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Resumen

Este trabajo se ha desarrollado en el Departamento de Ingenieria Mecanica, dentro del
area de Mecanica de Medios Continuos y Teoria de Estructuras. Su principal objetivo es la
estimacion de las cargas aplicadas en la tibia de un paciente concreto mediante un método
basado en Redes Neuronales Artificiales y, posteriormente, utilizar estas cargas para la
evaluacion del efecto de distintos tipos de protesis de rodilla de revision en la remodelacion
Osea.

El hueso esta sometido a un proceso continuo de renovacidon que se conoce con el
nombre de remodelacion dsea. Este proceso adaptativo se produce debido a los importantes
cambios morfoldgicos que sufre el hueso en respuesta a la situacion mecanica a la que se
encuentra solicitado. Al incorporar una protesis al hueso, se modifica la distribucién de
tensiones a la que se encuentra sometido, produciendo una formacién o reabsorcién dsea
dependiendo de la zona del hueso y del tipo de prétesis.

Un aspecto poco estudiado en este campo es la determinacién de las cargas reales a
las que es sometida la tibia de un paciente concreto. Este complejo problema se ha intentado
abordar en este Trabajo Fin de Master mediante una combinacién del método de los
Elementos Finitos y las Redes Neuronales Artificiales. Para ello este trabajo se ha dividido en
dos partes: la primera parte se centra en la determinacion de las cargas que afectan a la tibia
de un paciente concreto mediante un método basado en Redes Neuronales, y la segunda la
utilizacion de dichas cargas para analizar la reabsorcién ésea que producen cuatro tipos
distintos de prétesis de rodilla de revision.

Para la primera parte del trabajo se ha analizado el problema de remodelacién 6ésea,
aplicando un rango de condiciones de carga al modelo 3D de una tibia real. De este andlisis se
han obtenido unas densidades dseas, que sirven de entrada para la Red Neuronal Artificial.
Después de entrenar la red con una funcién sigmoidea como funcién de entrada, distinto
numero de neuronas en la capa intermedia y una funcidn lineal como salida, se han obtenido
unas cargas, las cuales se han comparado con las condiciones de carga aplicadas inicialmente y
se ha obtenido un error de calculo. Tras determinar el nUmero de entradas y neuronas de la
capa intermedia mds adecuado, se han introducido las cargas obtenidas en el modelo de la
tibia con distintas protesis, evaluando su efecto en la remodelacion dsea.

Como parte clinica de este trabajo se asistid a una intervencidon quirlurgica en el
Hospital Clinico Universitario Blesa, en la que se realizd un recambio de prétesis de rodilla.
Ademds se han mantenido reuniones periddicas con médicos del Departamento de
Traumatologia de dicho hospital.
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1. Introduccion

La biomecanica es una disciplina cientifica que tiene por objetivo el estudio de las
estructuras de caracter mecanico que existen en los seres vivos, fundamentalmente del cuerpo
humano. Esta area de conocimiento se apoya en diversas ciencias biomédicas, utilizando los
conocimientos de la mecanica, la ingenieria, la anatomia, la fisiologia y otras disciplinas, para
estudiar el comportamiento del cuerpo humano y resolver los problemas derivados de las
diversas condiciones a las que puede verse sometido. La biomecanica ha tenido un gran
desarrollo en relacién con aplicaciones de la ingenieria, informatica y de modelos matematicos,
para el conocimiento de los sistemas bioldgicos y de partes del cuerpo humano, facilitando su
aplicacidén practica y su utilizacién como nuevos métodos de valoracion y diagndstico.

El objetivo de la biomecanica es resolver los problemas que surgen de las diversas
condiciones a las que puede verse sometido nuestro cuerpo en distintas situaciones. Las
posibilidades que la biomecanica ofrece al plantear y resolver problemas relacionados con la
mejora de nuestra salud y calidad de vida la han consolidado como un campo de
conocimientos en continua expansion, capaz de aportar soluciones cientificas y tecnolégicas
muy beneficiosas para nuestro entorno mas inmediato.

La proyeccién industrial de la biomecanica ha alcanzado a diversos sectores, sirviendo
de base para la concepcidn y adaptacion de numerosos productos: técnicas de diagndstico,
implantes e instrumental quirldrgico, protesis, ayudas técnicas a personas con discapacidad,
sistemas de evaluacién de nuestras actividades, herramientas y sistemas de seguridad en
automocion, entre otros muchos.

Uno de los desarrollos mas importantes de la biomecdanica estda asociado con la
ortopedia. Este campo se ha convertido en una disciplina utilizada tanto en la vertiente mas
relacionada con la ingenieria, para el desarrollo de nuevos implantes y materiales, como en el
terreno de la biologia, en investigaciones sobre los procesos experimentados por las células en
relacion a las tensiones y esfuerzos, asi como en simulaciones de tejidos (cartilagos, tendones,
huesos...).

Debido al envejecimiento de la poblacién y al aumento de los accidentes de tréfico,
uno de los grandes retos a los que se enfrentan tanto médicos como ingenieros es la mejora
de los disefios de prétesis. La incorporacién en un hueso fracturado de un implante, ya sea
provisional o definitivo, produce una redistribucién de tensiones que afectan a las propiedades
del hueso modificandolas. La aparicion de pérdidas dseas, el aflojamiento entre implante y
hueso, y la falta de estabilizacién de la fractura son efectos importantes como consecuencia de
la inclusion de un implante protésico.

El desarrollo de técnicas de simulacion por ordenador del comportamiento de huesos y
tendones hace posible conocer de forma mas aproximada cual serda la respuesta del hueso a
largo plazo. Es importante sefalar que el uso de técnicas computacionales, aunque sean mas
rentables, no pueden sustituir completamente a las técnicas experimentales. Los resultados
obtenidos mediante sistemas informaticos deben ser validados con ensayos en laboratorio.



1.2.1. Anatomia de la rodilla

La rodilla es la articulacion mas grande del cuerpo humano, asi como una de las mas
complejas. Esta compuesta por el juego de tres huesos, fémur, tibia y rétula. Los dos primeros
conforman el cuerpo principal de la articulacién, que soporta el peso corporal, y la rétula
cumple una misién atipica, a modo de polea sobre la que se apoyan los tendones cuadricipital
y rotuliano (Figura 1.1)

Es ademas una articulacidn bicondilea. Los dos céndilos femorales ruedan sobre Ila
superficie casi plana de los platillos tibiales. El apoyo de un hueso sobre otro es libre, sin topes
Oseos para mantenerla y necesita el amarre de los ligamentos.

Las superficies de contacto entre los huesos estan cubiertas por una capa de cartilago.
Todo el conjunto estd envuelto por una capsula articular, constituyendo un espacio cerrado. La
cubierta intima de la cdpsula es la membrana sinovial, cuya misién principal es la secrecion del
liquido del mismo nombre, fundamental en la fisiologia articular con misiones de lubricacién y
defensa. El exceso de secrecion da lugar a un cimulo sinovial que causa aumento de la presién
intrarticular y genera el molesto y conocido derrame.

Ligamento

\ cruzado posterior
Condilo lateral x
Condilo tnedial
Ligamento _1_ Ligamento
lateral extemo | lateral interno
/ / Ligamento
Menisco externo i/ ctuzado antenior
Biceps crural Menisco interno
Ligamento tibioperonen
Tendon rotuliano
(insercidn)
Sartorio

Peroné

Recto interno del muslo

Tibia semitendinoso

Figura 1.1. Articulacion de la rodilla



1.2.2. Artroplastia total de rodilla

El reemplazo total de rodilla (RTR) es un procedimiento quirdrgico que se
realiza para reemplazar la articulacion de la rodilla por una prétesis artificial. Es también
Ilamado artroplastia de rodilla, artroplastia total de rodilla, o artroplastia tricompartimental de
rodilla.

Esta técnica fue realizada por primera vez en el afio 1968 y es uno de los avances mas
importantes de la cirugia ortopédica. Cada afio, se llevan a cabo aproximadamente 478 000
reemplazos totales de rodilla en los Estados Unidos.

El RTR es normalmente efectuado en pacientes que tienen desgastes o dafios severos
en la articulacién, debido a la artritis o a una lesién. En estos casos las personas pueden
presentar dificultad para realizar sus actividades de la vida diaria tales como caminar o subir y
bajar escaleras e incluso pueden sentir molestias estando sentado o acostado.

Al restaurar las superficies dafiadas y desgastadas de la rodilla, la cirugia de reemplazo
total de rodilla puede aliviar el dolor, corregir la deformidad de la pierna y ayudarle a realizar
las actividades cotidianas.

La operacion proporciona un alivio del dolor, para que la persona pueda ser capaz de
llevar a cabo las actividades del diario. La rodilla artificial podria permitirle retornar a sus
actividades deportivas o laborales, pero las actividades que sobrecarguen la rodilla artificial,
deben ser evitadas.

1.2.3. Protesis de rodilla de revision

Las protesis primarias pueden sufrir un fallo por aflojamiento,
metalosis o diversas infecciones. En ese caso se realiza una cirugia de revisiéon
en la que se sustituyen la protesis primaria por una proétesis con
caracteristicas diferentes y cuya diferencia fundamental es que los vastagos
(femoral y tibial) tienen una mayor longitud. A estas proétesis se les llama '\
protesis de revision. ‘\/

Protesis de vainas TC3 (Depuy, Johnson & Johnson) =

El aflojamiento aséptico y el desgaste son las principales causas de las
revisiones de rodilla en mas del 40% de los pacientes. La bandeja de esta
protesis (Figuras 1.2 y 1.3) proporciona libertad de rotacion para distribuir las
fuerzas de aflojamiento, haciéndola adecuada para aumentar la restriccion
mecanica. I

1 Figura 1.2. Proétesis de
vainas TC3 (Depuy)

Su bandeja universal la hace compatible con todas las
inserciones de plataforma giratoria de las protesis constrefiidas y
con bisagra. Las vainas metafisarias cargan el hueso para formar una
base sdlida, evitando la reseccion désea excesiva y ayudando a
preservar la restauracién de la articulacién. A través de una serie de
mejoras disefiadas para aumentar la artroplastia total de rodilla,
esta solucién quirdrgica puede resultar en soluciones mas
personalizadas y una mayor facilidad de uso.

Figura 1.3. Protesis de
vainas TC3 (Depuy)



Protesis con offset LCCK (Zimmer)

El componente femoral NexGen Legacy LCCK (Figura 1.4) ha sido
desarrollado para pacientes, que segun el cirujano, requieran una estabilizacién
protésica adicional debido a una funcion defectuosa de los ligamentos tanto
laterales como cruzados y ademas requieran bloques de aumento y/o vastagos
de extensién debido a stocks dseos inadecuados. Los componentes LCCK estan
disponibles Unicamente en una versidén no recubierta para fijacion cementada.

Figura 1.5. Vastago
en offset

Figura 1.4. Protesis
LCCK (Zimmer)

Para pacientes con unos ligamentos laterales no funcionales o
para aquellas rodillas que no pueden ser estabilizadas mediante las
usuales liberaciones de ligamentos, la rodilla LCCK presenta una
eminencia tibial elevada y un cajén intercondileo mas profundo. Un
ajuste adecuado entre la eminencia y el cajon proporciona estabilidad a
medida que el rollback natural es inducido, inhibiendo la subluxacion
posterior, limitando el movimiento en varo/valgo a 1.25 grados y la
rotacion interna/externa a 2 grados. Este disefio acomoda un rango de
movimiento tedrico superior a los 120 grados (Figura 1.5).



El hueso esta sometido a un proceso continuo de renovacidon que se conoce con el
nombre de remodelacion dsea. Este proceso adaptativo se produce debido a los importantes
cambios morfoldgicos que sufre el hueso en respuesta a la situacion mecanica a la que se
encuentra solicitado. La incorporacién de una protesis acelera este proceso adaptativo.

Uno de los aspectos menos estudiado y mas complejo en este campo es la
determinacidn de las cargas que actuan en la tibia. De ahi que uno de los principales objetivos
de este TFM sea la estimacion de las cargas que acttian sobre la tibia de un paciente concreto
a partir de la distribucion de su densidad dsea.

Para alcanzar este objetivo se va a plantear una metodologia que combina el método
de los elementos finitos con las redes neuronales. Para extrapolar este problema a la vida real
y obtener unos resultados mas concretos se puede utilizar informacidon de un paciente en
particular como su geometria del hueso y la distribucion de densidad ésea. En realidad, el
problema que se plantea es de dindmica inversa. Partiendo de una distribucién de densidades,
se quiere saber qué cargas generan estas densidades, esto se debe a que la estructura
morfoldgica del hueso varia en funcién de las condiciones de carga (remodelacién). La
aplicacién de estas metodologias de dinamica inversa es muy compleja y costosa, sin embargo,
existen otras técnicas que requieren un tiempo computacional menor. Por ello, en este trabajo
se va a utilizar una metodologia que consiste en la aplicacién de redes neuronales, en concreto,
MLP perceptron multicapa y el analisis por elementos finitos con un modelo de remodelacién
Osea.

El segundo objetivo de este TFM es la aplicacion de las cargas anteriormente
obtenidas para determinar la prétesis de rodilla de revision mas adecuada para un paciente
concreto. Cuando se incorpora un implante en el hueso, se produce una importante alteracion
del estado tensional sobre el tejido. Por ejemplo, el implante, que posee una mayor rigidez,
absorbe las cargas a las que se somete el hueso, dejando el hueso descargado. Esta falta de
estimulos mecanicos en el hueso provoca un proceso degenerativo conocido como
reabsorcion ésea. Para mantener sus propiedades mecanicas, el hueso necesita un cierto nivel
de estimulo mecdanico. Se pretende analizar entre varios disefios de protesis de rodilla de
revision (protesis de vainas, prétesis en offset sin suplemento, protesis en offset con
suplemento y protesis con vastago recto) el mas adecuado para el paciente.

Este Trabajo Fin de Master esta dividido en 4 capitulos, seguidamente se realizara una
breve descripcion de cada uno de ellos.

En el Capitulo 1 hace una breve introduccién a la biomecanica, la anatomia de la
rodilla y los tipos de proétesis estudiados en este trabajo.

En el Capitulo 2 se realiza una breve explicacién de qué son las redes neuronales

artificiales, el procedimiento llevado a cabo para la determinacion de las cargas en la tibia de
un paciente concreto y los resultados y conclusiones obtenidas del mismo.
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En el Capitulo 3 se explica la metodologia seguida para el analisis de remodelacion
Osea tras la incorporacién de una proétesis de revision, utilizando las cargas obtenidas en el
capitulo 2. De este procedimiento se analizard la influencia de cada tipo de protesis en la
reabsorcidon dsea, con su consiguiente aplicacion a la mejora de los disefios aplicados a un
paciente concreto.

En el Capitulo 4 se detallan los resultados y conclusiones finales de los puntos
anteriormente citados.
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2. Redes neuronales aplicadas a |la
determinacion de cargas en la tibia de
un paciente concreto

Las redes neuronales artificiales (RNA) son modelos matematicos que intentan
reproducir el funcionamiento del sistema nervioso. Como todo modelo realizan una
simplificacion del sistema real que simula y toma las caracteristicas principales del mismo para
la resolucion de una tarea determinada.

La neurona artificial es un elemento de procesamiento simple que a partir de un vector
de entradas produce multiples salidas. En general podemos encontrar tres tipos de neuronas
artificiales: de entrada, ocultas y de salida.

Una vez definida el tipo de neurona que se utilizara en un modelo de redes neuronales
artificiales es necesario definir la topologia de la misma. La organizacion y disposicion de las
neuronas dentro de una red neuronal se denomina topologia, y viene dada por el nimero de capas,
la cantidad de neuronas por capa, el grado de conectividad, y el tipo de conexidn entre neuronas.

Una red puede estar formada por una Unica capa de neuronas. En este caso hablamos de
redes monocapa, y las neuronas que conforman dicha capa cumplen la funcién de neuronas de
entrada y salida simultaneamente. Cuando la red estd compuesta por dos o0 mas capas hablamos de
redes multicapa. A su vez, hablamos de redes neuronales con conexion hacia delante (redes
feedforward) cuando las conexiones entre las distintas neuronas de la red siguen un Unico sentido,
desde la entrada de la red hacia la salida de la misma. Cuando las conexiones pueden ser tanto
hacia delante como hacia atras hablamos de redes recurrentes (redes feedback).

Durante la operatoria de una red neuronal podemos distinguir claramente dos fases o
modos de operacion: la fase de aprendizaje o entrenamiento, y la fase de operacién o test. Durante
la primera fase, la fase de aprendizaje, la red es entrenada para realizar un determinado tipo de
procesamiento. Una vez alcanzado un nivel de entrenamiento adecuado, se pasa a la fase de
operacién, donde la red es utilizada para llevar a cabo la tarea para la cual fue entrenada.

El algoritmo de entrenamiento/aprendizaje supervisado mas comun utilizado para una
MLP (multilayer perceptron), es el algoritmo llamado Backpropagation. Este algoritmo surgioé de la
busqueda de un algoritmo para entrenar especificamente a la MLP. Es un tanto complejo ya que se
toma la informacién del comportamiento de la red en el sentido directo de la red y en el sentido
inverso, esto se realiza por la necesidad de modificar el comportamiento de las capas ocultas.

El algoritmo Backpropagation tiene como objetivo usar la diferencia entre las salidas
deseadas vy las salidas actuales en la capa de salida de la red para cambiar los pesos (indicados con
valores aleatorios pequefios) con el fin de reducir al minimo esta diferencia (error). Esto se logra
mediante una serie de interacciones donde se modifica cada peso de derecha a izquierda (sentido
inverso de la propagacién de informacién en la red) hasta modificarse los pesos de la capa de
entrada prosiguiendo nuevamente con la propagacion de la informacidn de entrada, esto hasta que
la diferencia entra la salida deseada y la obtenida en cada neurona de salida sea minima.

Mas detalle de las redes neuronales se encuentran en el Anexo |.
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En este trabajo se ha desarrollado una metodologia que consiste en resolver dos
problemas y comparar los resultados obtenidos; estos dos problemas son el problema de
remodelacion dsea y el problema inverso de remodelacion dsea (Figura 2.1).

El problema de remodelacién ésea se ha resuelto utilizando un modelo de elementos
finitos 3D de una tibia real de un paciente concreto. Este modelo de remodelacién dsea se ha
calculado varias veces con el objetivo de obtener un amplio rango de densidades dseas
debidas a la accion de diversas cargas. Esta variacién de carga se ha realizado con el objetivo
de suplir la carencia de datos, en referencia a diferentes casos de pacientes especificos. Por
ello, se ha cogido una geometria real de un uUnico paciente y se ha sometido a diferentes
condiciones de carga, obteniéndose diversas distribuciones dseas.

Por otro lado, la resolucién del problema inverso de remodelacién 6sea nos dara
como datos de salida el mddulo de carga y el porcentaje de dicha carga repartido en cada
condilo que genera una determinada distribucion de densidad. Para obtener estos datos de
salida se hace necesaria la utilizacién de un modelo matematico. En este trabajo se ha utilizado
el modelo de red neuronal artificial (RNA). Una vez establecido el modelo matematico a utilizar
debemos determinar los parametros de entrada, en nuestro caso corresponden a los
elementos seleccionados de la malla 3D de elementos finitos de la tibia de mayor desviacion
tipica de densidad, los cuales se han obtenido del problema de remodelacién dsea anterior
(Figura 2.1).

Para finalizar, se validaran los datos de carga obtenidos mediante las redes
neuronales con las condiciones de carga introducidas en el modelo de remodelacién dsea, las
cuales se corresponden con los datos de carga del paciente. Dicho desarrollo del trabajo se
expone en el siguiente esquema, ver figura 2.1.

’ - S N ’,
/ o 7 . .
’ \ ’ Dindmica inversa del
|I Problema de remodelacion 6sea \ | problema de remodelacion
1 ! osea
1 1 1
1 1 s N
Modelo 3D de una !
1 1
1 [ tibia real ] : | . Datos de
1 | T entrada
1 1 1 \ J
1 1 1
1 1 1
: Analisis de 1 : ( p
. [ Condiciones de carga remodelacién 6sea : X ANN
: por E.F. 1 ! \ J
| 1
1 1 1
1 1 1
1 | 1 4 N\
1 ' 1 Estimacion de
\\ Estimacién de las \ cargas
N densidades éseas 4 \
N 7 AR y,

[ Error de calculo ]

Figura 2.1. Esquema de la metodologia desarrollada en el trabajo
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A continuacion, se exponen en este apartado los pasos seguidos para la resolucion del
problema de remodelacién ésea.

En primer lugar, es necesario tomar como referencia para la resolucién del problema,
un modelo de remodelacién ésea que se aproxime al comportamiento real del hueso ante la
accion de diversas cargas.

Una vez seleccionado el modelo de remodelacion 6sea mas adecuado, se ha realizado
un modelo 3D de elementos finitos de la tibia del paciente. Posteriormente, y a fin de simular
diferentes casos del paciente, se ha sometido al modelo 3D de la tibia a diferentes condiciones
de carga. Al final como resultado del problema de remodelacién dsea obtendremos una serie
de distribuciones de densidad ésea.

En los siguiente apartados se expone detalladamente los pasos seguidos en el
problema de remodelacién ésea, hasta la consecucién de las citadas distribuciones de
densidad dsea en la tibia del paciente.

2.3.1. Modelo de remodelacion dsea

El hueso es un material poroso, heterogéneo y anisdtropo. Ademas es un tejido vivo en
constante cambio. Estos cambios que se producen en el hueso son importantes cambios
morfoldgicos en respuesta a la situacion mecanica a la que se encuentra solicitado,
modificando su geometria externa y su estructura interna. Este proceso adaptativo se conoce
con el nombre de remodelacidon 6sea adaptativa. En concreto este proceso de remodelacion
puede ser externo, en que la forma geométrica externa cambia con el tiempo, o interno, en el
gue las propiedades del material cambian con el tiempo sin alterar su forma.

Estos procesos suceden simultaneamente. Para el desarrollo de este trabajo se ha
utilizado un modelo anisétropo de remodelacién 6sea desarrollado por Doblaré y Garcia
[2002].

Doblaré y Garcia [2002] plantean la utilizacion de los conceptos de la Mecanica del
Dafio anisétropo como marco general para la formulacién del problema de remodelacién ésea.
Es de destacar que en este modelo el estimulo no es una medida del microdafio, sino que el
estimulo vuelve a ser la medida del estado de las deformaciones locales e instantdneas del
hueso. Por tanto, cuando se habla de variables de dafio habra que entender mejor variables
internas microestructurales sin identificacion con ningun dafio real.

Este modelo de remodelacion se basa en los principios de la Mecanica del Dafo
Continuo utilizando la teoria de dafio como herramienta matemadtica para la formulacion de la
capacidad de la remodelacién ésea. Este modelo es capaz de predecir la distribucidon dsea
anisotrépica y no homogénea en el hueso.

Las variables independientes internas son las que definen la microestructura del hueso,
la densidad aparente y el “fabric tensor”. La densidad aparente cuantifica el grado de
porosidad del hueso y el “fabric tensor” que mide el grado de anisotropia de la estructura dsea.
El “fabric tensor” se demuestra que estd alineado con el tensor de elasticidad, mientras que
utilizando los principios de la teoria respecto a las variable internas queda demostrado que las
direcciones de ortropia coinciden con los ejes principales de dafio.

El modelo de remodelacion ésea esta implementado en una subrutina de Abaqus.
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2.3.2. Modelo 3D de elementos finitos de la tibia

El método de elementos finitos (MEF) es un método numérico general para la
aproximacién de soluciones de ecuaciones diferenciales muy utilizado en diversos problemas
de ingenieria y fisica.

El método de elementos finitos es muy usado debido a su generalidad y facilidad de
introducir dominios de calculo complejos (en dos o tres dimensiones). Dada la imposibilidad
practica de encontrar la solucién analitica de estos problemas, con frecuencia en la practica
ingenieril los métodos numéricos, y en particular los elementos finitos se convierten en la
Unica alternativa practica de célculo.

Para la obtencién del modelo 3D de elementos finitos de la tibia se han seguido varios
pasos, los cuales se exponen a continuacion, ver figura 2.2:

GENERACION DE LA MALLA :
i  DE ELEMENTOS FINITOS |

Figura 2.2. Proceso realizado para la obtencién del modelo 3D

En primer paso del proceso realizado, consiste en la reconstruccion geométrica de la
tibia, la cual se ha realizado mediante el programa comercial Mimics. Se ha partido de
imagenes médicas de una tibia humana de un vardn. Dichas imagenes médicas utilizadas en
este trabajo para la reconstruccion de la tibia, fueron obtenidas mediante Tomografia Axial
Computarizada (TAC).

Una vez con las imdagenes en el programa Mimics, se inicié la reconstruccion de la
geometria. En primer lugar se realizd una segmentacion automatica a partir de la escala de
grises. A partir de esta segmentacion automadtica, las imagenes se fueron retocando
manualmente. En funciéon de la intensidad de dicha escala se ha podido diferenciar las
diferentes partes de la tibia, esto quiere decir que, segin aumenta el nivel de grises aumenta
la densidad del material. A continuacién en la figura 2.3 se puede observar la imagen del
proceso de reconstruccién con Mimics.
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Figura 2.3. Segmentacion y proceso de reconstruccion de la tibia mediante Mimics

Una vez realizada la reconstruccion de la tibia, se ha realizado una malla del volumen
generado de la geometria. Para realizar la malla de la tibia, se ha utilizado el programa
comercial Harpoon que nos ha generado dicha malla de forma automatica.

Para la construccion del modelo tridimensional de la tibia generado en Mimics, se han
exportado los ficheros en formato “stl”, para posteriormente ser importados al programa
Harpoon. Cabe destacar, que este programa estd especialmente indicado para mallar
diferentes volimenes de forma automatica con diferentes niveles de exactitud.

Para el mallado de la tibia se utilizaron elementos tetraédricos C3D4 debido a su mejor
adaptabilidad a la geometria, estos elementos se obtuvieron de la libreria de elementos de
Abaqus. Una vez obtenida la malla de toda la tibia se obtuvo en todo el modelo de elementos
finitos completo, un total de 54047 elementos y 11074 nodos. Cabe destacar, que el tamafio
medio de la malla es de 2 mm, previamente se realizé un estudio de sensibilidad de la malla
para establecer el tamafio mas adecuado de la misma. En la figura 2.4 se puede observar la
tibia mallada.

Figura 2.4. Tibia mallada
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2.3.3. Condiciones de carga del modelo

Como condiciones de contorno se ha restringido el movimiento de la parte inferior de
la diafisis a lo largo de las direcciones vertical y horizontal en cuatro nodos. Se han considerado
tres casos de carga correspondientes a tres etapas de la marcha. Las cargas consideradas son
las fuerzas de reaccidn que se producen en las superficies condilares (Figura 2.5 y Tabla 2.1).

El primer caso es el momento en el que el pie se encuentra tocando el suelo y la carga
se distribuye uniformemente entre los dos coéndilos y de forma normal a los mismos; el
segundo y tercer caso son los momentos de abduccion y aduccion, en los cuales se distribuye
la carga en un 70 y 30%, y un 30 y 70%, respectivamente, en ambos casos con un angulo de
inclinacién de 52 [Pérez et al 2010, Nyman et al 2004].

50% 50% 70% 30%  70%
so/ | 30% -
50 50 |5
l
\
Caso 1 Caso 2 Caso 3

Figura 2.5. Modelo 3D de elementos finitos de la tibia con las condiciones de carga aplicadas. Caso 1: Pie entra
en contacto con el suelo de forma completa. Caso 2: Momento de abduccién. Caso 3: Momento de aducciéon

Tomamos como punto de partida para la simulacién del problema de remodelacion
Osea una situacion arbitraria (comportamiento isotrépico y una densidad uniforme de
0.5gr/cm?). Para esta situacion arbitraria, aplicamos una secuencia de cargas anteriormente
explicada. Los cambios producidos por esta secuencia de cargas nos producirdn cambios en la
distribucion 6sea real de la tibia. Estos cambios son debidos a que durante la simulacion la
estructura interna del hueso (densidad y propiedades mecanicas), se adapta a la mecanica del
estimulo. Al final del proceso el hueso posee una distribucion de la densidad y del mddulo de
Young heterogénea.

Debido al hecho de que las cargas presentan variaciones durante el desarrollo de las
actividades mds habituales y ante la imposibilidad de obtener estos datos reales, se han
tomado un amplio rango de cargas. Esta variacion se estima en un 20% para la magnitud de
fuerza y de 70 y 30% hasta llegar a un 30 y 70% de la carga distribuida entre los céndilos para
el caso 2, y de 30 y 70% hasta llegar a 70 y 30% para el caso 3 [Bergmann et al 2001, Heller et
al 2001]. Se han simulado 500 combinaciones de carga dentro de los rangos explicados
anteriormente.
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Medial condyle Lateral condyle

Case Cycles/day X-axis Z-axis X-axis Z-axis
Load values for the tibia: applied forces at the medial and lateral condyles
I 3000 0.0 - 1062.08 0.0 — 1062.08
2 500 129.6 1353.28 55.68 634.88
3 500 55.68 634.88 129.6 1353.28

Tabla 2.1. Condiciones de carga de la tibia

El problema inverso de remodelacién désea tiene como objetivo predecir las cargas
musculoesqueléticas (modulo de carga y porcentaje de carga repartido a cada condilo)
producidas en la tibia. Estas cargas representan las salidas del problema inverso de
remodelacion ésea.

Para obtener estos datos de salida es necesario la utilizacion de un modelo
matematico. En este trabajo y como ya se explicd en capitulos anteriores se ha utilizado el
modelo de red neuronal artificial (RNA). Una vez establecido el modelo matematico a utilizar
debemos determinar los parametros de entrada. Para garantizar el correcto funcionamiento
de la red neuronal debemos someterla a un entrenamiento el cual nos permitira seleccionar la
opcidon mas adecuada para nuestra red neuronal, de esta forma, nos garantiza el menor error
posible. Para finalizar, una vez modelada de forma dptima nuestra red neuronal y predichas las
cargas de salida, se procede a comparar los datos de salida obtenidos mediante la red
neuronal con los datos del paciente.

A continuacion se exponen mas detalladamente las entradas y salidas del problema
inverso de remodelacion dsea, asi como las caracteristicas de la red neuronal utilizada en este
trabajo.

2.4.1. Entradasy salidas del problema inverso de remodelacidn dsea

Las entradas del problema inverso corresponden a una seleccién de puntos de la malla
3D de elementos finitos con mayor desviacion de densidad. Para esta seleccion de puntos de la
malla se han utilizado técnicas estadisticas basadas en la media y desviacion tipica a fin de
reducir el coste computacional de la red neuronal.

En un primer lugar se generd la media y la desviacion tipica de densidad de los 54047
elementos de la malla 3D de elementos finitos de la tibia a partir de los 500 casos de carga
analizados (seccion 2.3.3). Con todas estas densidades se seleccionaron los 40 elementos con
mayor desviacidn tipica, los cuales se han utilizado como entradas para nuestra red neuronal.
Cabe destacar que los 40 elementos seleccionados no corresponden exactamente a los
elementos de mayor desviacion ya que muchos de ellos se localizaron en la zona cortical de la
tibia. Debido a este hecho, se seleccionaron otros con menor desviacién tipica de densidad a
fin de conseguir una distribucion mas armoniosa de las entradas de la red neuronal. En la
figura 2.6 se observa como en la zona del cortical es donde se ha encontrado mayor
concentracién de densidades con mayor desviacion tipica, y de cémo se han seleccionado los
puntos de la forma mas homogénea posible a lo largo de la geometria de la tibia.
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Bone density gfem ™3

(Avg: 75%)
+2.048e-01
+1.877e-01
+1.706e-01
+1.536e-01
+1.365e-01
+1.194e-01
+1.024e-01
+8,532e-02
+6,825e-02
+5.119e-02
+3.413e-02
+1.706e-02
+0.000e+00

54047 entradas

Figura 2.6. Distribucion de desviaciones tipicas obtenidas en la tibia para las condiciones de carga aplicadas:
a) Distribucion de densidades de los 54047 elementos de la malla 3D de elementos finitos de la tibia. b) 40
elementos con mayor desviacion tipica, que representan las entradas para la red neuronal.

Las salidas del problema inverso, corresponden a las condiciones de carga (mddulo de
carga y porcentaje de carga repartido a cada céndilo) proporcionadas por la red neuronal
entrenada para una distribucion de densidades de un paciente en concreto. El objetivo es que
estos datos de salida proporcionados por la red neuronal sean similares a los proporcionados
por el paciente concreto.

2.4.2. Caracteristicas de la red neuronal utilizada

La red neuronal utilizada en este trabajo consta de 40 entradas, una capa oculta y dos
salidas las cuales corresponden al mddulo de la fuerza y el porcentaje de la misma repartido a
cada céndilo. Como funcion de entrada se ha utilizado una funcién sigmoidea y como funcién
de salida se ha utilizado una funcién lineal. Para el entrenamiento de la red neuronal se ha
utilizado el algoritmo Backpropagation (Anexo I).

Para la capa oculta se ha seleccionado entre diferentes opciones con neuronas
intermedias (de 3 a 50 neuronas), la capa con un menor error relativo.

En préximos apartados observaremos que, a fin de obtener un entrenamiento mas
completo de la red neuronal, se obtuvieron varios modelos de entrenamiento, reduciéndose
las entradas a 20.
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2.5.1. Evaluacion de la red neuronal

Para evaluar correctamente nuestra red neuronal artificial hemos utilizado la técnica
de validacion cruzada. Consiste en dividir los datos de la muestra, en nuestro caso en dos
subconjuntos: un subconjunto utilizado para entrenar al modelo (90% de los datos) y otro
subconjunto utilizado para validar y testear el modelo (10% de los datos). En esta técnica
aleatoria se han realizado 10 iteraciones y, para cada una de estas iteraciones, el subconjunto
de validacién ha ocupado una posicién diferente a lo largo de los datos de la muestra.

La ventaja de la validacidon cruzada es que utiliza todos los datos disponibles de
entrenamiento y el error final es independiente de los datos seleccionados en cada modelo.
Con el fin de predecir la exactitud de nuestra red neuronal artificial se han utilizado los
siguientes errores:

x —
Error relativo = absg

. . Oxy
Coeficiente de correlacion(ry,) = ———
(ox0y)

Donde x son los datos de prediccion, y son los datos reales, oy, es la covarianzay gy y
gy son las desviaciones tipicas de la variables x e y.

Los resultados obtenidos para el error relativo se calculan en base a los subconjuntos
de test y entrenamiento de la validacién cruzada. Mediante el coeficiente de correlacién
medimos el grado de intensidad de la relacidon entre los datos de entrenamiento. Estos datos
se utilizan para generar el modelo, de manera que el correspondiente error nos indicara si el
modelo se ha entrenado correctamente. Por otro lado, los datos de test se utilizan para validar
el modelo, de manera que el correspondiente error nos indica si el modelo es adecuado para
simular el problema.

Antes de introducirnos en los diferentes modelos de entrenamiento utilizados para
nuestra red neuronal y comentar los resultados obtenidos, es importante destacar los valores
gue aparecen en las graficas. Estos valores corresponden a los errores de aprendizaje y a los
errores de test.

Error de aprendizaje: corresponde a los errores obtenidos en funcién de los datos con
gue se entrena el modelo, es decir, los mismos valores utilizados para ensefiar a la red
neuronal.

Error de test: compara el error que se produce al introducir en nuestra red datos no
utilizados anteriormente, comparandolo posteriormente con el obtenido para los datos reales.
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2.5.2, Modelo de entrenamiento

Como modelo inicial de entrenamiento para nuestra red neuronal se han tomado 500
casos (para diferentes médulos de carga y porcentaje de la misma distribuida entre los
condilos) y 40 elementos de entrada.

A continuacion se exponen en la Tabla 2.2 para diferentes nimeros de neuronas en la
capa intermedia, los errores obtenidos para el modulo de la carga, el porcentaje de la misma
repartido entre los céndilos y el error total obtenido, que es suma de los dos anteriores.
También se muestra el coeficiente de correlacién. Siempre que hablemos de error nos
estaremos refiriendo a un error relativo, en este caso seria error relativo de carga y error
relativo del porcentaje de carga repartido entre los condilos.

Error relativo (%) y coeficiente de correlacion

Neuronas capa intermedia

3 5 10 15 20 25 30 40 50

v e Test 0,0291  0,0250 0,0354  0,0524 0,0530 0,0475 0,0418  0,0415  0,0404
< &

S (O'}) Aprendizaje 0,0210 0,0117 0,00339 3,34E-6 1,24E-5 4,13E-6 1,02E-6 3,78E-6 7,26E-6
— O

S

©

woo Iy 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999  0,99999

Test 2,6443 4,4203 2,5281 0,11777 0,10705 0,08199 0,05952 0,09258 0,08050

)

X Aprendizaje 43831 43831 23501 0,10589 0,10589 0,10589 0,10589 0,07243 0,07243

~

Error de
porcentaje

Iy 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999  0,99999
K Test 2,67 4,45 2,56 0,17 0,16 0,13 0,101 0,134 0,121
o —

* X Aprendizaje 4,4 4,39 2,35 0,1059  0,1059  0,1059  0,1059  0,07244 0,07244
5

S

o Iy 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999  0,99999

Tabla 2.7. Error relativo y coeficiente de correlacion para el modelo de entrenamiento de la red neuronal con
40 entradas

A continuacion, en las Figuras 2.7 y 2.8 se observa la evolucién del error relativo
obtenido respecto al numero de neuronas de la capa intermedia, tanto para el mdédulo de la
carga como para el porcentaje de carga repartido entre condilos, respectivamente.

En la Figura 2.7 se muestran los errores de aprendizaje y de test obtenidos para el
valor del mddulo de la carga. Se observa que mientras el error de aprendizaje disminuye de
forma continua segin aumenta el nimero de neuronas, el error de test no sigue una
trayectoria tan homogénea. El error disminuye hasta llegar al entrenamiento de capa
intermedia con 5 neuronas, posteriormente el error va aumentando progresivamente hasta
alcanzar las 20 neuronas y vuelve a disminuir hasta llegar al Ultimo punto de entrenamiento
gue corresponde a la capa intermedia con 50 neuronas. Cabe destacar que para 50 neuronas
se alcanza un minimo relativo, el cual serd descartado debido a que es de valor superior al
obtenido para una capa intermedia con 5 neuronas.

De esta forma y a la vista de los resultados del error de carga, se determina como
solucién 6ptima una capa intermedia con 5 neuronas. Se ha considerado esta solucién ya que

21



a partir de ella nos aparece el llamado sobreentrenamiento, el cual nos produce una pérdida
de generalizacion por el uso excesivo de neuronas en la capa intermedia de la red neuronal. Es
decir, al aumentar el nimero de neuronas del modelo el resultado no mejora.

Error relativo del médulo de la carga

6.00E-02

5.00E-02 /’__\\
/

4.00E-02

3.00E-02 === Error de test

2.00E-02 A\ == Error de
aprendizaje
1.00E-02 \

000E+00 T T T T T T T T 1
3 5 10 15 20 25 30 40 50

Neuronas en la capa intermedia

Error (%)

Figura 2.7. Error relativo del médulo de la carga obtenido para el modelo inicial de entrenamiento

En la Figura 2.8 los valores representados corresponden a los errores obtenidos para el
error relativo del porcentaje de carga repartido en cada condilo. Tanto el error de test como el
error de aprendizaje tienen unos valores muy similares, los cuales disminuyen segun
incrementamos el numero de neuronas. Estos errores son de un orden bastante superior a los
obtenidos para el error relativo de carga. Graficamente es dificil de determinar la solucién que
optimice el error, pero si nos dirigimos a la Tabla 2.2 y a la Figura 2.8 se observa que el menor
error total (error de test) se consigue para una capa intermedia con 30 neuronas. De esta
forma, seleccionaremos como solucién éptima una capa intermedia con 30 neuronas.

Error relativo del porcentaje de carga repartido a cada céndilo

5
BTN
3.5 // \
—_ 3 /
o\° 2.5 Error de
:‘ 2 \ test
E 1.5 \ === Error de
:LTE 1 \ aprendizaje
0.5 \
0 T T T T . T T
3 5 10 15 20 25 30 40 50
Neuronas en la capa intermedia

Figura 2.8. Error relativo del porcentaje de carga repartido entre condilos obtenido para el modelo inicial de
entrenamiento
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Para obtener una visién conjunta del modelo se ha englobado los errores obtenidos
tanto para la carga como para el angulo. En la Figura 2.9 se muestra el error total producido en
el modelo de entrenamiento para las diferentes capas intermedias. Los errores relativos
obtenidos para el porcentaje de carga repartido entre condilos son de un orden mayor
respecto a los errores relativos del médulo de la carga. De esta manera, sera el error relativo
obtenido para el porcentaje de carga repartido entre céndilos el que tenga mayor peso a la
hora de determinar el nUmero dptimo de neuronas en la capa intermedia. Analizando los datos
numérica y graficamente, se ha determinado que el numero de neuronas de la capa
intermedia que optimizan el funcionamiento del modelo de entrenamiento es de 30 neuronas.

Error relativo total

4.5

3.5

2.5 === Error de test

Error (%)

1.5 === Error de
1 entrenamiento

0.5

T ——

3 5 10 15 20 25 30 40 50
Neuronas de la capa intermedia

Figura 2.9. Error relativo total obtenido para el modelo inicial de entrenamiento

2.5.3. Reduccién del nimero de entradas para la red neuronal

En un primer momento se utilizd una técnica estadistica basada en la media vy
desviacion tipica para reducir el nimero de entradas (valores de densidad de los elementos de
la tibia), ya que si tomamos todas las entradas el coste computacional que obtenemos es muy
elevado (apartado 2.4.1). En un principio las entradas se redujeron de los 54047 puntos de
integracién conocidos del modelo de elementos finitos de la tibia a 40 entradas, se tomdé como
criterio de seleccién aquellos puntos de integracidon (entradas) con la desviacion tipica mayor.

Con el fin de reducir ain mas el nimero de datos de entrada y por tanto reducir el
coste computacional de entrenamiento de la red se realizd el siguiente estudio.

Para la reduccion de los elementos de entrada a la red, se partié6 de los datos
obtenidos para el modelo de entrenamiento anterior. Del error total se obtuvo como ya se
explicé en apartado 2.5.2 una capa intermedia éptima para nuestra red neuronal con 30
neuronas. Para esta capa intermedia se evalud la media de los pesos sindpticos de todas las
entradas (30 neuronas, 40 elementos) y se seleccionaron los 20 elementos con mayor media
en valor absoluto como nuevos elementos de entrada.
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En la Figura 2.10 podemos observar los valores medios en valor absoluto de los pesos
sinapticos, obtenidos para los 40 elementos de entrada considerados inicialmente. Se
seleccionaron los elementos con mayor media.
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Figura 2.10. Valores medios en valor absoluto de los pesos sindpticos para las 40 entradas seleccionadas del
modelo de elementos finitos de la tibia.

Cuando se obtuvieron los puntos con mayor desviacidn tipica en la tibia la mayoria de
ellos se localizaron en el borde de la zona cortical y del esponjoso, zona de mayor densidad
Osea del modelo 3D (Figura 2.11). Con el fin de obtener un mejor estudio de la red neuronal se
tomaron, a pesar de tener menor desviacion tipica, otros puntos de integracion situados en
zonas como las epifisis de la tibia. En las siguientes figuras (Figura 2.11.a y Figura 2.11.b) se
observa la distribucién de estos elementos de entrada a lo largo del modelo 3D de la tibia.

Bone density gfcmn ™3

(Avg: 75%)
+2,048e-01
+1,877e-01
+1,706e-01
+1.536e-01
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+8,532e-02
+6,825e-02
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+3.413e-02
+1,706e-02
+0,000e+00

a) b)

Figura 2.11. Distribucion de desviaciones tipicas obtenidas en la tibia para las condiciones de carga aplicadas:
a) 40 elementos con mayor desviacion tipica; b) 20 elementos con mayor desviacion tipica
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A continuacion se exponen los resultados obtenidos para el modelo de 500 casos con
los 20 elementos de entrada seleccionados, ver Figura 2.11.b, con el fin de reducir el coste
computacional de la red neuronal (Tabla 2.3). Podemos observar a simple vista que los errores
obtenidos para el porcentaje de carga repartido a cada céndilo (error mas influyente a la hora
de obtener el error total) al reducir el nimero de entradas, son mayores para los primeros
casos de entrenamiento (hasta capa intermedia con 20 neuronas). Sin embargo, al llegar a los
casos de 30, 40 y 50 neuronas en la capa intermedia se observa una disminucion del error,
llegando a ser practicamente nulo (Figuras 2.13, 2.14 y 2.15).

Error relativo (%) y coeficiente de correlacion

Neuronas capa intermedia

3 5 10 15 20 25 30 40 50
TRC) Test 0,0392 0,0313 00343 00466 0,0870 0,0632 0,0519 00535  0,0548
-
o) o Aprendizaje 00318 00205 00139 4,04E-3 3,52E-4 145E-4 4,60E-4 9,98E-7  1,49E6
—
S
©
w o Tyy 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999  0,99999
v % Test 6,04 4,68 3,51 1,80 0,811 0,104 0,158 0,0454  0,0321
© g _
5 @ X Aprendizaje 4,38 4,38 3,47 3,47 0,792 0,792 0,792 0,792 0,792
= g =
(NN}

a Ixy 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999  0,99999
= Test 6,08 4,71 3,54 1,85 0,898 0,167 0,21 0,0988  0,0869
8
o —

TR Aprendizaje 4,41 4,40 3,48 3,47 0,793 0,793 0,793 0,792 0,792
5

S

o Tyy 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999 0,99999  0,99999

Tabla 2.3. Error relativo y coeficiente de correlacion para el modelo de entrenamiento de 20 entradas
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Figura 2.13. Error relativo del médulo de la carga obtenido para el modelo de entrenamiento con 20 entradas
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Figura 2.14. Error relativo del porcentaje de carga repartido entre cada condilo obtenido para el modelo de
entrenamiento con 20 entradas
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Figura 2.15. Error relativo total obtenido para el modelo de entrenamiento con 20 entradas

Al comparar los errores obtenidos con 40 y 20 entradas (Figura 2.16), observamos que
al disminuir el numero de entradas el error relativo total es ligeramente superior. En los
modelos donde se ha utilizado el mayor nimero de neuronas esta diferencia se hace
insignificante, ya que los errores de ambos modelos se aproximan a cero.
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Figura 2.16. Error relativo total obtenido para los modelos de entrenamiento con 20 y 40 entradas

A continuacidon se exponen graficamente los resultados obtenidos para el coste
computacional de los diferentes modelos de entrenamiento, los cuales, nos ayudaran a
determinar la solucién éptima para nuestra red neuronal, ver Figura 2.17.

Se puede observar claramente que al aumentar el nimero de neuronas de la capa
intermedia el tiempo computacional aumenta exponencialmente. Este aumento se produce de
una forma mas brusca para todos los modelos de entrenamiento, a partir de la capa
intermedia con 15 neuronas. De esta forma, queda demostrado que el tiempo computacional
aumenta al aumentar el nUmero de neuronas de la capa intermedia.

Se determina claramente en la figura, cdmo al reducir el nimero de entradas de la red
neuronal, disminuye el tiempo computacional de entrenamiento de la red.

Tiempo computacional
(horas)

30

/

/

/

== 40 entradas

20 entradas

5 10 15 20 25 30 40
Neuronas de la capa intermedia

50

Figura 2.17. Tiempo computacional obtenido para los diferentes modelos de entrenamiento
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2.5.4. Validacion

En este apartado se va a proceder a realizar la validaciéon de la metodologia
desarrollada utilizando la red con 20 entradas para predecir las cargas (mddulo de la carga y
porcentaje de la misma repartida entre los condilos) para un caso real de un paciente concreto.

El objetivo de esta validacidon es asegurarnos que la red neuronal seleccionada esta
correctamente entrenada. Con bien entrenada se quiere decir, que dicha red puede ser util a
la hora de predecir las cargas de determinados pacientes especificos, a partir de la distribucion
de densidades.

Para la realizacion de esta validacién se han obtenido del TAC las densidades
correspondientes a los 20 elementos de entrada de las redes a partir del nivel de grises de las
imagenes (HU). Con los HU se ha obtenido el valor de la densidad en cada entrada de la red
(punto de integracion del elemento de la malla) utilizando la siguiente expresién propuesta por
Peng et al (2008):

p=1+7,185x 10'HU

Una vez obtenidas se introducen en la red neuronal para obtener las cargas que han
dado lugar a esas densidades. Por ultimo se vuelven a introducir esas cargas en el modelo de la
tibia, se realiza el andlisis de remodelacién 6sea y comparamos las densidades resultantes con
las obtenidas del TAC.

Al realizar una comparacion cualitativa entre la distribucién de densidades del TAC y
obtenidos tras el analisis de remodelacién ésea introduciendo las cargas de la red (Figura 2.16),
observamos que obtenemos unos buenos resultados en la zona del cortical, pero obtenemos
cierto error en las zonas de esponjoso, donde se aplicaron las cargas y las condiciones de
apoyo.

5DV Tenz_naim

[Avg: 75%) (Avg: 75%)
+2.000e +0D +2.000e +D0
+1.512e+00 +1.810e+00
i s
+1.112e+00 D400
+1.167e+0D +1.167e+0D
+é-]|3??=+0010 +1.00D=+D0D
+8.11%e-D1 +5.112e-D1
+6.667¢-D1 +6.667e-D1
+1.122e-01 MR

1.667a-D1 .
+1.667e-D1 +1.667e-D1
+D.0DDe+ +D.00De +DD
z 4

Figura 2.17. Comparacion cualitativa de las densidades (gr/cms) obtenidas a partir de las HU del TAC y el
modelo de redes neuronales
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Como se ha visto en apartados anteriores, cuantas mas neuronas usemos para
entrenar nuestra red mayor sera el coste computacional y, a su vez, menor sera el error,
excepto si traspasamos el limite del sobreentrenamiento. Por otro lado, la disminucion del
numero de entradas supone una disminucion del coste computacional y un ligero aumento del
error.

En funcidén de los resultados obtenidos, tanto para el error relativo como para el
tiempo computacional, podemos determinar como solucién éptima para nuestra red neuronal,
el modelo de entrenamiento con 20 entradas y una capa intermedia con 30 neuronas.

El modelo de prediccion de las cargas mediante el método de las redes neuronales es
un método util y preciso para las zonas con mayor densidad dsea. Sin embargo, cuando la
densidad es baja o en las zonas donde se aplican condiciones de contorno el modelo presenta
ciertos errores. Esta inexactitud puede ser debida a los fallos que presentan los modelos de
remodelacién ésea que, como se ha dicho anteriormente, producen errores en zonas
trabeculares y donde se aplican las condiciones de contorno.
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3. Diseno de una protesis de rodilla de
revision

Una vez obtenido un modelo capaz de predecir las cargas que dan lugar una
determinada distribucién de densidades, podemos aplicar este modelo al disefio de proétesis
para un paciente concreto.

Partiendo de la tibia utilizada en el capitulo anterior y las cargas obtenidas en el
apartado 2.5.4, se ha simulado la colocacidn de cuatro tipos de protesis de rodilla de revision
con ayuda del software Mimics para estudiar su efecto sobre el hueso, en concreto sobre la
reabsorcion/formacidn dsea.

Para el estudio de la influencia de cada tipo de protesis sobre la remodelacion dsea de
la tibia, se ha seguido el siguiente esquema (Figura 3.1):

MIMICS
Segmentacion

v

HARPOON MESH
Discretizacion

v

Aplicacion ABAQUS CAE
secuencial de | ===l Analisis de
las cargas remodelacion 6sea

v v

Propiedades del Prétesis B Ratio
hueso BMD

Aplicacion
secuencial de
las cargas

Figura 3.1. Esquema seguido para la realizacion del analisis de remodelacion ésea
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Se parte de las Tomografias Axiales Computerizadas (TAC) (Figura 3.2) tomadas a
distintos pacientes a los que se le han colocado distintos tipos de protesis de revisién. Se han
importado las imagenes de cada una de ellas desde el programa Mimics y se ha desarrollado
un modelo tridimensional de la componente tibial del implante, y que una vez suavizado
(Figura 3.3), es introducido en la tibia sana utilizada en el capitulo anterior (Figura 3.4).
Posteriormente es exportado al programa Harpoon Mesh para realizar un mallado (Figura 3.5).
Finalmente se exporta al procesador de calculo Abaqus CAE v. 6.11 (Figura 3.6) para realizar,
mediante el método de los elementos finitos y el andlisis de remodelacién ésea.

Lbbtibb bbb bt b b bbb bbb bbbl bl

Figura 3.2. Tomografias Axiales Computarizadas en el software Mimics

11T

Figura 3.3. Modelos 3D de las componentes tibiales de las proétesis de rodilla de revision: a) Protesis de vainas.
b) Prétesis en offset. ¢) Protesis en offset con suplemento medial. d) Protesis con vastago recto.
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Figura 3.4. Protesis introducida en la tibia sana

Figura 3.5. Modelos 3D de la tibia y la protesis en offset malladas en Harpoon Mesh

Figura 3.6. Modelos 3D de la tibia y la protesis de vainas en Abaqus
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La densidad 6sea o BMD (bone mineral density) es un término médico que
normalmente se refiere a la cantidad de materia mineral por centimetro cuadrado de los
huesos. La densidad dsea se utiliza en la medicina clinica como un indicador indirecto de la
osteoporosis y el riesgo de fractura. Se mide mediante un procedimiento llamado
densitometria, el cual se realiza en el departamento de radiologia o de medicina nuclear de los
hospitales o clinicas. La medicién es indolora y no invasiva e implica exposicion a baja radiacion.

El ratio de densidad d6sea cuantifica cuanto cambia la densidad ésea a lo largo del
tiempo; si desciende de forma considerable significa que la densidad désea también ha
descendido, lo que quiere decir que el hueso ha pasado de poseer mayor parte de hueso
cortical (hueso mas fuerte) a mayor parte de hueso trabecular (hueso esponjoso) debido al
cambio en la transmisidon de las cargas que supone la incorporacion de la protesis. Se puede
determinar el ratio de densidad 6sea mediante la siguiente expresion:

LY

BMD ratio = > x 100
> dV

Figura 3.7 Expresion utilizada para el cilculo del BMD ratio

El ratio de BMD se ha evaluado en las cuatro protesis, asi como la tension principal
maxima y la deformacién equivalente de Von Mises.

A continuacién se muestran las distribuciones de densidades obtenidas al incorporar
las distintas proétesis a la tibia (Figuras 3.7 a 3.14).

En todos los casos se observa un mismo patrén. La densidad en la epifisis va
disminuyendo, es decir, se produce reabsorcion dsea, al igual que en el canal medular en torno
al vastago protésico. Por otro lado, se produce un aumento de la densidad, es decir, formacién
Osea, en la zona de la punta del vastago y en la diafisis.
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Figura 3.7. Evolucion de la densidad dsea (gr/cmS) a lo largo del tiempo para la prétesis con vastago en offset
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Figura 3.8. Evolucion de la densidad dsea (gr/cmS) a lo largo del tiempo para la prétesis con vastago en offset

sin suplemento. Vista corte transversal
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Figura 3.9. Evolucion de la densidad ésea (gr/cm3) a lo largo del tiempo para la prétesis con vastago recto

SOV1
(Awg: 7S%)
+1.920e 400

+1.600e-01
+0.000=+00

0incs 100 incs 200 incs 300 incs

Figura 3.10. Evolucién de la densidad ésea (gr/cm3) a lo largo del tiempo para la prétesis con vastago recto.
Vista corte transversal
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Figura 3.11. Evolucién de la densidad ésea (gr/cm3) a lo largo del tiempo para la prétesis con vastago en offset
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Figura 3.12. Evolucién de la densidad ésea (gr/cm3) a lo largo del tiempo para la prétesis con vastago en offset

con suplemento. Vista corte transversal
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Figura 3.13. Evolucién de la densidad ésea (gr/cmS) a lo largo del tiempo para la protesis de vainas
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Figura 3.14. Evolucién de la densidad 6sea (gr/cms) a lo largo del tiempo para la protesis de vainas. Vista corte
transversal

En la figura 3.15 se observan las diferencias entre las distribuciones de densidad que
han dado lugar la implantacién de las distintas prétesis. Se observa que la protesis con vastago
recto produce una gran reabsorcion dsea en la zona del vastago tibial comparada con el resto,
mientras que en la zona de la diafisis produce menos reabsorcién que las demas, seguida de la
protesis en offset con suplemento. La protesis en offset sin suplemento y la prétesis de vainas
dan lugar a densidades similares.
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Figura 3.15. Comparacion de la distribucion de densidades (gr/cm3) para las custro protesis en el altimo
incremento. a) Protesis en offset sin suplemento. b) Protesis con vastago recto. ¢) Prétesis en offset con

suplemento. d) Protesis con vainas

En la siguiente grafica (Figura 3.16) se muestran los resultados del ratio de densidad
Osea obtenidos para cada tipo de protesis. La protesis con vastago recto es, con diferencia, la
gue produce una menor reabsorcion ésea, seguida de la prdtesis con vastago en offset con
suplemento y por ultimo la prétesis en offset sin suplemento y la prétesis de vainas, que

producen una reabsorcion dsea similar.
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Figura 3.16. Variacion del ratio de densidad 6sea con el tiempo

38




También se ha evaluado la tension maxima principal que produce cada protesis en el
hueso (Figura 3.17 y 3.18). La tensién principal maxima en el hueso no supera en ningun
momento la resistencia a traccion del hueso (30 MPa). Todas las prétesis producen
distribuciones de tensiones similares en el hueso. Las prétesis que producen una mayor zona
de tensiones son la prétesis con vastago recto seguida de la prdtesis en offset con suplemento.
En cuanto a la zona donde aparece tensidn puede ser debida al estrechamiento de la seccién
de la tibia en esa zona, que produce un efecto entalla y actia como concentrador de tensiones.
Los maximos locales que se producen en los nodos en los que se aplicaron las condiciones de
apoyo.
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Figura 3.17. Tensién principal maxima en el hueso (MPa). a) Prétesis en offset sin suplemento. b) Protesis con
vastago recto. c) Protesis en offset con suplemento. d) Proétesis con vainas
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Figura 3.18. Tension principal maxima en el hueso (MPa). Vista corte transversal. a) Protesis en offset sin
suplemento. b) Protesis con vastago recto. c) Prétesis en offset con suplemento. d) Prétesis con vainas
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Figura 3.19. Tensiones de Von Mises en el implante (MPa). Vista delantera. a) Protesis en offset sin
suplemento. b) Protesis con vastago recto. c) Protesis en offset con suplemento. d) Prétesis con vainas
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Figura 3.20. Tensiones de Von Mises en el implante (MPa). Vista trasera. a) Protesis en offset sin suplemento.
b) Protesis con vastago recto. c) Prétesis en offset con suplemento. d) Prétesis con vainas
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En las imagenes anteriores se observa la comparacion entre las cuatro protesis de las
tensiones de Von Mises a las que se encuentran sometidos los vastagos (Figuras 3.19 y 3.20).
La tensién de Von Mises en los implantes no supera en ningdn momento la resistencia del
mismo (450 MPa). Los mayores valores de tensidon se localizan en la punta del vastago. La
protesis que esta sometida a mas tensiones es la de vastago recto, mientras que, la prétesis
con offset sin suplemento es la que menos tensiones soporta.
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La prétesis que mayor reabsorcion producen son la prétesis de vainas y la prétesis con
vastago en offset sin suplemento, seguida muy de cerca por la prétesis con vastago en offset
con suplemento. La protesis que, con diferencia, produce una menor reabsorcién ésea es la
protesis con vastago recto. Esto puede deberse a que no posee un offset ni unas vainas que
puedan actuar como concentradores de tensiones, descargando el hueso y produciendo la
reabsorcion dsea. Esto también es debido a que la protesis con vastago recto es la menos
rigida, por lo que es capaz de transmitir de una manera mas uniforme las tensiones,
reduciendo la reabsorcién dsea. La protesis de vainas es la mas rigida, de ahi que genere la
mayor reabsorcion dsea.

Las protesis con vastago en offset son las que producen mayor tensién principal
maxima en el hueso, aunque en ningn momento supera los maximos permitidos. Esto puede
ser debido, como se ha comentado anteriormente, a que el offset actua como un importante
concentrador de tensiones localizado localmente. En cuanto a la tensidon de Von Mises en las
protesis, los mayores valores aparecen localizados en la punta del vastago, destacando las
tensiones que se encuentran en la protesis de vastago recto.
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4. Conclusiones y lineas futuras

Este trabajo se ha dividido en dos partes: la primera la determinacion de las cargas que
afectan a la tibia de un paciente concreto mediante un método basado en Redes Neuronales, y
la segunda la utilizaciéon de dichas cargas para analizar la reabsorcion dsea que producen
cuatro tipos distintos de prdtesis de rodilla de revision.

Para la primera parte del trabajo se ha analizado el problema de remodelacién 6ésea,
aplicando un rango de variacidon de un 20% de las condiciones de carga al modelo 3D de una
tibia real. De este anilisis se han obtenido unas densidades dseas, que sirven de entrada para
la Red Neuronal Artificial. Después de entrenar la red con una funcidn sigmoidea como entrada,
distinto nimero de neuronas en la capa intermedia y una funcién lineal como salida, se han
obtenido unas cargas, las cuales se han comparado con las condiciones de carga aplicadas
inicialmente y se ha obtenido un error de cdlculo. Tras determinar el nimero de entradas y
neuronas de la capa intermedia mas adecuado, se han introducido las cargas obtenidas en el
modelo de la tibia con distintas protesis, evaluando su efecto en la remodelacion dsea.

En cuanto a la primera parte de este trabajo, una de las principales conclusiones es
gue el modelado la red neuronal se puede llegar a predecir con exactitud las condiciones de
carga de un paciente especifico a partir de su distribucion de densidades. Gracias a este
método, podemos obtener las cargas que sufre la tibia y sus angulo de aplicacidon. De esta
forma, el modelo matematico desarrollado en este proyecto puede ser utilizado en la vida real
para predecir las cargas de un paciente, las cuales nos proporcionen la informacién necesaria
para implantar de forma mas eficiente una protesis para dicho paciente si fuera necesario.

Como conclusiones secundarias se ha observado que cuantas mds neuronas se utilicen
para entrenar la Red Neuronal Artificial, mayor serad el coste computacional y menor serd el
error, hasta llegar a un limite de sobreentrenamiento para el cual el error volvera a aumentar.
La disminucidon del nimero de entradas para la Red Neuronal supone una disminucién del
coste computacional y un pequefio aumento del error. Con estas conclusiones, hemos
obtenido como modelo éptimo para nuestro problema una red con 20 entradas y una capa
intermedia con 30 neuronas. Los resultados obtenidos de la red han sido buenos para las zonas
de cortical, pero en las zonas de baja densidad o donde se aplican las condiciones de contorno
presenta errores de aproximacion mas altos.

En la segunda parte de este trabajo se han comparado las distintas protesis. En el
analisis de remodelacidn désea realizado se ha visto que la prétesis con vastago recto es la que
menos reabsorcion dsea produce, lo que puede ser debido a que no tiene un offset ni unas
vainas que actien como concentradores de tensiones, descargando el hueso y produciendo
una importante reabsorcidon dsea y por ser un vastago mucho menos rigido que el resto. Por
este motivo, las prétesis con vastago en offset y con vainas han producido las mayores
tensiones y deformaciones.
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Las conclusiones obtenidas en este proyecto son importantes, pero siempre se puede
mejorar el trabajo realizado y explorar otros aspectos que permitan avanzar en la investigacion
realizada. Por lo tanto las futuras lineas de accidén que se proponen son las siguientes:

Efecto de la incorporacion del peroné en las simulaciones de la remodelacion dsea
Desarrollo de un modelo paramétrico de la tibia valido para cualquier paciente
Nueva metodologia basada en las redes neuronales donde las entradas sean los
parametros del modelo paramétrico anterior y que sea capaz de predecir las

cargas de cualquiera paciente
Comparacion de distintos vastagos con un platillo tibial sin vastago
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Anexo |I. Redes neuronales

Las redes neuronales artificiales (RNA) son modelos matematicos que intentan
reproducir el funcionamiento del sistema nervioso. Como todo modelo realizan una
simplificacion del sistema real que simula y toma las caracteristicas principales del mismo para
la resolucion de una tarea determinada.

El cerebro es el elemento principal del sistema nervioso humano y estd compuesto por
un tipo especial de célula llamada neurona. Una neurona es una célula viva y como tal posee
todos los elementos comunes de las células bioldgicas. A su vez, las neuronas tienen
caracteristicas propias que le permiten comunicarse entre ellas, lo que las diferencia del resto
de las células bioldgicas. La figura 1.1 muestra la estructura tipica de una neurona bioldgica.

~ Dendntas

Figura I.1: Neurona bioldgica

Se observa que la neurona bioldgica estd compuesta por un cuerpo celular o soma, del
cual se desprende un arbol de ramificaciones llamado drbol dendritico, compuesto por las
dendritas. Del soma también parte una fibra tubular, llamada axdn, el cual suele ramificarse
cerca de su extremo. Las dendritas actian como un canal de entrada de sefales provenientes
desde el exterior hacia la neurona, mientras que el axén actia como un canal de salida. El
espacio entre dos neuronas vecinas se denomina sinapsis.

Desde un punto de vista funcional, las neuronas conforman un procesador de
informacion sencillo. Constan de un subsistema de entrada (dendritas), un subsistema de
procesamiento (el soma) y un subsistema de salida (axén). Como caracteristica principal
destaca su capacidad de interaccion con otras neuronas, las sefiales nerviosas pueden ser
eléctricas o quimicas. La transmisidon quimica se da principalmente en la comunicacién entre
neuronas mientras que la eléctrica se produce dentro de una neurona [Martinez et al., 2003].

En general, una neurona recibe informacidon de cientos de neuronas vecinas y la
transmite a otras tantas neuronas. La comunicacidn entre neuronas se lleva a cabo de la
siguiente manera: el soma de las neuronas transmisoras o presindpticas se genera un pulso
eléctrico llamado potencial de accion. El pulso eléctrico se propaga a través del axén en
direccién a las sinapsis. La informacién se transmite a las neuronas vecinas utilizando un
proceso quimico, mediante la liberacién de neurotransmisores. Estos neurotransmisores se
transmiten a través de la sinapsis hacia la neurona receptora. La neurona receptora o
postsinaptica toma la sefial enviada por cientos de neuronas a través de las dendritas y la
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transmite al cuerpo celular. Estas sefiales pueden ser excitadoras (positivas) o inhibidoras
(negativas) [Gurmey, 1997]. El soma es el encargado de integrar la informacién proveniente de
las distintas neuronas. Si la sefial resultante supera un determinado umbral (umbral de
disparo) el soma emite un pulso que se transmite a lo largo del axdon dando lugar a la
transmision eléctrica a lo largo de neurona. Al llegar la sefal al extremo del axdn se liberan
neurotransmisores que permiten transmitir la sefial a las neuronas vecinas [Nascimiento,
1994]. Este modelo bioldgico es la base que siguen los distintos sistemas basados en neuronas
artificiales y que brevemente se van a presentar en los siguientes apartados.

La neurona artificial es un elemento de procesamiento simple que a partir de un vector
de entradas produce multiples salidas. En general podemos encontrar tres tipos de neuronas
artificiales y podemos clasificarlas segun su funcion en:

Neuronas de entrada: Son aquellas que reciben directamente la informacién desde el
exterior.

Neuronas ocultas: Llamadas de esta forma a las neuronas que reciben la informacién
desde otras neuronas artificiales. Es en estas neuronas donde se realiza la representacién de la
informacién almacenada.

Neuronas de salida: Las cuales reciben la informacién ya procesada y la devuelven al
exterior.

En la figura 1.2 se muestran todos los elementos que componen una neurona artificial:
Sinapsis ~.
| |
Salida JV;
:4
\\"..
o

Entradas

.

*« . - ~Funcion de salida

Regla de propagacion

Funcion de activacion

Figura I.2: Neurona artificial

Conjunto de entradas, X;(t): Reciben la informacion, esta puede ser proveniente del
exterior o de otra neurona artificial.

Pesos sinapticos, Wijj: Representan el grado de comunicacion entre dos neuronas
artificiales. Estos pesos pueden ser excitadores o inhibidores.

Regla de propagacion, g;: Integra la informacion proveniente de las distintas neuronas
artificiales, entradas y pesos sinapticos, y proporcionan el valor potencial postsinaptico de la
neurona.

Funcion de activacion, f;: Provee el estado de activacién de la neurona i.

Funcién de salida, Fj: Representa la salida actual de la neurona i.
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A continuacion se presentan los puntos expuestos anteriormente de una forma mas
detallada.

i. Entradasy salidas

Las entradas y salidas de una neurona pueden ser clasificadas en dos grandes grupos,
binarias o continuas. Las neuronas binarias (digitales) sélo admiten dos valores posibles. En
general en este tipo de neurona se utilizan los siguientes dos alfabetos {0,1} o {-1,1}. Por su
parte, las neuronas continuas (analdgicas) admiten valores dentro de un determinado rango,
gue en general suele definirse como [-1, 1]. La seleccidon del tipo de neurona a utilizar depende
de la aplicacion y del modelo a construir.

ii. Pesos sindpticos

El peso sindptico Wj; define la fuerza de una conexion sinaptica entre dos neuronas, la
neurona presinaptica i y la neurona postsinaptica j. Los pesos sinapticos pueden tomar valores
positivos, negativos o cero. En caso de una entrada positiva, un peso positivo actia como
excitador, mientras que un peso negativo actia como inhibidor. En caso de que el peso sea
cero, no existe comunicacion entre el par de neuronas.

Mediante el ajuste de los pesos sindpticos la red es capaz de adaptarse a cualquier
entorno y realizar una determinada tarea.

iii. Regla de propagacion

La regla de propagacion determina el potencial resultante de la interaccién de la

neurona i con las N neuronas vecinas. El potencial resultante h; se puede expresar de la

siguiente manera:
hi(t) = a; (Wi;, X; (£))

La regla de propagacién mas simple y utilizada consiste en realizar una suma de las
entradas ponderadas con sus pesos sinapticos correspondientes:

hi(t) = Wy * X; (¢)

iv. Funcion de activacion

La funcion de activacion determina el estado de activacién actual de la neurona en

base al potencial resultante h; y al estado de activacidon anterior de la neurona aj(t-1). El
estado de activacion de la neurona para un determinado instante de tiempo t puede ser
expresado de la siguiente manera:

a;(t) = f; (a; (¢ = 1), hy(£))

Sin embargo, en la mayoria de los modelos se suele ignorar el estado anterior de la

neurona, definiéndose el estado de activacién en funcién del potencial resultante h;:

a;(t) = f; (@)
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La Tabla I.1 muestra un listado de algunas de las funciones de activacion mas utilizadas

en los distintos modelos de redes neuronales artificiales.

Funcién Rango Grafica
Identidad y=x [-o=, +oo] £
- . 1
Escalén y =sign(x) {-1, +1}
y=H(x) {0, +1} -
Lineal a -1, six<-I [-1, +1] -~
tramos .
y=4x, si +l<x<-I - . X
+1, si x>+
Sigmoidea e 1 [0, +1] B
1+e™* [-1,+1] =
y = 1gh(x)
Gaussiana y=Ae [0,+1] }\
Sinusoidal y = Asen(@x + @) [-1,41] 2 o N

Tabla 1.1: Funciones de activacion.

v. Funcion de salida

La funcion de salida proporciona el valor de salida de la neurona, en base al estado de
activacion de la neurona. En general se utiliza la funcidn identidad, es decir:

yi(®) = F(a;() = a;(t)

Una vez definida el tipo de neurona que se utilizara en un modelo de redes neuronales
artificiales es necesario definir la topologia de la misma. La organizacién y disposicion de las
neuronas dentro de una red neuronal se denomina topologia, y viene dada por el nimero de
capas, la cantidad de neuronas por capa, el grado de conectividad, y el tipo de conexién entre
neuronas.

Las neuronas suelen agruparse en unidades funcionales denominadas capas. Se
denomina capa de entrada a aquella que esta compuesta por neuronas de entradas y por lo
tanto recibe informacién procedente desde el exterior. Andlogamente, se denomina capa
oculta y capa de salida a aquellas capas que estan compuestas por neuronas ocultas y de salida
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respectivamente. Una red neuronal artificial estd compuesta por una o mas capas, las cuales se
encuentran interconectadas entre si. Entre un par de neuronas de la red neuronal artificial
pueden existir conexiones. Estas conexiones son las sinapsis, tienen asociadas un peso
sinaptico, y son direccionales. Cuando la conexion se establece entre dos neuronas de una
misma capa hablamos de conexiones laterales o conexiones intra-capa. Por el contrario, si la
conexion se establece entre neuronas de distintas capas se la denomina conexidn inter-capa.
Si la conexién se produce en el sentido inverso al de entrada-salida la conexion se llama
recurrente o realimentada.

Una red puede estar formada por una Unica capa de neuronas. En este caso hablamos
de redes monocapa, y las neuronas que conforman dicha capa cumplen la funcidn de neuronas
de entrada y salida simultaneamente. Cuando la red estd compuesta por dos o mas capas
hablamos de redes multicapa. A su vez, hablamos de redes neuronales con conexién hacia
delante (redes feedforward) cuando las conexiones entre las distintas neuronas de la red
siguen un unico sentido, desde la entrada de la red hacia la salida de la misma. Cuando las
conexiones pueden ser tanto hacia delante como hacia atras hablamos de redes recurrentes
(redes feedback).

Durante la operatoria de una red neuronal podemos distinguir claramente dos fases o
modos de operacion: la fase de aprendizaje o entrenamiento, y la fase de operacién o test.
Durante la primera fase, la fase de aprendizaje, la red es entrenada para realizar un
determinado tipo de procesamiento. Una vez alcanzado un nivel de entrenamiento adecuado,
se pasa a la fase de operacién, donde la red es utilizada para llevar a cabo la tarea para la cual
fue entrenada.

i. Fase de entrenamiento

Una vez seleccionada el tipo de neurona artificial que se utilizard en una red neuronal y
determinada su topologia es necesario entrenarla para que la red pueda ser utilizada.
Partiendo de un conjunto de pesos sindpticos aleatorio, el proceso de aprendizaje busca un
conjunto de pesos que permitan a la red desarrollar correctamente una determinada tarea.
Durante el proceso de aprendizaje se va refinando iterativamente la solucion hasta alcanzar un
nivel de operacién suficientemente bueno.

El proceso de aprendizaje se puede dividir en tres grandes grupos de acuerdo a sus
caracteristicas en: [Isasi Vifiuela y Galvan Ledn, 2004; Yao, 1999]

Aprendizaje supervisado. Se presenta a la red un conjunto de patrones de entrada
junto con la salida esperada. Los pesos se van modificando de manera proporcional al error
gue se produce entre la salida real de la red y la salida esperada.

Aprendizaje no supervisado. Se presenta a la red un conjunto de patrones de entrada.
No hay informacién disponible sobre la salida esperada. El proceso de entrenamiento en este
caso debera ajustar sus pesos en base a la correlacién existente entre los datos de entrada.

Aprendizaje por refuerzo. Este tipo de aprendizaje se ubica entre medio de los dos
anteriores. Se le presenta a la red un conjunto de patrones de entrada y se le indica a la red si
la salida obtenida es o no correcta. Sin embargo, no se le proporciona el valor de la salida
esperada. Este tipo de aprendizaje es muy util en aquellos casos en que se desconoce cual es la
salida exacta que debe proporcionar la red.
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ii. Fase de operacion o test

Una vez finalizada la fase de aprendizaje, la red puede ser utilizada para realizar la
tarea para la que fue entrenada. Una de las principales ventajas que posee este modelo es que
la red aprende la relacion existente entre los datos, adquiriendo la capacidad de generalizar
conceptos. De esta manera, una red neuronal puede tratar con informacién que no le fue
presentada durante de la fase de entrenamiento.

Este tipo de redes neuronales son las que mayor aplicacion practica tienen, se
caracterizan por su organizacion en capas y conexiones estrictamente hacia delante, utilizando
entrenamientos de tipo supervisado.

Dentro de este grupo destacaremos el perceptrén y el perceptron multicapa (MLP) los
cuales desarrollaremos a continuacion.

i. Perceptron simple

Este modelo tiene gran importancia histdrica ya que fue el primer modelo en poseer
un mecanismo de entrenamiento que permite determinar automaticamente los pesos
sinapticos que clasifican correctamente a un conjunto de patrones a partir de un conjunto de
ejemplos.

La arquitectura del perceptron esta compuesta por dos capas de neuronas, una de
entrada y una de salida. La capa de entrada es la que recibe la informacién proveniente del
exterior y la transmite a las neuronas sin realizar ningun tipo de operacién sobre la sefial de
entrada. En general la informacidon entrante es binaria. La funcidon de activacion de las
neuronas de un perceptron es del tipo escaldn, dando de esta manera sélo salidas binarias.
Cada neurona de salida del perceptron representa a una clase. Una neurona de salida
responde con 1 si el vector de entrada pertenece a la clase a la que representa y responde con
0 en caso contrario.

El algoritmo de entrenamiento del perceptrén se encuentra dentro de los
denominados algoritmos por correccion de errores. Este tipo de algoritmos ajustan los pesos
de manera proporcional a la diferencia entre la salida actual proporcionada por la red y la
salida objetivo, con el fin de minimizar el error producido por la red.

ii. Perceptron multicapa (MLP)

El perceptrén multicapa es una extension del perceptrén simple. La topologia de un
perceptron multicapa esta definida por un conjunto de capas ocultas, una capa de entrada y
una de salida. No existen restricciones sobre la funcién de activacidon aunque en general se
suelen utilizar funciones sigmoideas (ver tabla I.1). A continuacién se expone el esquema tipo
para una MLP, el cual es el modelo mas utilizado actualmente, ver figura 1.3.
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Figura I.3. Perceptron multicapa (MLP)

En el contexto de las redes neuronales el entrenamiento o aprendizaje puede ser visto
como el proceso de ajuste de los parametros libres de la red [Yao, 1995]. Partiendo de un
conjunto de pesos sinapticos aleatorios, el proceso de entrenamiento busca un conjunto de
pesos que permitan a la red desarrollar correctamente una determinada tarea. Este proceso
de entrenamiento, es un proceso iterativo, en el cual se va refinando la solucién hasta alcanzar
un nivel de operacién lo suficientemente bueno.

La mayoria de los métodos de entrenamiento utilizados en las redes neuronales con
conexion hacia delante consisten en proponer una funcidon de error que mida el rendimiento
actual de la red en funcidn de los pesos sindpticos. El objetivo del método de entrenamiento es
encontrar el conjunto de pesos sindpticos que minimizan (o maximizan) la funcion. El método
de optimizacién proporciona una regla de actualizacidon de los pesos que en funcion de los
patrones de entrada modifica iterativamente los pesos hasta alcanzar el punto éptimo de la
red neuronal.

i. Algoritmo Backpropagation

El algoritmo de entrenamiento/aprendizaje supervisado mas comun utilizado para una
MLP, es el algoritmo llamado Backpropgation. Este algoritmo surgié de la bidsqueda de un
algoritmo para entrenar especificamente a la MLP. Es un tanto complejo ya que se toma la
informacion del comportamiento de la red en el sentido directo de la red y en el sentido
inverso, esto se realiza por la necesidad de modificar el comportamiento de las capas ocultas.

El algoritmo Backpropagation tiene como objetivo usar la diferencia entra las salidas
deseadas y las salidas actuales en la capa de salida de la red para cambiar los pesos (indicados
con valores aleatorios pequefios) con el fin de reducir al minimo esta diferencia (error). Esto se
logra mediante una serie de interacciones donde se modifica cada peso de derecha a izquierda
(sentido inverso de la propagacién de informacion en la red) hasta modificarse los pesos de la
capa de entrada prosiguiendo nuevamente con la propagacion de la informacién de entrada,
esto hasta que la diferencia entra la salida deseada y la obtenida en cada neurona de salida sea
minima [Fristsch, 1996].

El algoritmo Backpropagation es el método que desde un principio se desarrollo con el
fin de entrenar redes neuronales multicapa y se demostrd su eficiencia suficiencia en el
entrenamiento de redes para resolver diversos problemas, pero en muchos casos resultd ser
muy lento. A través de los afios han surgido algoritmos mas poderosos, aunque mas complejos,
la mayoria partiendo de la base de este algoritmo, propagar el error hacia atras. De cualquier
forma, es recomendable el uso de este algoritmo cuando se trata el disefio de una MLP, ya
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gue no es demasiado complejo, se entiende facilmente su finalidad, y sirve para comprender
mas rapido los algoritmos que se basan en él.

ii. Generalizacion

Una vez finalizada la fase de aprendizaje, la red puede ser utilizada para realizar la
tarea para la que fue entrenada. Una de las principales ventajas que posee este modelo es que
la red aprende la relacion existente entre los datos, adquiriendo la capacidad de generalizar
conceptos. De esta manera, una red neuronal puede tratar con informacién que no le fue
presentada durante de la fase de entrenamiento [Chirungrueng, 1988].

Cuando se evalla una red neuronal no sélo es importante evaluar si la red ha sido
capaz de aprender los patrones de entrenamiento. Es imprescindible también evaluar el
comportamiento de la red ante patrones nunca antes vistos. Esta caracteristica de las redes
neuronales se la conoce como capacidad de generalizacion y es adquirida durante la fase de
entrenamiento. Es necesario que durante el proceso de aprendizaje la red extraiga las
caracteristicas de las muestras, para poder luego responder correctamente a nuevos patrones.

De lo dicho anteriormente surge la necesidad de evaluar durante la fase de
entrenamiento dos tipos de errores. El error de aprendizaje, que indica la calidad de la
respuesta de la red a los patrones de entrenamiento y el error de test, que indica la calidad de
la respuesta de la red a patrones nunca antes vistos. Para poder obtener una medida de ambos
errores es necesario dividir el set de datos disponibles en dos, el set de datos de
entrenamiento, y el set de datos de evaluacién. El primero se utiliza durante la fase de
entrenamiento para que la red pueda extraer las caracteristicas de los mismos mediante el
ajuste de sus pesos sinapticos, asi la red logra una representacion interna de la funcion. El set
de evaluacidn se utiliza para evaluar la capacidad de generalizacion de la red.

La causa mas comun de la pérdida de capacidad de generalizacion es el
sobreaprendizaje. Esto sucede cuando la cantidad de ciclos de entrenamientos tiende a ser
muy alta. Se observa que la respuesta de la red a los patrones de entrenamiento es muy buena
mientras que la respuesta a nuevos patrones tiende a ser muy pobre. Al aumentar el nimero
de ciclos la red tiende a sobreajustar la respuesta a los patrones de entrenamiento, a expensas
de una menor capacidad de generalizacién. La Figura I.4.a muestra una situacion idealizada de
lo dicho anteriormente. En la misma se observa que en un determinado punto se empieza a
perder capacidad de generalizacion como consecuencia del sobreaprendizaje.

- ‘,-'A
Error Error i
Error en test :\ {
- [
£ i
/ - Error en test
7
L
l Etror ¢n aprendizaj ' Emor en aprendizaje
E
a) Error de generalizacion Iteracione: 1) Punto dptimo Iteraciones
minimo

Figura 1.4: Generalizacion. a) Situacion idealizada. b) Situacion real.
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En la Figura 1.4.b se muestra una situacion mas real del mismo caso. A medida que
transcurre el proceso de aprendizaje se obtienen varios minimos sobre el conjunto de
evaluacion. Existen diversas técnicas de parada temprana aunque en la mayoria de los casos se
deja que el proceso de aprendizaje avance hasta alcanzar una cota de error razonable,
guardando periédicamente las distintas configuraciones intermedias para luego seleccionar
la de menor error de evaluacion.

En ocasiones la pérdida de capacidad de generalizacion se produce por el uso excesivo
de neuronas ocultas en la red neuronal. Esto hace que la red tienda a ajustar con mucha
exactitud los patrones de entrenamiento, evitando que la red extraiga las caracteristicas del
conjunto.
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