  paciente	
  

-­‐ Comparación	
  de	
  distintos	
  vástagos	
  con	
  un	
  platillo	
  tibial	
  sin	
  vástago	
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Anexo	
  I.	
  Redes	
  neuronales	
  	
  

 
Las	
   redes	
   neuronales	
   artificiales	
   (RNA)	
   son	
   modelos	
   matemáticos	
   que	
   intentan	
  

reproducir	
   el	
   funcionamiento	
   del	
   sistema	
   nervioso.	
   Como	
   todo	
   modelo	
   realizan	
   una	
  
simplificación	
  del	
  sistema	
  real	
  que	
  simula	
  y	
  toma	
  las	
  características	
  principales	
  del	
  mismo	
  para	
  
la	
  resolución	
  de	
  una	
  tarea	
  determinada.	
  
	
  
I. El	
  modelo	
  biológico	
  

	
  
El	
  cerebro	
  es	
  el	
  elemento	
  principal	
  del	
  sistema	
  nervioso	
  humano	
  y	
  está	
  compuesto	
  por	
  

un	
  tipo	
  especial	
  de	
  célula	
  llamada	
  neurona.	
  Una	
  neurona	
  es	
  una	
  célula	
  viva	
  y	
  como	
  tal	
  posee	
  
todos	
   los	
   elementos	
   comunes	
   de	
   las	
   células	
   biológicas.	
   A	
   su	
   vez,	
   las	
   neuronas	
   tienen	
  
características	
  propias	
  que	
  le	
  permiten	
  comunicarse	
  entre	
  ellas,	
  lo	
  que	
  las	
  diferencia	
  del	
  resto	
  
de	
  las	
  células	
  biológicas.	
  La	
  figura	
  I.1	
  muestra	
  la	
  estructura	
  típica	
  de	
  una	
  neurona	
  biológica.	
  

	
  

	
  
Figura	
  I.1:	
  Neurona	
  biológica	
  

	
  
Se	
  observa	
  que	
  la	
  neurona	
  biológica	
  está	
  compuesta	
  por	
  un	
  cuerpo	
  celular	
  o	
  soma,	
  del	
  

cual	
   se	
   desprende	
   un	
   árbol	
   de	
   ramificaciones	
   llamado	
   árbol	
   dendrítico,	
   compuesto	
   por	
   las	
  
dendritas.	
  Del	
   soma	
   también	
  parte	
  una	
   fibra	
   tubular,	
   llamada	
  axón,	
  el	
   cual	
   suele	
   ramificarse	
  
cerca	
  de	
  su	
  extremo.	
  Las	
  dendritas	
  actúan	
  como	
  un	
  canal	
  de	
  entrada	
  de	
  señales	
  provenientes	
  
desde	
   el	
   exterior	
   hacia	
   la	
   neurona,	
  mientras	
   que	
   el	
   axón	
   actúa	
   como	
   un	
   canal	
   de	
   salida.	
   El	
  
espacio	
  entre	
  dos	
  neuronas	
  vecinas	
  se	
  denomina	
  sinapsis.	
  	
  

Desde	
   un	
   punto	
   de	
   vista	
   funcional,	
   las	
   neuronas	
   conforman	
   un	
   procesador	
   de	
  
información	
   sencillo.	
   Constan	
   de	
   un	
   subsistema	
   de	
   entrada	
   (dendritas),	
   un	
   subsistema	
   de	
  
procesamiento	
   (el	
   soma)	
   y	
   un	
   subsistema	
   de	
   salida	
   (axón).	
   Como	
   característica	
   principal	
  
destaca	
   su	
   capacidad	
   de	
   interacción	
   con	
   otras	
   neuronas,	
   las	
   señales	
   nerviosas	
   pueden	
   ser	
  
eléctricas	
  o	
  químicas.	
  La	
   transmisión	
  química	
  se	
  da	
  principalmente	
  en	
   la	
  comunicación	
  entre	
  
neuronas	
  mientras	
  que	
  la	
  eléctrica	
  se	
  produce	
  dentro	
  de	
  una	
  neurona	
  [Martinez	
  et	
  al.,	
  2003].	
  

En	
   general,	
   una	
   neurona	
   recibe	
   información	
   de	
   cientos	
   de	
   neuronas	
   vecinas	
   y	
   la	
  
transmite	
   a	
   otras	
   tantas	
   neuronas.	
   La	
   comunicación	
   entre	
   neuronas	
   se	
   lleva	
   a	
   cabo	
   de	
   la	
  
siguiente	
  manera:	
   el	
   soma	
  de	
   las	
   neuronas	
   transmisoras	
   o	
   presinápticas	
   se	
   genera	
   un	
   pulso	
  
eléctrico	
   llamado	
   potencial	
   de	
   acción.	
   El	
   pulso	
   eléctrico	
   se	
   propaga	
   a	
   través	
   del	
   axón	
   en	
  
dirección	
   a	
   las	
   sinapsis.	
   La	
   información	
   se	
   transmite	
   a	
   las	
   neuronas	
   vecinas	
   utilizando	
   un	
  
proceso	
   químico,	
   mediante	
   la	
   liberación	
   de	
   neurotransmisores.	
   Estos	
   neurotransmisores	
   se	
  
transmiten	
   a	
   través	
   de	
   la	
   sinapsis	
   hacia	
   la	
   neurona	
   receptora.	
   La	
   neurona	
   receptora	
   o	
  
postsináptica	
   toma	
   la	
   señal	
   enviada	
   por	
   cientos	
   de	
   neuronas	
   a	
   través	
   de	
   las	
   dendritas	
   y	
   la	
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transmite	
   al	
   cuerpo	
   celular.	
   Estas	
   señales	
   pueden	
   ser	
   excitadoras	
   (positivas)	
   o	
   inhibidoras	
  
(negativas)	
  [Gurmey,	
  1997].	
  El	
  soma	
  es	
  el	
  encargado	
  de	
  integrar	
  la	
  información	
  proveniente	
  de	
  
las	
   distintas	
   neuronas.	
   Si	
   la	
   señal	
   resultante	
   supera	
   un	
   determinado	
   umbral	
   (umbral	
   de	
  
disparo)	
   el	
   soma	
   emite	
   un	
   pulso	
   que	
   se	
   transmite	
   a	
   lo	
   largo	
   del	
   axón	
   dando	
   lugar	
   a	
   la	
  
transmisión	
  eléctrica	
  a	
   lo	
   largo	
  de	
  neurona.	
  Al	
   llegar	
   la	
   señal	
   al	
   extremo	
  del	
   axón	
   se	
   liberan	
  
neurotransmisores	
   que	
   permiten	
   transmitir	
   la	
   señal	
   a	
   las	
   neuronas	
   vecinas	
   [Nascimiento,	
  
1994].	
  Este	
  modelo	
  biológico	
  es	
  la	
  base	
  que	
  siguen	
  los	
  distintos	
  sistemas	
  basados	
  en	
  neuronas	
  
artificiales	
  y	
  que	
  brevemente	
  se	
  van	
  a	
  presentar	
  en	
  los	
  siguientes	
  apartados.	
  

 
II. Modelo	
  de	
  neurona	
  artificial	
  

 
La	
  neurona	
  artificial	
  es	
  un	
  elemento	
  de	
  procesamiento	
  simple	
  que	
  a	
  partir	
  de	
  un	
  vector	
  

de	
  entradas	
  produce	
  múltiples	
  salidas.	
  En	
  general	
  podemos	
  encontrar	
  tres	
  tipos	
  de	
  neuronas	
  
artificiales	
  y	
  podemos	
  clasificarlas	
  según	
  su	
  función	
  en:	
  

	
  
Neuronas	
  de	
  entrada:	
  Son	
  aquellas	
  que	
  reciben	
  directamente	
  la	
  información	
  	
  desde	
  el	
  

exterior.	
  
Neuronas	
  ocultas:	
  Llamadas	
  de	
  esta	
  forma	
  a	
   las	
  neuronas	
  que	
  reciben	
   la	
   información	
  

desde	
  otras	
  neuronas	
  artificiales.	
  Es	
  en	
  estas	
  neuronas	
  donde	
  se	
  realiza	
  la	
  representación	
  de	
  la	
  
información	
  almacenada.	
  	
  

Neuronas	
  de	
  salida:	
  Las	
  cuales	
   reciben	
   la	
   información	
  ya	
  procesada	
  y	
   la	
  devuelven	
  al	
  
exterior.	
  	
  

	
  
En	
  la	
  figura	
  I.2	
  se	
  muestran	
  todos	
  los	
  elementos	
  que	
  componen	
  una	
  neurona	
  artificial:	
  
	
  

	
  
	
  

Figura	
  I.2:	
  Neurona	
  artificial	
  
	
  

Conjunto	
  de	
  entradas,	
  xj	
  (t):	
  Reciben	
   la	
   información,	
  esta	
  puede	
  ser	
  proveniente	
  del	
  
exterior	
  o	
  de	
  otra	
  neurona	
  artificial.	
  

Pesos	
   sinápticos,	
   wij:	
   Representan	
   el	
   grado	
   de	
   comunicación	
   entre	
   dos	
   neuronas	
  
artificiales.	
  Estos	
  pesos	
  pueden	
  ser	
  excitadores	
  o	
  inhibidores.	
  

Regla	
  de	
  propagación,	
  !i:	
  Integra	
  la	
  información	
  proveniente	
  de	
  las	
  distintas	
  neuronas	
  
artificiales,	
  entradas	
  y	
  pesos	
  sinápticos,	
  y	
  proporcionan	
  el	
  valor	
  potencial	
  postsináptico	
  de	
   la	
  
neurona.	
  

Función	
  de	
  activación,	
  fi:	
  Provee	
  el	
  estado	
  de	
  activación	
  de	
  la	
  neurona	
  i.	
  
Función	
  de	
  salida,	
  Fi:	
  Representa	
  la	
  salida	
  actual	
  de	
  la	
  neurona	
  i.	
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A	
   continuación	
   se	
   presentan	
   los	
   puntos	
   expuestos	
   anteriormente	
  de	
  una	
   forma	
  más	
  
detallada.	
  

	
  
i. Entradas	
  y	
  salidas	
  
	
  
	
  
Las	
  entradas	
  y	
  salidas	
  de	
  una	
  neurona	
  pueden	
  ser	
  clasificadas	
  en	
  dos	
  grandes	
  grupos,	
  

binarias	
   o	
   continuas.	
   Las	
   neuronas	
   binarias	
   (digitales)	
   sólo	
   admiten	
   dos	
   valores	
   posibles.	
   En	
  
general	
  en	
  este	
   tipo	
  de	
  neurona	
   se	
  utilizan	
   los	
   siguientes	
  dos	
  alfabetos	
   {0,1}	
  o	
   {-­‐1,1}.	
  Por	
   su	
  
parte,	
   las	
  neuronas	
  continuas	
  (analógicas)	
  admiten	
  valores	
  dentro	
  de	
  un	
  determinado	
  rango,	
  
que	
  en	
  general	
  suele	
  definirse	
  como	
  [-­‐1,	
  1].	
  La	
  selección	
  del	
  tipo	
  de	
  neurona	
  a	
  utilizar	
  depende	
  
de	
  la	
  aplicación	
  y	
  del	
  modelo	
  a	
  construir.	
  

 
ii. Pesos	
  sinápticos	
  

 
El	
  peso	
  sináptico	
  wij	
  define	
  la	
  fuerza	
  de	
  una	
  conexión	
  sináptica	
  entre	
  dos	
  neuronas,	
  la	
  

neurona	
  presináptica	
  i	
  y	
  la	
  neurona	
  postsináptica	
  j.	
  Los	
  pesos	
  sinápticos	
  pueden	
  tomar	
  valores	
  
positivos,	
   negativos	
   o	
   cero.	
   En	
   caso	
   de	
   una	
   entrada	
   positiva,	
   un	
   peso	
   positivo	
   actúa	
   como	
  
excitador,	
  mientras	
  que	
  un	
  peso	
  negativo	
  actúa	
   como	
   inhibidor.	
   En	
   caso	
  de	
  que	
  el	
  peso	
   sea	
  
cero,	
  no	
  existe	
  comunicación	
  entre	
  el	
  par	
  de	
  neuronas.	
  

Mediante	
   el	
   ajuste	
   de	
   los	
   pesos	
   sinápticos	
   la	
   red	
   es	
   capaz	
   de	
   adaptarse	
   a	
   cualquier	
  
entorno	
  y	
  realizar	
  una	
  determinada	
  tarea.	
  

	
  
 

iii. Regla	
  de	
  propagación	
  
 

La	
   regla	
   de	
   propagación	
   determina	
   el	
   potencial	
   resultante	
   de	
   la	
   interacción	
   de	
   la	
  
neurona	
   i	
   con	
   las	
   N	
   neuronas	
   vecinas.	
   El	
   potencial	
   resultante	
   hi	
   se	
   puede	
   expresar	
   de	
   la	
  
siguiente	
  manera:	
  

ℎ! ! =   !!  (!!"  ,!!   ! )	
  
	
  
La	
   regla	
   de	
   propagación	
  más	
   simple	
   y	
   utilizada	
   consiste	
   en	
   realizar	
   una	
   suma	
   de	
   las	
  

entradas	
  ponderadas	
  con	
  sus	
  pesos	
  sinápticos	
  correspondientes:	
  
	
  

ℎ! ! =   ∑!!"   ∗   !!   ! 	
  
 
 

iv. Función	
  de	
  activación	
  
	
  

 
La	
   función	
   de	
   activación	
   determina	
   el	
   estado	
   de	
   activación	
   actual	
   de	
   la	
   neurona	
   en	
  

base	
   al	
   potencial	
   resultante	
   hi	
   	
   y	
   al	
   estado	
   de	
   activación	
   anterior	
   de	
   la	
   neurona	
   ai(t-­‐1).	
   El	
  
estado	
   de	
   activación	
   de	
   la	
   neurona	
   para	
   un	
   determinado	
   instante	
   de	
   tiempo	
   t	
   puede	
   ser	
  
expresado	
  de	
  la	
  siguiente	
  manera:	
  

!! ! =   !!  (!!  (! − 1), ℎ! ! )	
  
	
  
Sin	
   embargo,	
   en	
   la	
  mayoría	
  de	
   los	
  modelos	
   se	
   suele	
   ignorar	
   el	
   estado	
  anterior	
  de	
   la	
  

neurona,	
  definiéndose	
  el	
  estado	
  de	
  activación	
  en	
  función	
  del	
  potencial	
  resultante	
  hi:	
  
	
  

!! ! =   !!  (  ℎ! ! )	
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La	
  Tabla	
  I.1	
  muestra	
  un	
  listado	
  de	
  algunas	
  de	
  las	
  funciones	
  de	
  activación	
  más	
  utilizadas	
  

en	
  los	
  distintos	
  modelos	
  de	
  redes	
  neuronales	
  artificiales.	
  
 
 
 
 

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Tabla	
  I.1:	
  Funciones	
  de	
  activación.	
  
	
  
 
 

v. Función	
  de	
  salida	
  
	
  
	
  
La	
  función	
  de	
  salida	
  proporciona	
  el	
  valor	
  de	
  salida	
  de	
  la	
  neurona,	
  en	
  base	
  al	
  estado	
  de	
  

activación	
  de	
  la	
  neurona.	
  En	
  general	
  se	
  utiliza	
  la	
  función	
  identidad,	
  es	
  decir:	
  
	
  

!! ! =   !!   !! ! =   !! !   	
  
 

 
 

III. Arquitectura	
  de	
  una	
  red	
  neuronal	
  
 

Una	
  vez	
  definida	
  el	
  tipo	
  de	
  neurona	
  que	
  se	
  utilizará	
  en	
  un	
  modelo	
  de	
  redes	
  	
  neuronales	
  
artificiales	
  es	
  necesario	
  definir	
   la	
  topología	
  de	
   la	
  misma.	
   	
  La	
  organización	
  y	
  disposición	
  de	
   las	
  
neuronas	
  dentro	
  de	
  una	
  red	
  neuronal	
  se	
  denomina	
  topología,	
  y	
  viene	
  dada	
  por	
  el	
  número	
  de	
  
capas,	
  la	
  cantidad	
  de	
  neuronas	
  por	
  capa,	
  el	
  grado	
  de	
  conectividad,	
  y	
  el	
  tipo	
  de	
  conexión	
  entre	
  
neuronas.	
  

Las	
   neuronas	
   suelen	
   agruparse	
   en	
   unidades	
   funcionales	
   denominadas	
   capas.	
   Se	
  
denomina	
  capa	
  de	
  entrada	
  a	
  aquella	
  que	
  está	
  compuesta	
  por	
  neuronas	
  de	
  entradas	
  y	
  por	
   lo	
  
tanto	
   recibe	
   información	
   procedente	
   desde	
   el	
   exterior.	
   Análogamente,	
   se	
   denomina	
   capa	
  
oculta	
  y	
  capa	
  de	
  salida	
  a	
  aquellas	
  capas	
  que	
  están	
  compuestas	
  por	
  neuronas	
  ocultas	
  y	
  de	
  salida	
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respectivamente.	
  Una	
  red	
  neuronal	
  artificial	
  está	
  compuesta	
  por	
  una	
  o	
  más	
  capas,	
  las	
  cuales	
  se	
  
encuentran	
   interconectadas	
   entre	
   sí.	
   Entre	
   un	
   par	
   de	
   neuronas	
   de	
   la	
   red	
   neuronal	
   artificial	
  
pueden	
   existir	
   conexiones.	
   Estas	
   conexiones	
   son	
   las	
   sinapsis,	
   tienen	
   asociadas	
   un	
   peso	
  
sináptico,	
   y	
   son	
   direccionales.	
   Cuando	
   la	
   conexión	
   se	
   establece	
   entre	
   dos	
   neuronas	
   de	
   una	
  
misma	
  capa	
  hablamos	
  de	
  conexiones	
   laterales	
  o	
  conexiones	
   intra-­‐capa.	
  Por	
  el	
  contrario,	
  si	
   la	
  
conexión	
  se	
  establece	
  entre	
  neuronas	
  de	
  distintas	
  capas	
  se	
  la	
  denomina	
  conexión	
  inter-­‐capa.	
  
Si	
   la	
   conexión	
   se	
   produce	
   en	
   el	
   sentido	
   inverso	
   al	
   de	
   entrada-­‐salida	
   la	
   conexión	
   se	
   llama	
  
recurrente	
  o	
  realimentada.	
  

Una	
  red	
  puede	
  estar	
  formada	
  por	
  una	
  única	
  capa	
  de	
  neuronas.	
  En	
  este	
  caso	
  hablamos	
  
de	
  redes	
  monocapa,	
  y	
  las	
  neuronas	
  que	
  conforman	
  dicha	
  capa	
  cumplen	
  la	
  función	
  de	
  neuronas	
  
de	
   entrada	
   y	
   salida	
   simultáneamente.	
   Cuando	
   la	
   red	
   está	
   compuesta	
   por	
   dos	
   o	
   más	
   capas	
  
hablamos	
   de	
   redes	
  multicapa.	
   A	
   su	
   vez,	
   hablamos	
   de	
   redes	
   neuronales	
   con	
   conexión	
   hacia	
  
delante	
   (redes	
   feedforward)	
   cuando	
   las	
   conexiones	
   entre	
   las	
   distintas	
   neuronas	
   de	
   la	
   red	
  
siguen	
  un	
  único	
   sentido,	
   desde	
   la	
   entrada	
  de	
   la	
   red	
  hacia	
   la	
   salida	
   de	
   la	
  misma.	
   Cuando	
   las	
  
conexiones	
  pueden	
  ser	
   tanto	
  hacia	
  delante	
  como	
  hacia	
  atrás	
  hablamos	
  de	
   redes	
   recurrentes	
  
(redes	
  feedback).	
  

 
IV. Funcionamiento	
  de	
  la	
  red	
  neuronal	
  
 

Durante	
  la	
  operatoria	
  de	
  una	
  red	
  neuronal	
  podemos	
  distinguir	
  claramente	
  dos	
  fases	
  o	
  
modos	
  de	
  operación:	
   la	
   fase	
  de	
   aprendizaje	
  o	
   entrenamiento,	
   y	
   la	
   fase	
  de	
  operación	
  o	
   test.	
  
Durante	
   la	
   primera	
   fase,	
   la	
   fase	
   de	
   aprendizaje,	
   la	
   red	
   es	
   entrenada	
   para	
   realizar	
   un	
  
determinado	
  tipo	
  de	
  procesamiento.	
  Una	
  vez	
  alcanzado	
  un	
  nivel	
  de	
  entrenamiento	
  adecuado,	
  
se	
  pasa	
  a	
  la	
  fase	
  de	
  operación,	
  donde	
  la	
  red	
  es	
  utilizada	
  para	
  llevar	
  a	
  cabo	
  la	
  tarea	
  para	
  la	
  cual	
  
fue	
  entrenada.	
  

 
i. Fase	
  de	
  entrenamiento	
  

 
Una	
  vez	
  seleccionada	
  el	
  tipo	
  de	
  neurona	
  artificial	
  que	
  se	
  utilizará	
  en	
  una	
  red	
  neuronal	
  y	
  

determinada	
   su	
   topología	
   es	
   necesario	
   entrenarla	
   para	
   que	
   la	
   red	
   pueda	
   ser	
   utilizada.	
  
Partiendo	
  de	
  un	
   conjunto	
  de	
  pesos	
   sinápticos	
   aleatorio,	
   el	
   proceso	
  de	
   aprendizaje	
   busca	
  un	
  
conjunto	
   de	
   pesos	
   que	
   permitan	
   a	
   la	
   red	
   desarrollar	
   correctamente	
   una	
  determinada	
   tarea.	
  
Durante	
  el	
  proceso	
  de	
  aprendizaje	
  se	
  va	
  refinando	
  iterativamente	
  la	
  solución	
  hasta	
  alcanzar	
  un	
  
nivel	
  de	
  operación	
  suficientemente	
  bueno.	
  

El	
   proceso	
   de	
   aprendizaje	
   se	
   puede	
   dividir	
   en	
   tres	
   grandes	
   grupos	
   de	
   acuerdo	
   a	
   sus	
  
características	
  en:	
  [Isasi	
  Viñuela	
  y	
  Galván	
  León,	
  2004;	
  Yao,	
  1999]	
  

	
  
Aprendizaje	
   supervisado.	
   Se	
   presenta	
   a	
   la	
   red	
   un	
   conjunto	
   de	
   patrones	
   de	
   entrada	
  

junto	
   con	
   la	
   salida	
  esperada.	
   Los	
  pesos	
   se	
   van	
  modificando	
  de	
  manera	
  proporcional	
   al	
   error	
  
que	
  se	
  produce	
  entre	
  la	
  salida	
  real	
  de	
  la	
  red	
  y	
  la	
  salida	
  esperada.	
  

Aprendizaje	
  no	
  supervisado.	
  Se	
  presenta	
  a	
  la	
  red	
  un	
  conjunto	
  de	
  patrones	
  de	
  entrada.	
  
No	
  hay	
  información	
  disponible	
  sobre	
  la	
  salida	
  esperada.	
  El	
  proceso	
  de	
  entrenamiento	
  en	
  este	
  
caso	
  deberá	
  ajustar	
  sus	
  pesos	
  en	
  base	
  a	
  la	
  correlación	
  existente	
  entre	
  los	
  datos	
  de	
  entrada.	
  

Aprendizaje	
   por	
   refuerzo.	
   Este	
   tipo	
   de	
   aprendizaje	
   se	
   ubica	
   entre	
  medio	
   de	
   los	
   dos	
  
anteriores.	
  Se	
  le	
  presenta	
  a	
  la	
  red	
  un	
  conjunto	
  de	
  patrones	
  de	
  entrada	
  y	
  se	
  le	
  indica	
  a	
  la	
  red	
  si	
  
la	
   salida	
   obtenida	
   es	
   o	
   no	
   correcta.	
   Sin	
   embargo,	
   no	
   se	
   le	
   proporciona	
   el	
   valor	
   de	
   la	
   salida	
  
esperada.	
  Este	
  tipo	
  de	
  aprendizaje	
  es	
  muy	
  útil	
  en	
  aquellos	
  casos	
  en	
  que	
  se	
  desconoce	
  cual	
  es	
  la	
  
salida	
  exacta	
  que	
  debe	
  proporcionar	
  la	
  red.	
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ii. Fase	
  de	
  operación	
  o	
  test	
  
	
  

	
  
Una	
   vez	
   finalizada	
   la	
   fase	
   de	
   aprendizaje,	
   la	
   red	
   puede	
   ser	
   utilizada	
   para	
   realizar	
   la	
  

tarea	
  para	
  la	
  que	
  fue	
  entrenada.	
  Una	
  de	
  las	
  principales	
  ventajas	
  que	
  posee	
  este	
  modelo	
  es	
  que	
  
la	
   red	
  aprende	
   la	
   relación	
  existente	
  entre	
   los	
  datos,	
   adquiriendo	
   la	
   capacidad	
  de	
  generalizar	
  
conceptos.	
   De	
   esta	
   manera,	
   una	
   red	
   neuronal	
   puede	
   tratar	
   con	
   información	
   que	
   no	
   le	
   fue	
  
presentada	
  durante	
  de	
  la	
  fase	
  de	
  entrenamiento.	
  
 

V. Redes	
  neuronales	
  con	
  conexión	
  hacia	
  delante	
  
 

	
  Este	
   tipo	
   de	
   redes	
   neuronales	
   son	
   las	
   que	
   mayor	
   aplicación	
   práctica	
   tienen,	
   se	
  
caracterizan	
  por	
  su	
  organización	
  en	
  capas	
  y	
  conexiones	
  estrictamente	
  hacia	
  delante,	
  utilizando	
  
entrenamientos	
  de	
  tipo	
  supervisado.	
  	
  

Dentro	
  de	
  este	
  grupo	
  destacaremos	
  el	
  perceptrón	
  y	
  el	
  perceptrón	
  multicapa	
  (MLP)	
  los	
  
cuales	
  desarrollaremos	
  a	
  continuación.	
  

 
i. Perceptrón	
  simple	
  

 
Este	
  modelo	
  tiene	
  gran	
   importancia	
  histórica	
  ya	
  que	
  fue	
  el	
  primer	
  modelo	
  en	
  poseer	
  

un	
   mecanismo	
   de	
   entrenamiento	
   que	
   permite	
   determinar	
   automáticamente	
   los	
   pesos	
  
sinápticos	
  que	
  clasifican	
  correctamente	
  a	
  un	
  conjunto	
  de	
  patrones	
  a	
  partir	
  de	
  un	
  conjunto	
  de	
  
ejemplos.	
  

La	
   arquitectura	
   del	
   perceptrón	
   está	
   compuesta	
   por	
   dos	
   capas	
   de	
   neuronas,	
   una	
   de	
  
entrada	
  y	
  una	
  de	
   salida.	
   La	
   capa	
  de	
  entrada	
  es	
   la	
  que	
   recibe	
   la	
   información	
  proveniente	
  del	
  
exterior	
  y	
   la	
   transmite	
  a	
   las	
  neuronas	
  sin	
  realizar	
  ningún	
  tipo	
  de	
  operación	
  sobre	
   la	
  señal	
  de	
  
entrada.	
   En	
   general	
   la	
   información	
   entrante	
   es	
   binaria.	
   La	
   función	
   de	
   activación	
   de	
   las	
  
neuronas	
  de	
  un	
  perceptrón	
  es	
  del	
   tipo	
  escalón,	
   dando	
  de	
  esta	
  manera	
   sólo	
   salidas	
  binarias.	
  
Cada	
   neurona	
   de	
   salida	
   del	
   perceptrón	
   representa	
   a	
   una	
   clase.	
   Una	
   neurona	
   de	
   salida	
  
responde	
  con	
  1	
  si	
  el	
  vector	
  de	
  entrada	
  pertenece	
  a	
  la	
  clase	
  a	
  la	
  que	
  representa	
  y	
  responde	
  con	
  
0	
  en	
  caso	
  contrario.	
  

El	
   algoritmo	
   de	
   entrenamiento	
   del	
   perceptrón	
   se	
   encuentra	
   dentro	
   de	
   los	
  
denominados	
  algoritmos	
  por	
  corrección	
  de	
  errores.	
  Este	
  tipo	
  de	
  algoritmos	
  ajustan	
   los	
  pesos	
  
de	
  manera	
   proporcional	
   a	
   la	
   diferencia	
   entre	
   la	
   salida	
   actual	
   proporcionada	
   por	
   la	
   red	
   y	
   la	
  
salida	
  objetivo,	
  con	
  el	
  fin	
  de	
  minimizar	
  el	
  error	
  producido	
  por	
  la	
  red.	
  
 
 

ii. Perceptrón	
  multicapa	
  (MLP)	
  
 

El	
   perceptrón	
  multicapa	
   es	
   una	
   extensión	
  del	
   perceptrón	
   simple.	
   La	
   topología	
   de	
   un	
  
perceptrón	
  multicapa	
  está	
  definida	
  por	
  un	
  conjunto	
  de	
  capas	
  ocultas,	
  una	
  capa	
  de	
  entrada	
  y	
  
una	
   de	
   salida.	
   No	
   existen	
   restricciones	
   sobre	
   la	
   función	
   de	
   activación	
   aunque	
   en	
   general	
   se	
  
suelen	
  utilizar	
  funciones	
  sigmoideas	
  (ver	
  tabla	
  I.1).	
  A	
  continuación	
  se	
  expone	
  el	
  esquema	
  tipo	
  
para	
  una	
  MLP,	
  el	
  cual	
  es	
  el	
  modelo	
  más	
  utilizado	
  actualmente,	
  ver	
  figura	
  I.3.	
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Figura	
  I.3.	
  Perceptrón	
  multicapa	
  (MLP)	
  

 
VI. Entrenamiento	
  de	
  la	
  red	
  neuronal	
  
 

En	
  el	
  contexto	
  de	
  las	
  redes	
  neuronales	
  el	
  entrenamiento	
  o	
  aprendizaje	
  puede	
  ser	
  visto	
  
como	
   el	
   proceso	
   de	
   ajuste	
   de	
   los	
   parámetros	
   libres	
   de	
   la	
   red	
   [Yao,	
   1995].	
   Partiendo	
   de	
   un	
  
conjunto	
  de	
  pesos	
   sinápticos	
   aleatorios,	
   el	
   proceso	
  de	
   entrenamiento	
  busca	
  un	
   conjunto	
  de	
  
pesos	
  que	
  permitan	
  a	
   la	
   red	
  desarrollar	
  correctamente	
  una	
  determinada	
   tarea.	
  Este	
  proceso	
  
de	
  entrenamiento,	
  es	
  un	
  proceso	
  iterativo,	
  en	
  el	
  cual	
  se	
  va	
  refinando	
  la	
  solución	
  hasta	
  alcanzar	
  
un	
  nivel	
  de	
  operación	
  lo	
  suficientemente	
  bueno.	
  

La	
  mayoría	
  de	
   los	
  métodos	
  de	
  entrenamiento	
  utilizados	
  en	
   las	
   redes	
  neuronales	
   con	
  
conexión	
  hacia	
  delante	
  consisten	
  en	
  proponer	
  una	
  función	
  de	
  error	
  que	
  mida	
  el	
  rendimiento	
  
actual	
  de	
  la	
  red	
  en	
  función	
  de	
  los	
  pesos	
  sinápticos.	
  El	
  objetivo	
  del	
  método	
  de	
  entrenamiento	
  es	
  
encontrar	
  el	
  conjunto	
  de	
  pesos	
  sinápticos	
  que	
  minimizan	
  (o	
  maximizan)	
  la	
  función.	
  El	
  método	
  
de	
   optimización	
   proporciona	
   una	
   regla	
   de	
   actualización	
   de	
   los	
   pesos	
   que	
   en	
   función	
   de	
   los	
  
patrones	
  de	
  entrada	
  modifica	
   iterativamente	
   los	
  pesos	
  hasta	
  alcanzar	
  el	
  punto	
  óptimo	
  de	
   la	
  
red	
  neuronal.	
  
 
 

i. Algoritmo	
  Backpropagation	
  
 

El	
  algoritmo	
  de	
  entrenamiento/aprendizaje	
  supervisado	
  más	
  común	
  utilizado	
  para	
  una	
  
MLP,	
   es	
   el	
   algoritmo	
   llamado	
   Backpropgation.	
   Este	
   algoritmo	
   surgió	
   de	
   la	
   búsqueda	
   de	
   un	
  
algoritmo	
  para	
   entrenar	
   específicamente	
   a	
   la	
  MLP.	
   Es	
   un	
   tanto	
   complejo	
   ya	
   que	
   se	
   toma	
   la	
  
información	
   del	
   comportamiento	
   de	
   la	
   red	
   en	
   el	
   sentido	
   directo	
   de	
   la	
   red	
   y	
   en	
   el	
   sentido	
  
inverso,	
  esto	
  se	
  realiza	
  por	
  la	
  necesidad	
  de	
  modificar	
  el	
  comportamiento	
  de	
  las	
  capas	
  ocultas.	
  

El	
   algoritmo	
  Backpropagation	
   tiene	
  como	
  objetivo	
  usar	
   la	
  diferencia	
  entra	
   las	
   salidas	
  
deseadas	
  y	
  las	
  salidas	
  actuales	
  en	
  la	
  capa	
  de	
  salida	
  de	
  la	
  red	
  para	
  cambiar	
  los	
  pesos	
  (indicados	
  
con	
  valores	
  aleatorios	
  pequeños)	
  con	
  el	
  fin	
  de	
  reducir	
  al	
  mínimo	
  esta	
  diferencia	
  (error).	
  Esto	
  se	
  
logra	
  mediante	
  una	
  serie	
  de	
  interacciones	
  donde	
  se	
  modifica	
  cada	
  peso	
  de	
  derecha	
  a	
  izquierda	
  
(sentido	
  inverso	
  de	
  la	
  propagación	
  de	
  información	
  en	
  la	
  red)	
  hasta	
  modificarse	
  los	
  pesos	
  de	
  la	
  
capa	
  de	
  entrada	
  prosiguiendo	
  nuevamente	
  con	
   la	
  propagación	
  de	
   la	
   información	
  de	
  entrada,	
  
esto	
  hasta	
  que	
  la	
  diferencia	
  entra	
  la	
  salida	
  deseada	
  y	
  la	
  obtenida	
  en	
  cada	
  neurona	
  de	
  salida	
  sea	
  
mínima	
  [Fristsch,	
  1996].	
  

El	
  algoritmo	
  Backpropagation	
  es	
  el	
  método	
  que	
  desde	
  un	
  principio	
  se	
  desarrollo	
  con	
  el	
  
fin	
   de	
   entrenar	
   redes	
   neuronales	
   multicapa	
   y	
   se	
   demostró	
   su	
   eficiencia	
   suficiencia	
   en	
   el	
  
entrenamiento	
  de	
  redes	
  para	
  resolver	
  diversos	
  problemas,	
  pero	
  en	
  muchos	
  casos	
  resultó	
  ser	
  
muy	
  lento.	
  A	
  través	
  de	
  los	
  años	
  han	
  surgido	
  algoritmos	
  más	
  poderosos,	
  aunque	
  más	
  complejos,	
  
la	
  mayoría	
  partiendo	
  de	
  la	
  base	
  de	
  este	
  algoritmo,	
  propagar	
  el	
  error	
  hacia	
  atrás.	
  De	
  cualquier	
  
forma,	
  es	
   recomendable	
  el	
  uso	
  de	
  este	
  algoritmo	
   	
  cuando	
  se	
   trata	
  el	
  diseño	
  de	
  una	
  MLP,	
  ya	
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que	
  no	
  es	
  demasiado	
  complejo,	
  se	
  entiende	
  fácilmente	
  su	
  finalidad,	
  y	
  sirve	
  para	
  comprender	
  
más	
  rápido	
  los	
  algoritmos	
  que	
  se	
  basan	
  en	
  él.	
  

 
	
  

ii. Generalización	
  
 

Una	
   vez	
   finalizada	
   la	
   fase	
   de	
   aprendizaje,	
   la	
   red	
   puede	
   ser	
   utilizada	
   para	
   realizar	
   la	
  
tarea	
  para	
  la	
  que	
  fue	
  entrenada.	
  Una	
  de	
  las	
  principales	
  ventajas	
  que	
  posee	
  este	
  modelo	
  es	
  que	
  
la	
   red	
  aprende	
   la	
   relación	
  existente	
  entre	
   los	
  datos,	
   adquiriendo	
   la	
   capacidad	
  de	
  generalizar	
  
conceptos.	
   De	
   esta	
   manera,	
   una	
   red	
   neuronal	
   puede	
   tratar	
   con	
   información	
   que	
   no	
   le	
   fue	
  
presentada	
  durante	
  de	
  la	
  fase	
  de	
  entrenamiento	
  [Chirungrueng,	
  1988].	
  

Cuando	
   se	
   evalúa	
   una	
   red	
   neuronal	
   no	
   sólo	
   es	
   importante	
   evaluar	
   si	
   la	
   red	
   ha	
   sido	
  
capaz	
   de	
   aprender	
   los	
   patrones	
   de	
   entrenamiento.	
   Es	
   imprescindible	
   también	
   evaluar	
   el	
  
comportamiento	
  de	
   la	
   red	
  ante	
  patrones	
  nunca	
  antes	
   vistos.	
   Esta	
   característica	
  de	
   las	
   redes	
  
neuronales	
  se	
   la	
  conoce	
  como	
  capacidad	
  de	
  generalización	
  y	
  es	
  adquirida	
  durante	
   la	
   fase	
  de	
  
entrenamiento.	
   Es	
   necesario	
   que	
   durante	
   el	
   proceso	
   de	
   aprendizaje	
   la	
   red	
   extraiga	
   las	
  
características	
  de	
  las	
  muestras,	
  para	
  poder	
  luego	
  responder	
  correctamente	
  a	
  nuevos	
  patrones.	
  

De	
   lo	
   dicho	
   anteriormente	
   surge	
   la	
   necesidad	
   de	
   evaluar	
   durante	
   la	
   fase	
   de	
  
entrenamiento	
   dos	
   tipos	
   de	
   errores.	
   El	
   error	
   de	
   aprendizaje,	
   que	
   indica	
   la	
   calidad	
   de	
   la	
  
respuesta	
  de	
  la	
  red	
  a	
  los	
  patrones	
  de	
  entrenamiento	
  y	
  el	
  error	
  de	
  test,	
  que	
  indica	
  la	
  calidad	
  de	
  
la	
  respuesta	
  de	
  la	
  red	
  a	
  patrones	
  nunca	
  antes	
  vistos.	
  Para	
  poder	
  obtener	
  una	
  medida	
  de	
  ambos	
  
errores	
   es	
   necesario	
   dividir	
   el	
   set	
   de	
   datos	
   disponibles	
   en	
   dos,	
   el	
   set	
   de	
   datos	
   de	
  
entrenamiento,	
   y	
   el	
   set	
   de	
   datos	
   de	
   evaluación.	
   El	
   primero	
   se	
   utiliza	
   durante	
   la	
   fase	
   de	
  
entrenamiento	
   para	
   que	
   la	
   red	
   pueda	
   extraer	
   las	
   características	
   de	
   los	
  mismos	
  mediante	
   el	
  
ajuste	
  de	
  sus	
  pesos	
  sinápticos,	
  así	
  la	
  red	
  logra	
  una	
  representación	
  interna	
  de	
  la	
  función.	
  El	
  set	
  
de	
  evaluación	
  se	
  utiliza	
  para	
  evaluar	
  la	
  capacidad	
  de	
  generalización	
  de	
  la	
  red.	
  

La	
   causa	
   más	
   común	
   de	
   la	
   pérdida	
   de	
   capacidad	
   de	
   generalización	
   es	
   el	
  
sobreaprendizaje.	
   Esto	
   sucede	
   cuando	
   la	
   cantidad	
   de	
   ciclos	
   de	
   entrenamientos	
   tiende	
   a	
   ser	
  
muy	
  alta.	
  Se	
  observa	
  que	
  la	
  respuesta	
  de	
  la	
  red	
  a	
  los	
  patrones	
  de	
  entrenamiento	
  es	
  muy	
  buena	
  
mientras	
  que	
  la	
  respuesta	
  a	
  nuevos	
  patrones	
  tiende	
  a	
  ser	
  muy	
  pobre.	
  Al	
  aumentar	
  el	
  número	
  
de	
  ciclos	
  la	
  red	
  tiende	
  a	
  sobreajustar	
  la	
  respuesta	
  a	
  los	
  patrones	
  de	
  entrenamiento,	
  a	
  expensas	
  
de	
  una	
  menor	
  capacidad	
  de	
  generalización.	
  La	
  Figura	
  I.4.a	
  muestra	
  una	
  situación	
  idealizada	
  de	
  
lo	
  dicho	
  anteriormente.	
  En	
   la	
  misma	
  se	
  observa	
  que	
  en	
  un	
  determinado	
  punto	
  se	
  empieza	
  a	
  
perder	
  capacidad	
  de	
  generalización	
  como	
  consecuencia	
  del	
  sobreaprendizaje.	
  

	
  

	
  
Figura	
  I.4:	
  Generalización.	
  a)	
  Situación	
  idealizada.	
  b)	
  Situación	
  real.

a) b) 
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En	
   la	
   Figura	
   I.4.b	
   se	
  muestra	
   una	
   situación	
  más	
   real	
   del	
  mismo	
   caso.	
   A	
  medida	
   que	
  
transcurre	
   el	
   proceso	
   de	
   aprendizaje	
   se	
   obtienen	
   varios	
   mínimos	
   sobre	
   el	
   conjunto	
   de	
  
evaluación.	
  Existen	
  diversas	
  técnicas	
  de	
  parada	
  temprana	
  aunque	
  en	
  la	
  mayoría	
  de	
  los	
  casos	
  se	
  
deja	
   que	
   el	
   proceso	
   de	
   aprendizaje	
   avance	
   hasta	
   alcanzar	
   una	
   cota	
   de	
   error	
   razonable,	
  
guardando	
  periódicamente	
  las	
  distintas	
  configuraciones	
  intermedias	
  para	
  luego	
  seleccionar	
  
la	
  de	
  menor	
  error	
  de	
  evaluación.	
  

En	
  ocasiones	
  la	
  pérdida	
  de	
  capacidad	
  de	
  generalización	
  se	
  produce	
  por	
  el	
  uso	
  excesivo	
  
de	
   neuronas	
   ocultas	
   en	
   la	
   red	
   neuronal.	
   Esto	
   hace	
   que	
   la	
   red	
   tienda	
   a	
   ajustar	
   con	
   mucha	
  
exactitud	
   los	
  patrones	
  de	
  entrenamiento,	
  evitando	
  que	
   la	
   red	
  extraiga	
   las	
   características	
  del	
  
conjunto.	
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