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Abstract
Quantile regression continues to increase in usage, providing a useful alternative to
customary mean regression. Primary implementation takes the form of so-called mul-
tiple quantile regression, creating a separate regression for each quantile of interest.
However, recently, advances have been made in joint quantile regression, supplying
a quantile function which avoids crossing of the regression across quantiles. Here,
we turn to quantile autoregression (QAR), offering a fully Bayesian version. We
extend the initial quantile regression work of Koenker and Xiao (J Am Stat Assoc
101(475):980–990, 2006. https://doi.org/10.1198/016214506000000672) in the spirit
of Tokdar and Kadane (Bayesian Anal 7(1):51–72, 2012. https://doi.org/10.1214/12-
BA702). We offer a directly interpretable parametric model specification for QAR.
Further, we offer a pth-order QAR(p) version, a multivariate QAR(1) version, and a
spatial QAR(1) version. We illustrate with simulation as well as a temperature dataset
collected in Aragón, Spain.
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1 Introduction

For time series data, autoregressive (AR) modeling is perhaps the most common
approach. A lag one, AR(1), takes the form Yt = μ + ρ(Yt−1 − μ) + εt , with εt
following a suitable zero-mean error distribution; a conditional mean is provided. By
analogy, quantile autoregression (QAR) considers conditional quantiles.

An issue with quantile regression (QR) is the so-called quantile crossing problem.
Modeling quantiles individually enables rich modeling for a given quantile but allows
for crossing of quantiles across quantile level τ . For arbitrary values of the regressors,
X, we can not ensure that the resulting modeled quantiles will increase in τ . Such
modeling is referred to as multiple QR. Inference typically proceeds by minimizing
a check loss function or, more formally, assuming an asymmetric Laplace (AL) error
term. Examples of multiple QR with AL errors appear in Yu and Moyeed (2001), and
Kozumi and Kobayashi (2011) present a Gibbs sampler model fitting implementation.
Following those ideas, Peng et al. (2023) deals with variable selection in the context of
QARmodels with AL errors. Lum and Gelfand (2012) work in the context of spatially
referenced data and extend the AL model to a spatial process. Castillo-Mateo et al.
(2023) propose a very flexible spatial AL mixed effects QAR model.

Recent effort has focused on a joint QRmodeling to avoid quantile crossing. Adopt-
ing restricted support for the regressors,X, the τ -quantile will increase monotonically
over τ ∈ (0, 1). Bondell et al. (2010) offer a non-crossing approach for a fixed set
of quantiles of interest. Foundational work appears in Tokdar and Kadane (2012)
using Gaussian processes (GPs) with follow on work in Das and Ghosal (2017) using
splines. Reich et al. (2011) developed a spatial joint QR model through spatially
varying regression coefficients using Bernstein polynomials. Yang and Tokdar (2017)
propose a novel parameterization that characterizes any collection of non-crossing
quantile planes over arbitrarily shaped convex predictor domains. This parameteriza-
tion was extended to spatial data by Chen and Tokdar (2021) through a copula process
but a non-spatially varying quantile function results. Joint modeling imposes strong
restrictions on the class of permissible specifications; models outside of this class may
be preferred.

Motivation for joint or non-crossingquantilemodeling appears in, e.g.,Bondell et al.
(2010)whohighlight a problem that appearswhenmodeling awind speeddataset given
climatological regressors; the upper quantiles cross not far from the mean. As a further
example in this regard, accurate quantile predictions across quantile levels are essential
in forecasting of wind power generation (Cui et al. 2023). Formal joint modeling is
necessary in applications where coherent estimates of several quantiles or a generative
model are of interest; otherwise, quantile crossing leads to an invalid distribution for
the response. Also, multiple modeling fails to do justice to the full potential of the
model. Joint modeling helps to avoid the lack of data which emerges when attempting
to fit individual quantile curves (Tokdar and Kadane 2012). Joint modeling in the
context of QAR is relevant in risk management for estimating value-at-risk, as well
as in demand forecasting, where understanding the complete demand distribution
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is crucial for effective production planning and supply chain management. Further,
these models for daily temperatures could improve operational prediction accuracy
with forecast intervals, and high quantile simulated series behavior (Thrasher et al.
2012).

Koenker and Xiao (2006) offered an initial version of a joint QAR(p) model.
Illustrating with p = 1, they consider the generative model

Yt = θ0(Ut ) + θ1(Ut )Yt−1, (1)

where Ut is a sequence of independent and identically distributed (i.i.d.) standard
uniform random variables. The θ functions, from [0, 1] → R, need to be estimated.
Provided that the right side of expression (1) is monotone increasing in Ut , the τ

conditional quantile function of Yt given yt−1 increases in τ and is

QYt (τ | yt−1) = θ0(τ ) + θ1(τ )yt−1. (2)

Koenker and Xiao (2006) required both θ0 and θ1 to be strictly increasing functions
(referred to as co-monotonicity). Their suggested choices were θ0(τ ) = σ�−1(τ )

with� the cumulative distribution function (cdf) of a standard normal distribution and
θ1(τ ) = min{γ0 + γ1τ, 1} for γ0 ∈ (0, 1) and γ1 > 0. If yt−1 ≥ 0, co-monotonicity
ensures that QYt (τ | yt−1) will not cross as τ increases but under the restrictive
assumption that the autoregression coefficient strictly increases in τ .

Our contribution is to reconsider thework ofKoenker andXiao (2006) in the context
of Tokdar and Kadane (2012), providing flexible joint QAR modeling in a Bayesian
framework. We characterize non-crossing QAR(1) also using two monotone curves,
through a convenient class of cdf’s. We note extension to the QAR(p) model. We
consider bivariate QAR, capturing dependence through a copula process. Then, for
spatially referenced time series, we introduce spatial dependence in the realizations
and obtain spatially varying QARs through spatially varying coefficients.

QAR models arise when time series are observed to display asymmetric dynamics;
such data often appears in economic applications. Koenker and Xiao (2006) show
empirical applications of the QARmodel to the USA unemployment rate and gasoline
prices. Further examples in the literature consider dynamic additive quantile models,
QR with cointegrated time series, and conditional quantiles with GARCH models.
Applications include stock returns, house price returns, and gold prices. See, e.g.,
Li et al. (2015) or Yang et al. (2023) and references therein. QR is also popular for
climate data (see Gao and Franzke 2017 for an extensive review). Yang et al. (2018)
propose a semiparametricQARmodel including lagged data to develop quantile-based
temperature extreme indices. Zhang et al. (2022) use QR models conditional on the
state of the previous observation time to predict short-term wind speed or velocity.
Castillo-Mateo et al. (2023) use a rich QAR model to compare the effects of climate
change in daily maximum temperature.

The outline of the paper is as follows. Section2 provides a model characterization
for the QAR(1) case. Further, it offers explicit parametric model specifications, the
resulting likelihood for Bayesian model fitting, some criteria for model assessment,
and a simulation study. Section3 looks at the QAR(p) case. Section4 considers the
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bivariate QAR(1) setting. Section5 develops a fully spatial version through the use
of a Gaussian copula. Section6 employs time series of daily temperature data from
18 spatial locations to illustrate the previous four sections. Finally, Sect. 7 presents a
brief summary and possibilities for future work.

2 The QAR(1) case

2.1 The support of the data

For a non-crossing linear QAR specification we need to restrict the support of the
time series data, {y∗

t : t = 1, . . . , T }, to a bounded interval on the real line.1 We take
this interval to be [0, 1] and implement this by making a transformation of the data,

yt = y∗
t − m

M − m
, (3)

where m < min y∗
t and M > max y∗

t . In fact, m and M are chosen such that min yt
is close to but above 0 and max yt is close to but below 1. This enables the most
flexibility for the quantile function under our proposed QAR modeling and we offer
an automatic selection approach below.

Two points are important to note. First, we can not take m = min y∗
t and

M = max y∗
t . The data must be in the interior of the unit interval in order to enable dis-

tinct quantiles as τ varies across (0, 1). Second, choosing m and M is merely a device
for working on the unit interval. There is no connection between these values and the
potential practical support of the y∗

t ’s. Imposing bounding on the support is unavoid-
able for a valid linear specification of QYt (τ | yt−1) of the form θ0(τ ) + θ1(τ )yt−1
because the only non-intersecting lines under unbounded support are parallel lines.

A convenient “automatic” strategy for selecting m and M is as follows. The idea
recalls basic results from the theory of order statistics. If we have T independent
observations from a uniform distribution on (m, M), {y∗

t : t = 1, . . . , T }, then
[E(Y ∗

(1)) − m]/(M − m) = 1/(T + 1) and [E(Y ∗
(T )) − m]/(M − m) = T /(T + 1).

So we can say y∗
(1) ≈ (mT + M)/(T + 1) and y∗

(T ) ≈ (m + T M)/(T + 1). This gives
two equations in two unknowns to solve for m and M . We obtain

m = T y∗
(1) − y∗

(T )

T − 1
and M = T y∗

(T ) − y∗
(1)

T − 1
. (4)

Of course, the Y ∗
t ’s are not independent, they do not come from a distribution on

a bounded interval, and marginally, we would not expect them to follow a uniform
distribution on (m, M). We only implement a simple automatic bounding strategy.

1 This is the analogue of the restriction over the predictor domain in Yang and Tokdar (2017).
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2.2 Themodel

A straightforward characterization of the required monotonicity of the QAR lines is
offered by the following result, inspired from Tokdar and Kadane (2012).

Theorem 1 An autoregressive specification of the form of (2) with θ1(τ ) ∈ [−1, 1]
for τ ∈ [0, 1] is monotonically increasing in τ for Yt taking values in [0, 1] and
yt−1 ∈ [0, 1] if and only if

QYt (τ | yt−1) = yt−1η1(τ ) + (1 − yt−1)η2(τ ) (5)

where η1, η2 : [0, 1] −→ [0, 1] are monotonically increasing.
Proof Any monotonicity obeying QYt (τ | yt−1) given by (2) can be expressed as (5)
by taking η1(τ ) = θ0(τ ) + θ1(τ ) = QYt (τ | 1) and η2(τ ) = θ0(τ ) = QYt (τ | 0). For
the converse, if QYt (τ | yt−1) is given by (5) then it must be monotonically increasing
in τ for every yt−1 ∈ [0, 1] for which both yt−1 and 1− yt−1 are nonnegative. One can
express such a QYt (τ | yt−1) by defining θ0(τ ) = η2(τ ) and θ1(τ ) = η1(τ )−η2(τ ) ∈
[−1, 1]. ��

If we focus on (5), a model for functions η1 and η2, each from [0, 1] → [0, 1],
induces a QAR(1) model over all valid QAR(1) specifications of QYt (τ | yt−1),
provided the boundary conditions QYt (0 | yt−1) = 0 and QYt (1 | yt−1) = 1 for all
yt−1 ∈ [0, 1] are satisfied. The above condition can be rewritten as η j (0) = 0 and
η j (1) = 1 for j = 1, 2. Next we show how to specify these two monotone functions.

2.2.1 Specification for the twomonotone curves

Specifically, both η1(·) and η2(·) againmust be strictlymonotone from [0, 1] → [0, 1].
A convenient class toworkwith are cdf’s for continuous randomvariableswith support
[0, 1]. In fact, a rich class would arise as probabilistic mixtures of such cdf’s, leading
to the general form

η(τ) =
K∑

k=1

λk F(τ | �k) (6)

such that λk ≥ 0,
∑

k λk = 1 and F : [0, 1] → [0, 1] is strictly increasing for any
parameters �k .

A convenient class of F’s to work with are the cdf’s of the two parameter
Kumaraswamy (1980) distribution (also known as the minimax distribution, Jones
2009). Specifically, the probability density function (pdf) and cdf are

f (x | a, b) = abxa−1(1 − xa)b−1 and F(x | a, b) = 1 − (1 − xa)b, (7)

where x ∈ [0, 1] and a, b > 0. The Kumaraswamy distributions are a family with
behavior similar to the beta distribution. However, for our purposes, they are much
simpler to use especially in the context of simulation since the cdf and quantile function
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can be expressed in closed form, i.e., Q(τ | a, b) = (1 − (1 − τ)1/b)1/a where
τ ∈ [0, 1]. The flexibility of the Kumaraswamy distributions is shown in Section S1 of
the Supplementary Information (SI) employing different combinations of parameters
(a, b).

To work with the mixture form for η(τ), we investigated two mixture strategies.
The first lets K be small but assumes the a’s and b’s are unknowns. The second lets
K be larger but adopts a fixed set of a’s and b’s, in the spirit of basis function forms.
Specifically, we consider K Kumaraswamy distributions with medians k/(K + 1),
respectively. In the former, with K = 2 we have a total of five parameters (two a’s,
twob’s, and aλ)while in the latter,with K = 6 againwehavefive parameters (fiveλ’s).
Increasing the number of “basis” components in the specification of the η’s need not
provide better model performance. From considerable simulation experience, model
performance is very sensitive to the choice of parameters in the mixture components.
So, in the sequel, we work with K = 1 or 2 (QAR1K1 and QAR1K2, hereafter) and fit
the a’s and b’s. As for priors, with K = 1, we consider log a1, log b1 ∼ N (0, σ 2

ab)with
σab = 3, which gives a weak prior on the log scale. With K = 2, we consider λ1 ∼
U (0, 1/2) and log a1, log a2, log b1, log b2 ∼ N (0, σ 2

ab) with σab = 1.5. Restricting
λ1 to (0, 1/2) avoids identification issues, while σab is taken smaller than in the K = 1
case to penalize values of a’s and b’s too small or large. Values of a’s and b’s that are
close to zero or very large can cause negligible numerical errors in the root-finder to
generate a numerical overflow in the likelihood (see Eqs. 8 and 9) and thus degeneracy.

2.3 Likelihood evaluation andmodel fitting

An important feature of a valid joint specification of QYt (τ | yt−1) for all τ ∈ (0, 1),
following Tokdar and Kadane (2012), is that it uniquely defines the conditional
response density given yt−1 ∈ [0, 1]. Specifically, this density is given by

fYt (yt | yt−1) = 1
d
dτ QYt (τ | yt−1)

∣∣∣∣
τ=τyt−1 (yt )

, (8)

where τyt−1(yt ) solves yt = yt−1η1(τ ) + (1 − yt−1)η2(τ ) in τ and is numerically
approximated to arbitrary precision via a one-dimensional root-finder. We imple-
ment the hybrid root-finding algorithm combining the bisection method, the secant
method, and inverse quadratic interpolation, so-called Brent’s method (Brent 1973).
Consequently, given the data at t = 1, y1, we can write a valid log-likelihood score

�(� | y) =
T∑

t=2

log fYt (yt | yt−1)

= −
T∑

t=2

log
{
yt−1η̇1(ut ) + (1 − yt−1)η̇2(ut )

}
,

(9)
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where ut = τyt−1(yt ), y

 = (y1, . . . , yT ) are all of the observed data,� are the model

parameters, and the η̇’s are the derivatives of the η’s.
We implement a block Metropolis sampler algorithm with an adaptive period

(Haario et al. 2001) during warm-up to obtain Markov chain Monte Carlo (MCMC)
samples from the posterior distribution of the parameters and to summarize the pos-
terior distribution of the conditional quantile function. Furthermore, with a posterior
realization of the model parameters and a given value of yt−1, we can use (8) with
discretization, to obtain a posterior realization of the density function that is driving
the joint quantiles. Averaging over these realizations provides the posterior mean of
the density.

Expression (8) reveals an important difference between our QAR approach and
other nonlinear joint modeling versions in the literature. For example, the nonlinear
QAR model in Chen et al. (2009) specifies a joint distribution for (Yt ,Yt−1) using
a copula. It yields a conditional distribution for Yt | Yt−1 which has a nonlinear
quantile function that is monotone in τ . What we do is the reverse. We specify a
non-crossing quantile function and obtain the induced conditional distribution for
Yt | Yt−1. Our quantile function is also nonlinear as a function of Yt−1. Their quantile
function depends upon the choice of copula and the copula parameters. Our quantile
function depends on the Kumaraswamy distribution and the associated parameters.
Their Gaussian version has a conditional quantile function which is linear in Yt−1,
which may be restrictive. Their t-copula version yields a quantile function which has
a perhaps unattractive form as the square root of a function of the square of Yt−1. If
the goal is to model the quantile function directly as nonlinear and flexible, rather than
seeing what is induced by a copula, our approach yields a simple form and may be
more attractive.

2.4 Model comparison and simulation study

Workingwithin our parametricBayesian framework, for any τ , posterior samples of the
model parameters, {�∗

b : b = 1, . . . , B}, produce posterior samples of the conditional
quantile function for Yt , QYt (τ | yt−1;�∗

b). Essentially, for each Yt (with associated
yt−1) and any τ , we obtain the posterior distribution of QYt (τ | yt−1;�). We use
these posterior distributions along with the dataset, y, to offer model assessment.

We propose two novel approaches. First, for any y, consider 1(y < QYt (τ |
yt−1;�))where 1 denotes the indicator function. Then, let pt (τ ) ≡ E[1(yt < QYt (τ |
yt−1;�)) | y], i.e., the posterior probability that QYt (τ | yt−1;�) exceeds yt . Suppose
we compute p(τ ) ≡ ∑T

t=2 pt (τ )/(T − 1). We note that for any τ and Y regardless of
its distribution, E[1(Y < QY (τ ))] = τ and Var [1(Y < QY (τ ))] = τ(1 − τ). If we
let v ≥ 1 be a real number, then

p̃v ≡ v

√∫ 1

0

∣∣∣∣
p(τ ) − τ√

τ(1 − τ)/(T − 1)

∣∣∣∣
v

dτ (10)

provides a standardized deviation form as a dimensionless measure of how well the
quantile function under the model is capturing conditional quantiles for the given time
series.Wepropose this as a (global)measure ofmodel accuracy.With aminimumvalue
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of zero, a smaller p̃v indicates better accuracy of the model. We would approximate
the integral by discretizing τ , in particular, we consider τ ∈ {0.01, 0.02, . . . , 0.99}.

As a second measure, we turn to the check loss function, usually employed as an
optimality function to obtain the τ empirical quantile (Koenker and Bassett 1978).
Here, we adopt δτ (u) = u(τ − 1(u < 0)), the check loss function associated with the
AL distribution. Again, from the posterior distribution of QYt (τ | yt−1;�), for any Yt
(with associated yt−1) and τ , we can obtain
t (τ ) ≡ δτ (yt−E[QYt (τ | yt−1;�) | y]).
As above, suppose we compute 
(τ) ≡ ∑T

t=2 
t (τ )/(T − 1). Then, for a given τ ,

(τ) provides an average discrepancy for the τ quantile function. The smaller the
value, the better the model performance. Then, we propose to weight 
(τ),


̃ ≡
∫ 1

0
ω(τ)
(τ) dτ (11)

to provide a global measure of model performance. We propose this as a relative
measure of model performance inmakingmodel comparison. The weighting function,
ω(τ), compensates for the variation in mean of 
(τ) across τ . Again, we would
approximate the integral by discretizing τ .

For the weight function, we consider

ω(τ | y) = 1
∑T

t=2 δτ (yt − Qemp
Y (τ ))/(T − 1)

. (12)

This choice leads to a measure that is closely related to the R1(τ ) metric by Koenker
and Machado (1999). The R1(τ ) measure is essentially, 1 − ω(τ | y)
(τ). This
measure is viewed as an analogue of R2 for the classical residual sum of squares, i.e.,
the check loss function for quantiles replaces the least-squares loss function and the
τ empirical marginal quantile Qemp

Y (τ ) replaces the sample mean. With a maximum
value of 1, the best model performance is reached at this maximum. Then,

R̄1 ≡
∫ 1

0
R1(τ ) dτ = 1 −

∫ 1

0
ω(τ | y)
(τ) dτ = 1 − 
̃, (13)

provides a dimensionless global measure of model performance which can be used
for model comparison.

In Section S2 of the SI, we present the results of a brief simulation study where
the goals were (i) to illustrate parameter recovery under fitting for several models, (ii)
to investigate model flexibility, i.e., performance when the sampling model is not the
same as the fitting model, and (iii) to consider the effect of sample size with regard to
(i) and (ii).

3 The QAR(p) case

We provide a straightforward extension of our joint QAR(1) model to the lag p case. It
is not a characterization of theQAR(p) function ofYt but offers a flexible specification.
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In this regard,weobtain a formwith some restrictions on the autoregressive coefficients
but no constraints on the yt ’s beyond the bounded interval support. By interpreting
η1(τ ) and η2(τ ) in (5) as the conditional quantiles of Yt at yt−1 ∈ {0, 1}, we build a
similar construction for an autoregressive process of order p as follows. Define

QYt (τ | yt−1, . . . , yt−p)

= (η1(τ ), . . . , ηp+1(τ ))

⎛

⎜⎜⎜⎜⎜⎝

0 π1 0 · · · 0
0 0 π2 · · · 0
...

...
...

. . .
...

0 0 0 · · · πp

1 −π1 −π2 · · · −πp

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

1
yt−1
yt−2

...

yt−p

⎞

⎟⎟⎟⎟⎟⎠
,

(14)

where the functions η1, . . . , ηp+1 : [0, 1] → [0, 1] are monotonically increasing and
the weights π1, . . . , πp are such that π j ≥ 0 and

∑
j π j = 1. It is easy to see that

such QYt (τ | yt−1, . . . , yt−p) is monotonically increasing in τ ∈ [0, 1] for every
yt−1, . . . , yt−p ∈ [0, 1].

In particular, for QAR(2), let τ, π ∈ [0, 1]. Then, define

QYt (τ | yt−1, yt−2) = π yt−1η1(τ ) + (1 − π)yt−2η2(τ )

+(1 − π yt−1 − (1 − π)yt−2)η3(τ ) (15)

where the three η functions are all strictly increasing, using forms as above. Rewriting
the expression as

QYt (τ | yt−1, yt−2) = η3(τ )+π(η1(τ )−η3(τ ))yt−1 + (1−π)(η2(τ )−η3(τ ))yt−2,

(16)
both autoregressive coefficients belong to [−1, 1] and need not be increasing in τ . We
fit this QAR(2) model to our real data in Sect. 6.3. In fact, we only attempt this with
K = 1 mixture components (seven parameters) to keep the model simple. Further, the
second autoregressive term results are not influential for our data. Also, we choose
log a’s and log b’s to follow a N (0, 1.52) prior and π ∼ U (0, 1) as a non-informative
prior for π .

4 Multivariate QAR(1)

Often a collection of dependent times series is gathered over a common time window.
For instance, our illustration below considers the dependent pairs {(ymax

t , ymin
t ) : t =

1, . . . , T }, the daily maximum and minimum temperature for day t at a site. In fact,
the collection of time series might be spatially referenced (leading to a spatial copula
model construction, as developed in the next section). What we have is the quantile
analogue of usual multivariate AR for time series. Implementation using the class of
joint QAR(1) models we have proposed has not appeared in the literature. Our interest
is in the quantile function for each time series. We are asking about the amount of
dependence between quantile levels regarding the marginal quantile functions.
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Here, we illustrate with the bivariate case where we have two models each defined
as in (1), introducing dependence in the two time series by making the associatedUt ’s
dependent through T − 1 i.i.d. two-dimensional Gaussian copulas. This specification
captures the acknowledged dependence between the pair of time series. We postpone
to Sect. 5 the details of modeling using copulas; in particular, that section develops the
form of the general n-dimensional joint density. The only detail that we advance here
is that the correlation matrix associated with the copulas contains 1’s on the diagonal
and ρ on the off-diagonal, where ρ ∼ U (−1, 1) measures the correlation between
series.

Apart from introducing dependence through Umax
t and Umin

t , we could introduce
dependence in the η’s. For instance, using Kumaraswamy cdf’s, under the K = 1
case, we consider the pairs log amax

j and log amin
j and the pairs log bmax

j and log bmin
j

( j = 1, 2) to be bivariate normal. In our data, we found little or no correlation between
the parameters of the two time series, so in subsequent analyzes we will consider them
independent. We do not pursue this case further here except to note the analogy with
dependent responses in linear regression models. Introducing dependence through the
Ut ’s is analogous to introducing dependence through the errors in the linear regression
while introducing dependence through the η’s is analogous to introducing dependence
in the mean structure through shared parameters.

An example is presented in Sect. 6.4. Again, with K = 1, this yields four η’s,
i.e., four independent log a’s and four independent log b’s, each following a weak,
say N (0, 32) prior, as well as the copula parameter. As a by-product, we show the
induced bivariate conditional pdf (arising from the bivariate analogue of Eq. 8) for
(Ymax

t ,Ymin
t ) with some choices for the yt−1’s.

5 Spatial QAR(1)

In the spatial setting, we consider spatial point-referenced time series data. Here, Yt (s)
denotes the observation for time t = 1, . . . , T at location s ∈ D, where D ⊂ R

2 is
the study region. We have a time series at each of the locations, {s1, . . . , sn}, say, the
locations of the monitoring stations. The joint spatial QAR model is given by

Yt (s) = θ0(Ut (s); s) + θ1(Ut (s); s)Yt−1(s), (17)

where the θ functions are quantile and spatially varying. Chen and Tokdar (2021) pro-
pose to model the spatial dependence of the realizations in a QR model using a spatial
copula process. Generalizing it to our model, the vectors (Ut (s1), . . . ,Ut (sn))
 fol-
low an independent copula distribution for every t . Supplementing Chen and Tokdar
(2021), in (17) we introduce spatially varying coefficients rather than global coeffi-
cients. As a consequence, we have dependence in the time series realizations as well
as spatially varying quantile functions.
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5.1 Modeling spatial dependence

Spatial dependence is captured through spatially varying quantiles which are anal-
ogous to introducing spatially varying coefficients in spatial linear regression, and
dependent quantile levels which are analogous to introducing dependence through the
errors in the linear regression.

5.1.1 Spatially varying quantiles

For the spatially varying coefficients, we consider only oneKumaraswamy cdf for each
η(τ ; s). In fact, at location s, let assume η j (τ ; s) = 1−(1−τ a j (s))b j (s) with parameters
a j (s) and b j (s) for j = 1, 2. Then, we introduce four independent GPs for the a’s and
b’s on the log scale. In particular, we model log a j (s) ∼ GP(a j , σ

2
a j

ρ(s, s′;φa j ))

and log b j (s) ∼ GP(b j , σ
2
b j

ρ(s, s′;φb j )) where the ρ(s, s′;φ)’s are exponential
correlation functions with φ’s as corresponding decay parameters.

We take the φ’s to be fixed values, according to the spatial scale, because it is
usually difficult to estimate them from the data and typically interest focuses on the
σ 2’s, the spatial uncertainties (Banerjee et al. 2014). Specifically, we fix φ = 3/dmax,
with dmax the maximum distance between any pair of spatial locations. Thus, the
spatial GPs are only indexed by a mean and a variance parameter. We choose the
priors a j , b j , log σ 2

a j
, log σ 2

b j
∼ N (0, 32) ( j = 1, 2).

5.1.2 The spatial copula process

A copula is a multivariate cdf for which the marginal distribution of each variable
is U (0, 1). Copulas are used to model the dependence between random variables.
Particularly, Sklar’s theorem (Sklar 1959) states that any multivariate joint pdf can
be written in terms of univariate marginal pdf’s and a copula which describes the
dependence structure between the variables.

Gaussian spatial copulas enable computational advantages, e.g., ease of parameter
estimation and scalability with sample size. For a given correlation matrix R, the
n-dimensional Gaussian copula function with parameter matrix R becomes

C�(u | R) = �R(�−1(u1), . . . , �
−1(un)), (18)

where u
 = (u1, . . . , un) ∈ [0, 1]n , �R is the joint cdf of a multivariate normal
distribution with zero-mean vector and covariance matrix R. According to Xue-Kun
Song (2000), the associated copula density is

c�(u | R) = |R|−1/2 exp

{
1

2
q
(In − R−1)q

}
, (19)

with q
 = (�−1(u1), . . . , �−1(un)).
With regard to the copula model for (17), we take the processesUt (s)’s to follow a

Gaussian copula for each t , induced by a spatial GP. In the spirit of Chen and Tokdar
(2021), we define
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Ut (s) = �(Zt (s)), Zt (s) = Wt (s) + εt (s),

Wt (s) ∼ GP(0, γρ(s, s′;φ)), εt (s) ∼ i.i.d. N (0, 1 − γ ).
(20)

The process Wt (s) captures spatial dependence while εt (s) is independent pure error.
The parameter γ ∈ [0, 1] determines the proportion of spatial and independent vari-
ation. When γ = 1, the specification for Zt (s) is purely spatial. When γ = 0, we
have an independent noise model. With this approach, the Gaussian copula density
has correlation matrix R ≡ γ R(φ) + (1 − γ )In where R(φ) is the n × n correlation
matrix induced by ρ(s, s′;φ). To address the final copula piece of our model, we fix
φ as above, and adopt γ ∼ U (0, 1) as a non-informative prior for γ .

5.2 Likelihood evaluation

We are interested in the likelihood under model (17) using (19) and (20). It is
convenient to first obtain the joint distribution for Y
 = (Y


1 , . . . ,Y

T ) where

Y

t = (Yt (s1), . . . ,Yt (sn)), t = 1, . . . , T . That is, each Yt is n × 1 and Y is Tn × 1.

By Sklar’s theorem, the joint conditional density of responses,Y, given the data at the
initial time, y1, can be partitioned into a marginal part and a copula part,

fY(y | y1) =
T∏

t=2

[ n∏

i=1

fYt (si )
(
yt (si ) | yt−1(si )

)

× c�

(
FYt (s1)(yt (s1) | yt−1(s1)), . . . , FYt (sn)(yt (sn) | yt−1(sn))

)]
,

(21)
where the cdf FYt (si ) corresponds to the pdf fYt (si ) and c� is the Gaussian copula
density in (19). As in Sect. 2.3, we evaluate fYt (si ) and FYt (si ) using:

fYt (si )(yt (si ) | yt−1(si )) = 1
d
dτ QYt (si )(τ | yt−1(si ))

∣∣∣∣
τ=τyt−1(si )(yt (si ))

,

FYt (si )(yt (si ) | yt−1(si )) = τyt−1(si )(yt (si )),

(22)

where τyt−1(si )(yt (si )) solves yt (si ) = yt−1(si )η1(τ ; si ) + (1 − yt−1(si ))η2(τ ; si ) in
τ . Then, the log-likelihood score of the model parameters � can be expressed by

�(� | y) =
T∑

t=2

[
−

n∑

i=1

log
{
yt−1(si )η̇1(ut (si ); si ) + (1 − yt−1(si ))η̇2(ut (si ); si )

}

+ log c� (ut (s1), . . . , ut (sn) | R)

]
,

(23)
with ut (si ) = τyt−1(si )(yt (si )). Finally, note that, for the calculation of the log-
likelihood, the value of the ut (si )’s must be solved for, so the number of root-finders
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needed at each iteration of the MCMC is n(T − 1). As a result, likelihood evaluation
is expensive, leading to long MCMC run times.

5.3 Spatial interpolation

The quantile QYt (s)(τ | yt−1(s)) is a function of process realizations. Posterior sam-
ples for the hyperparameters are available from themodel fitting. Posterior samples for
the GPs are available, using posterior samples of the hyperparameters, through usual
Bayesian kriging (Banerjee et al. 2014). This yields prediction of a j (s0) and b j (s0)
( j = 1, 2) at a new s0 ∈ D, enabling spatially varying quantile functions. Therefore,
we can interpolate conditional quantiles to any desired location in the study region
given any proposed or reference value for the previous day’s temperature at that loca-
tion. If we do this over a sufficiently spatially resolved grid, we can obtain the posterior
mean at each point and show the posterior τ conditional quantile surface for the given
day.

6 Application to temperature data

6.1 The data

We illustrate the proposed modeling methods with analyses of persistence in point-
referenced dailymaximum temperatures (◦C) from n = 18 locations inAragón, Spain.
We bring in daily minimum temperatures for the bivariate QAR(1) case. The data
is provided by the State Meteorological Agency (AEMET, in its Spanish acronym).
Castillo-Mateo et al. (2022) provide exploratory analysis and spatial hierarchical mod-
eling for this dataset. We analyze responses for 2015, an interesting year because the
summer was especially hot in Europe (Dong et al. 2016). There were numerous loca-
tions with record-breaking temperatures in July 2015 and the heat wasmaintained over
time. The monthly average value of temperatures was a record in July 2015 for 6 of
the 18 locations and in the entire region it was among the 10 hottest monthly averages.
We restrict analysis to observations from May, June, July, August, and September
(denoted as MJJAS), i.e., the hottest months of the year, resulting in T = 153 days.
The location of the 18 observatories is shown in Fig. 1 and their time series in Figure S4
of the SI.

We begin with a model comparison using QAR(1) and QAR(2) models for all
locations. Then, we analyze two illustrative locations within the region, Pamplona and
Zaragoza, separately. Subsequently, we implement the bivariate QAR(1) model to the
daily maximum and minimum temperature series in Zaragoza. Finally, we implement
the general model for spatial QAR(1) with all the locations. Before model fitting, we
scale each of the temperature time series to (0, 1) using the transformation in (3) with
m and M in (4). We adopt site-level values for m and M .
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Fig. 1 Location of the 18 sites around Aragón, northeastern Spain

Table 1 Adequacy and
comparison metrics p̃2 in (10)
and R̄1 in (13) averaged across
locations for QAR1K1,
QAR1K2, QAR2K1, and
KX2006 models

Model Description p̃2 R̄1

QAR1K1 QAR(1) with K = 1 in (6) 0.633 0.365

QAR1K2 QAR(1) with K = 2 in (6) 0.402 0.365

QAR2K1 QAR(2) with K = 1 in (6) 0.542 0.365

KX2006 Koenker and Xiao (2006) 0.683 0.339

6.2 The QAR(1) case

Table 1 shows, averaged across locations, themetrics ofmodel adequacy p̃2 andmodel
comparison R̄1 defined in Sect. 2.4 for the QAR1K1 and QAR1K2 models, and the
model from Koenker and Xiao (2006) fitted under our Bayesian framework using the
density in (8). Table S6 in the SI shows the metrics for each location. For this latter
model, denoted as KX2006, we also consider a location parameter μ in the intercept,
i.e., θ0(τ ) = μ+ σ�−1(τ ) and θ1(τ ) = min{γ0 + γ1τ, 1} for γ0 ∈ (0, 1) and γ1 > 0.
With KX2006 we work on the original scale of the data since they are all positive. We
choose the priorsμ ∼ N (0, 102), log σ, log γ1 ∼ N (0, 32), and γ0 ∼ U (0, 1). The R̄1

does not discriminate much between the proposedmodels, i.e., the autoregressive term
explainsmuchmore variability than the difference in specification between themodels.
However, our proposed models have a slightly higher performance, 0.365, than the
KX2006 model, around 0.34. Also, the p̃2 directly measures how well the quantiles
are captured, and its discriminative capacity is much higher. While QAR1K1 obtains
a value of 0.633, adding a second component to the mixing improves this measure to
0.402. For its part, the KX2006 model obtains the worst value, 0.683, indicating an
overall poorer fitting of the quantiles.

Figure 2 shows the posterior mean of the functions θ0 and θ1 in Pamplona and
Zaragoza for the models QAR1K1 (dashed) and QAR1K2 (solid). Note that we could
recover the intercepts on the original scale as θ∗

0 (τ ) = m(1−η1(τ ))+Mη2(τ ) and the
autoregressive coefficients remain invariant. Further, θ1 is not monotonic; this aspect
of temperature dependence with respect to the previous day’s temperature was also

123



Bayesian joint quantile autoregression

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pamplona

τ

θ 0
(τ

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zaragoza

τ

θ 0
(τ

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pamplona

τ

θ 1
(τ

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zaragoza

τ

θ 1
(τ

)

Fig. 2 Posterior mean of θ0(τ ) (above) and θ1(τ ) (below) vs. τ for QAR1K1 (dashed) and QAR1K2 (solid).
Pamplona (left) and Zaragoza (right), MJJAS, 2015

observed by Castillo-Mateo et al. (2023). It cannot be reproduced by KX2006. In
Pamplona, the QAR1K2 model (the best) estimates a lower autoregressive coefficient
than the QAR1K1 for τ ∈ (0.1, 0.7). In Zaragoza, similar curves appear for the two
values of K , as shown by p̃2 and R̄1.

Figure 3 shows the posterior mean of the conditional quantile functions QYt (τ | y)
for three situations where y is the empirical τ marginal quantile for τ = 0.1, 0.5, 0.9;
the legend shows the values that are conditioned on both the original scale and the
(0, 1) scale. The smallest values of θ1 are in extreme τ ’s, this means that the previous
day’s temperature is less influential for high quantiles. In fact, the conditional quantiles
in Fig. 3 overlap for τ ’s near 0 or near 1.

Figure 4 shows the posterior mean of the conditional density function in (8) under
the same conditions as Fig. 3. Pamplona presents different shapes in fYt (yt | y) for
different values of y. The distribution is asymmetrical with positive skewness if we
condition on a small value for the previous day’s temperature, and negative skewness if
we condition on a big value. A general pattern is common in the region, the conditional
distribution conditional on the 0.9 marginal quantile is more concentrated than those
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Fig. 3 Posterior mean of the quantile function QYt (τ | y) vs. τ for QAR1K1 (dashed) andQAR1K2 (solid).
Here, y is the empirical τ marginal quantile for τ = 0.1 (blue), 0.5 (black), 0.9 (red). Pamplona (left) and
Zaragoza (right), MJJAS, 2015 (color figure online)
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Fig. 4 Posterior mean of the density function fYt (x | y) for QAR1K1 (dashed) and QAR1K2 (solid).
Here, y is the empirical τ marginal quantile for τ = 0.1 (blue), 0.5 (black), 0.9 (red). Pamplona (left) and
Zaragoza (right), MJJAS, 2015 (color figure online)

conditional on the 0.1 quantile. Figures S5, S6, S7, and S8 in the SI present the plots
for the 18 locations.

6.3 The QAR(2) case

Table 1 uses the criteria p̃2 and R̄1 for the QAR(2) model with K = 1 (QAR2K1).
The previous subsection showed that including a first lag improved the performance
of the model with respect to an empirical null model. However, including a second lag
does not increase the value of R̄1 with respect to a QAR(1) model. On the other hand,
the measure of p̃2 is somewhat better for QAR2K1 than for QAR1K1 but it is still
inferior to the QAR1K2 case. Since QAR2K1 does not improve performance, and, as
we will see below, there is no evidence that the term θ2(τ ) is different from zero for
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Fig. 5 Posterior mean of θ0(τ ) (solid), θ1(τ ) (dashed) and θ2(τ ) (dotted) vs. τ for QAR2K1. Pamplona
(left) and Zaragoza (right), MJJAS, 2015

any τ across most locations, there seems to be no value in exploring a QAR(2) model
with K = 2.

Figure 5 shows the θ functions in the QAR2K1 model for Pamplona and Zaragoza
(see Figure S9 in the SI for all locations). The θ0 and θ1 functions have a shape very
similar to the QAR1K1 case. The θ2 functions have values that are essentially centered
at zero in most locations, giving more evidence that it is not necessary to introduce
a lag of order 2 in the model. However, there are four locations with a coefficient
slightly away from zero; Buñuel and La Sotonera have a value of θ2(τ ) close to 0.2
for non-extreme τ ’s while Huesca and La Puebla de Híjar have similar behavior with
values around 0.1.

6.4 Multivariate QAR(1)

Here, we fit the multivariate QAR(1) model (MQAR1K1) to the daily maximum and
minimum temperature series at Zaragoza, {(ymax

t , ymin
t ) : t = 1, . . . , T }. The same

analyses were developed for Pamplona and Daroca, but with different conclusions.
Figure6 shows the θ functions for the ymax

t (red) and ymin
t (blue) series.We see different

patterns for θmax
1 and θmin

1 ; ymax
t shows high autocorrelation for high quantiles while

ymin
t has less persistence for those quantiles.
For Zaragoza, the posterior mean of ρ is 0.32 with 95% credible interval

(0.17, 0.45), indicating the need to include dependence in the quantile levels of
both series. For Pamplona, the posterior mean of ρ is 0.06 with 95% credible inter-
val (−0.11, 0.23). Here, independent models for the conditional quantiles could be
adopted. A reasonable explanation is the frequent appearance of fresh wind from the
northwest during the night in Pamplona, resulting from proximity to the Cantabrian
Sea.

Figure 7 shows level curves of the posterior conditional joint density of the vec-
tor (Ymax

t ,Ymin
t ) given the previous day’s maximum and minimum temperatures, in
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Fig. 8 Maps of the posterior mean of θ1(τ ; s) for τ = 0.05, 0.50, 0.95

Zaragoza (see Figures S10 and S11 in the SI for Pamplona and Daroca). The con-
ditioning values are empirical marginal quantiles of Ymax

t and Ymin
t . The first row

conditions on the quantile τ = 0.5 (30.6◦C) and the second row on the quantile
τ = 0.9 (37.0◦C) of Ymax

t , and the same quantiles of Ymin
t , for the first (17.2◦C)

and second (21.8◦C) columns. The different patterns observed in the plots reveal a
different relation between Ymax

t and Ymin
t depending on the previous day’s tempera-

tures. The conditional posterior distribution is not symmetric, with a different mean
vector depending on the conditioning temperatures; the variability of the distribution
is smaller when it is conditioned on high quantiles.

6.5 Spatial QAR(1)

The spatial QAR model is fitted to the series of MJJAS in 18 locations in Aragón
for the year 2015. The posterior mean of γ , the proportion of spatial dependence in
(20), is 0.96 with 95% credible interval (0.94, 0.98) indicating very strong spatial
dependence in the quantile levels of the temperature series. Figure S12 in the SI
provides maps of the posterior mean surface of the model GPs. We notice that b1(s)
and b2(s) show approximately opposite spatial behavior since b1(s) has the highest
values where b2(s) has the lowest, in the central and southeastern areas. Figure S13
of the SI shows boxplots of the posterior distribution of the GPs at each observed
location; locations are sorted by elevation. The results suggest that the GP of a2(s)
might be not necessary since the boxplots in the 18 locations have very similar ranges.
The spatial variability of a1(s) is higher, and although it is not related to the elevation,
it could be related to the distance to the coast.

The posterior distribution of θ1(τ ; s), which captures the autoregressive structure,
is summarized using the same type of plots. Figure S14 of the SI shows boxplots
presenting the posterior distribution of θ1(τ ; s) at the observed locations while Fig. 8
the maps of the posterior mean surface of θ1(τ ; s), both for τ = 0.05, 0.50, 0.95. The
spatial GPs in the parameters of the Kumaraswamy distribution allow the model to fit
different spatial patterns in each τ . The results show that the posterior mean of θ1(τ ; s)
is higher in the central quantiles. The spatial pattern of θ1(τ ; s) is not symmetric around
τ = 0.5 and, e.g., values of θ1(0.95; s) in the Pyrenees and northwestern areas are
smaller than θ1(0.05; s) in the same areas. Although θ1(τ ; s) tends to be lower in
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locations with higher elevation, its spatial pattern cannot be explained by elevation
alone. Consequently, the spatial GPs cannot be replaced with an elevation fixed effect.

The spatial joint model can also be used to estimate parameters related to the
conditional distribution, e.g., conditional quantiles at unobserved locations. As a brief
example, Figure S15 of the SI shows this through maps of the posterior mean of
QYt (s)(τ | y) for τ = 0.05, 0.50, 0.95, and y = 0.05, 0.50, 0.95. If it were desired to
obtain the quantiles on the original scale of the data rather than the scale (0, 1), we
could consider a kriging ofm(s) and M(s). With the same kriging procedure we could
condition on values y(s)’s relative to a certain empirical marginal quantile for each
location.

The spatial modeling here is primarily illustrative. For instance, the assumption of
asymptotic tail independence, imposed by the Gaussian copula, may not be suitable.
Examination of alternative copulas is beyond the scope of this work.

7 Summary and future work

We have presented consequentially expanded modeling for joint (non-quantile cross-
ing) QAR. In particular, we have characterized the QAR(1) setting in a way that
allows for a more flexible autocorrelation structure than the one in the seminal paper
by Koenker and Xiao (2006). We have extended this to the QAR(p) case. We have
offered a novel multiple time series version using a Gaussian copula. We have elabo-
rated a spatial version, using a GP copula based upon a GP in conjunction with four
additional GPs. Thismodel enables spatially varying quantile functions. Ourmodeling
is entirely parametric through the use of the Kumaraswamy distributions. A software
implementation of our methods is available as the R-package “QAR” through GitHub:
https://github.com/JorgeCastilloMateo/QAR.

Wehave illustrated the above contributions through time series of daily temperatures
from sites in Aragón, Spain. The joint QAR model, with greater flexibility in the
modeling of the θ functions, allows us to capture autoregression structure in daily
temperature data, which is not strictly increasing in τ , but decreasing in both tails.

A critical challenge in employing this work is model fitting. We can make specifi-
cations as rich as needed through the use of probabilistic mixtures of Kumaraswamy
cdf’s. However, it is well known that model fitting employing MCMC with mixture
specifications is often poorly identified. This issue is compounded in our case by
the fact that calculation of the likelihood requires constant use of a one-dimensional
root-finder. Ongoing work is attempting to address these computational difficulties.

It is important to note that we have not introduced any regressors into our modeling.
This adds substantial complication to the joint approach. In order to consider coherent
implementation of regressors, conditions have to be imposed on the support for the
regressors, seeking to bridge our modeling with the work of Yang and Tokdar (2017).
However, we briefly note a simple approximation strategy to incorporate regressors,
e.g., seasonality, into our joint QAR approach. Suppose we introduce a regression
structure, μt into the QAR(1) and estimate by μ̂t , creating residuals rt = Yt − μ̂t .
Then, we could apply the abovemethodology to obtain the QAR(1) for rt . Our strategy
for selecting m and M can be applied to residuals. More precisely, let rt = θ(0)(Ut )+
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θ(1)(Ut )rt−1. This would yield the conditional quantile function, Qrt (τ | rt−1) =
θ(0)(τ ) + θ(1)(τ )rt−1. Solving for the quantile function for Yt we obtain

QYt (τ | Yt−1) = μ̂t + θ(0)(τ ) + θ(1)(τ )(Yt−1 − μ̂t−1). (24)

We acknowledge that this approximation can be criticized for two reasons: (i) we are
creating μ̂t as if we were fitting a usual AR(1), and (ii) the resulting quantiles are not
coherent since μ̂t is a function of {Yt : t = 1, . . . , T }. The QAR(1) is not defined
until the end of the observation window.

Sections 4 and 5 could be combined to build a bivariate spatial QARmodel for daily
maximum and dailyminimum temperature. Another challenge for themultivariate and
spatial modeling would be to consider alternative copula choices, e.g., t-copulas in
order to allow tail dependence for high quantiles.

Supplementary information

SI for “Bayesian joint quantile autoregression” contains details on the Kumaraswamy
distribution. Details on the simulation study. More results on the application with
temperature series.
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