000129446 001__ 129446
000129446 005__ 20231219145827.0
000129446 0247_ $$2doi$$a10.1016/j.energy.2017.07.044
000129446 0248_ $$2sideral$$a100730
000129446 037__ $$aART-2017-100730
000129446 041__ $$aeng
000129446 100__ $$0(orcid)0000-0002-8015-4469$$aDelgado, M.
000129446 245__ $$aExperimental analysis of a coiled stirred tank containing a low cost PCM emulsion as a thermal energy storage system
000129446 260__ $$c2017
000129446 5060_ $$aAccess copy available to the general public$$fUnrestricted
000129446 5203_ $$aThis article presents the results of heat transfer coefficient and volumetric energy density measurements in an agitated tank containing a low-cost phase change material emulsion, heated by water flowing in a coil. For the stirring a three-stage impeller is placed in the central axis of a 46 l commercial tank. By measuring the temperature dependency on time and solving the transient enthalpy balance, the heat transfer coefficient between the helical coil and the agitated phase change material emulsion is determined, based on the impeller Reynolds number. The thermal energy storage efficiency has also been analysed. This phase change material emulsion shows a phase change temperature range between 30 and 50 °C. Its solid content is about 60% with an average size of 1 µm. The results have shown that the overall heat transfer coefficient is around 3.5–5.5 times higher when a stirring rate of 290–600 rpm is used. Furthermore, even at the lowest stirring rate, the thermal energy storage efficiency improves from 76-77%–100%, without detriment to the energy consumption of the stirrer.
000129446 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/ENE2014-57262-R
000129446 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000129446 590__ $$a4.968$$b2017
000129446 591__ $$aTHERMODYNAMICS$$b4 / 59 = 0.068$$c2017$$dQ1$$eT1
000129446 591__ $$aENERGY & FUELS$$b18 / 96 = 0.188$$c2017$$dQ1$$eT1
000129446 592__ $$a1.99$$b2017
000129446 593__ $$aBuilding and Construction$$c2017$$dQ1
000129446 593__ $$aCivil and Structural Engineering$$c2017$$dQ1
000129446 593__ $$aElectrical and Electronic Engineering$$c2017$$dQ1
000129446 593__ $$aPollution$$c2017$$dQ1
000129446 593__ $$aIndustrial and Manufacturing Engineering$$c2017$$dQ1
000129446 593__ $$aMechanical Engineering$$c2017$$dQ1
000129446 593__ $$aEnergy (miscellaneous)$$c2017$$dQ1
000129446 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000129446 700__ $$0(orcid)0000-0001-7360-4188$$aLázaro, A.$$uUniversidad de Zaragoza
000129446 700__ $$0(orcid)0000-0001-7631-8507$$aMazo, J.
000129446 700__ $$0(orcid)0000-0002-9500-974X$$aPeñalosa, C.
000129446 700__ $$0(orcid)0000-0002-2463-7271$$aMarín, J. M.$$uUniversidad de Zaragoza
000129446 700__ $$0(orcid)0000-0002-6101-580X$$aZalba, B.$$uUniversidad de Zaragoza
000129446 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000129446 773__ $$g138 (2017), 590-601$$pEnergy$$tEnergy$$x0360-5442
000129446 8564_ $$s1337843$$uhttps://zaguan.unizar.es/record/129446/files/texto_completo.pdf$$yPostprint
000129446 8564_ $$s1217132$$uhttps://zaguan.unizar.es/record/129446/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000129446 909CO $$ooai:zaguan.unizar.es:129446$$particulos$$pdriver
000129446 951__ $$a2023-12-19-13:59:15
000129446 980__ $$aARTICLE