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Abstract. The simulation of large and complex Discrete Event Systems
(DESs) increasingly imposes more demanding and urgent requirements
on two aspects accepted as critical: (1) Intensive use of models of the sim-
ulated system that can be exploited in all phases of its life cycle where
simulation can be used, and methodologies for these purposes; (2) Adap-
tation of simulation techniques to HPC infrastructures, as a method
to improve simulation efficiency and to have scalable simulation envi-
ronments. This paper proposes a Model Driven Engineering approach
(MDE) based on Petri Nets (PNs) as formal model. This approach pro-
poses a domain specific language based on modular PNs from which
efficient distributed simulation code is generated in an automatic way.
The distributed simulator is constructed over generic simulation engines
of PNs, each one containing a data structure representing a piece of net
and its simulation state. The simulation engine is called simbot and ver-
sions of it are available for different platforms. The proposed architecture
allows, in an efficient way, a dynamic load balancing of the simulation
work because the moving of PN pieces can be realized by moving a small
number of integers representing the subnet and its state.

Keywords: Simulation Federation · Distributed simulation · Dynamic
load balancing.

1 Introduction

Complex systems require large scale simulations that can be very demanding
in terms of computational resources. This requirement has produced a growing
interest in the use of Cloud for distributed simulation. Moreover, the proliferation
of IoT devices for sensing real world and connecting the physical and digital
world have broaden the interest in that is called pervasive, or ad hoc distributed
simulation [12]. It promotes the extensive use of simulation for closing the loop
in control systems that reacts to changes in the environment.

Economic principles guide the conception and management of these complex
systems when they are analyzed under the perspective of Resource Allocation
System (RAS). RAS are discrete event systems in which a finite set of concur-
rent processes share in a competitive way a finite set of resources. Improving



the management of the own resources to support more efficient services with
less cost, and to promote the interoperability between organizations for shar-
ing resources and services is the object of study in different domains such as
logistic, manufacturing, healthcare system, or cloud computing. It is essential to
support decision making and providing high quality of services [17]. The syn-
ergic combination of simulation and formal models for functional, performance,
and economical analysis are necessary for an efficient an reliable design and/or
optimization.

In DES the model evolution happens at discrete points in time by means of
simulation events. Large scale systems require distributed simulation to speedup
the execution, and to federate the system simulator with other simulators special-
ized in different aspects interacting with the system under study such as users,
external enviroments, or simply others well studied systems already running. A
distributed DES simulation is performed through the partition of the simulation
model in a set of logical processes (LPs) that interact exchanging time-stamped
messages. Each LP ensures that all its internal events are processed in time
stamp order.

However, important challenges has hampered the extensive use of distributed
simulations, and therefore, the use of cloud computing by the simulation com-
munity [12]. Beyond an efficient management of computational resources for a
distributed simulation, the modelling is the most costly task [6]. Most of the cost
of developing a distributed simulation deals with the time required in specifying,
trying it out, and tuning the simulation.

This paper continues our previous work on distributed simulation of discrete
event systems [2] focusing on an holistic vision of the problem considering all
facets that must be considered. The paper focuses on the role of languages in a
MDE approach, proposes a micro-kernel providing services for distributed sim-
ulations, presents the algorithms for an efficient distributed interpretation of
TPN models, and shows the architecture to federate a micro-kernel’s system
with other simulator engines and the environment.

2 Related work

Cloud Federation purpose is the interconnection of cloud computing environ-
ments of two or more service providers to increase their market share and provide
a more efficient management of their resources by collectively load balancing
traffic and accommodating spikes in demand [14]. Current solutions provides a
seamless exploitation of heterogeneous distributed resources, and brokerage so-
lutions to find the most suitable resource to run an application [5]. Using higher
levels of abstraction, such as software as a services (SaaS), supposes a differ-
ent perspective of federation based on the interoperability or ability of SaaS
systems on one cloud provider to communicate with SaaS systems on another
cloud provider [19]. At this level of abstraction, the focus is on functional as-
pects, reusing developed functionality, and the efficiency of resource management



is hidden to the developer. Additionally, semantic interoperability is the most
important barrier to the adoption of SaaS systems in cloud computing.

Simulation Federations supposes a pragmatic approach to promote reusabil-
ity and solve semantic interoperability in the domain of distributed simulations.
Try to solve semantic interoperability for SaaS in general is an ambitious tasks.
The High Level Architecture (HLA) is an architecture framework for distributed
simulation that solves the interoperability and reusability of heterogeneous sim-
ulations [21]. A federated simulation conforms to the HLA standard and im-
plements the interfaces specified in the standard to participate in a distributed
simulation execution. To solve semantic interoperability, all federated simula-
tions share a common specification of data communication. The federation object
model (FOM) specifies object attributes and interactions, and during the simu-
lation all joined federated shall interact with a broker using a Publish/Subscribe
Pattern. However, computational resources are hidden to the programmer, and
the HLA framework does not provide any mechanism to prevent imbalances. Fed-
eration migration become a fundamental mechanism for large-scale distributed
simulations [3].

Distributed simulation is a consolidated discipline that faces unprece-
dented levels of complexity and scale in many fields [11]. Current challenges
are presented in [12], which include the analysis of conservative and optimistic
strategies in the cloud that has been the focus of recent works. Among the most
important challenges to translate distributed simulation to the cloud is the def-
inition of modelling languages that can be easily translated to efficient parallel
and distributed simulation code. The purpose of a MDE approach is to model
at the higher level of abstraction to increase productivity, and the role and se-
mantic of languages used for modelling and supporting the MDE approach are
relevant [21]. The strategy is to model the application with domain-specific lan-
guages (DSL). The use of formal models can play an important role in MDE
approaches, and PN has shown to be a suitable formalism for specifying DESs.
PN has been applied to different domains, providing different level of abstrac-
tions for modelling domains such as workflows, business processes, manufactur-
ing, health systems or communication networks. The possibility to automatize
the analysis using software tools has been extensively used for proposing good
partitioning algorithms and estimate the lookahead in distributed simulations
[10, 16, 9].

3 Language-based view of MDE for developing
distributed simulation applications

An holistic methodological approach based on formal models for the development
of applications over cloud resources was presented in [20]. This MDE approach
manages the complexity of developing the logic of a complex system taking into
account functional and not functional requirements, and gradually incorporat-
ing restrictions imposed by the underlying hardware. In the case of DES on the
cloud, sharing resources implies interferences caused by the limited isolation of
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Fig. 1: MDE approach for developing a distributed simulation applications.

virtualization technologies, and with high coupled components it is clear that
the execution speed is bounded by the slowest component. The impact of per-
formance variability of resources and the incorporation of mechanism for load
balancing are essential in the case of distributed simulation on the cloud. Figure
1 shows the stages of the MDE approach presented in [2]: 1) Modelling with
a DSL language that provides the basic, usually graphical, primitives/modules
that composes an application in the specific domain. Interactions with the envi-
ronment or external simulators are also modelled. 2)The modular construction
gives rise to a hierarchical PN model. 3) An elaboration process translates this
high level PN specifications into a flat model, 4) The structural analysis of the
flat model in combination with an utility function, which combines the speedup
of simulations and the cost of computational resources, provides an initial parti-
tion of the model, 5) Model partitions are compiled into efficient code based on
the idea of linear enabling function (LEF), 6) Partitions are deployed in the sys-
tem of simbots, and finally, 7) in the case of interaction with the environment
or other simulators, the simbots system is federated with them.

Focusing on the semantics aspects of a language for simulation, the trans-
lation of model specifications to meaningful distributed code must preserve the
behaviour. Leaving out aspects of hierarchy, composition, or abstraction levels,
the dimensions that should be considered in a system are the static structure
and the dynamic behaviour. These aspects has been traditionally considered as
separated models: static models represent concepts, attributes, relations, and
conceptual hierarchies such as UML class diagrams; and dynamic models are
presented specifying sequence of actions (workflows), transitions systems (state-
charts), and protocols of interaction using events, states, and transition states.



An important research work has been developed trying to integrate models that
represent these facets of the system [1, 13].

Our main hypothesis to define our design principles for DES simulation appli-
cations are the following: (1) We propose only events, and event dependen-
cies as the minimum required to represent and manage the system behaviour.
The identification of a minimal set of basic primitives/concepts to represent the
time flow mechanisms that control the generation of a models behavior over
time will facilitate the interoperability of simulators and the minimum informa-
tion required that must be migrated to support the load balancing of simulation
work. (2) A model execution based on its interpretation separates the model
specification from the simulator, which is essential for scaling simulations [22]:
The model is not wired with the simulator, which enables the portability of the
model to other simulators and rise interoperability at a high level of abstrac-
tion. Additionally, balancing load works can be facilitated between simulators
interpreting the same simulation code. (3) Algorithms and methods from dis-
tributed programming techniques can be integrated independently of the model
interpreter, which facilitates reusing models and federation of simulators. (4)
Dependencies and structural information in combination with event logs (event
sourcing [8]) are relevant for qualitative and quantitative analysis. An analy-
sis of these structural information is relevant for developing an initial partition,
and evaluating the number of resources required to simulate a model in an esti-
mated time, and the cost related with these decisions. However, workload varies
in time during simulations. It is required combining structural information with
the monitoring and recording of every state change as events in an event log.

4 Simbots: Distributed simulation micro-kernels

In order not to be locked-in specific simulation services to be able to use het-
erogeneous cloud infrastructures, and even embed these simulation services into
IoT devices, it is needed a core invariant portion of DES simulation services
that can be executed in heterogeneous devices. The use of micro-kernels spe-
cialized in simulation avoids to develop entirely the systems from scratch [18].
We will call simbots to our micro-kernels implementing LPs. A simbot is an
actor defined as an lightweight process that communicates with other simbots
through message passing. The actor model was originally constructed for dis-
tributed computations and has well-known successful implementations such as
the Erlang language, and more recently frameworks like the Akka event-driven
middleware [15]. The success of the actor model to afford scalability is the lacks
of shared memory between actors, which only interact by means of asynchronous
immutable messages. Actors are isolated from each another and are thread safe.

The architecture of a simbot is presented in Figure 2. Messages are sent
asynchronously to the simbot’s mailbox, and these are retrieved from the mail-
box with a receive statement or pattern-matching construction that filter events,
control messages and LEFs code received from other simbots. The Communi-
cation Interface (CI) ensures that internal or external events of the simbot
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Fig. 2: Simbot: Architecture of a micro-kernel for distributed simulations.

are processed in time stamp order. Section 4.1 explains the synchronization algo-
rithm in detail. In the figure, we can observe that the local simulation manager
defines a logical horizontal virtual time (LV HT ) and feeds the simulation en-
gine with the events received from neighbour simbots, executing a simulation
step with the local simulation engine until the local virtual time (LV T ) reaches
the LV HT . Every internal and external event is stored in order in an event log
using a pattern called event sourcing, which allows to restore the state from disk
on failure recovery, such as the case of an out of order event received. The CI
reasoner monitors the simbot and orchestrates the recovery of a failure, a change
in the adjacent topology, or a load balancing of code with neighbour simbots.

The Simulation Engine interprets the model. Figure 5 presents the algo-
rithm to interpret a TPN model represented with LEFs code. The interpreter
can be replaced by another interpreter simulating different models using the
same interface between the CI and the interpreter.

Different dynamic load balancing approaches have been proposed for dis-
tributed simulation [7]. The main objective is to minimize the delay generated
by redistributing the load and migrating the code of a federate to a destination
physical resource. LEFs code facilitates the migration of code between simbots
with lightweight messages. Load balancing services based on the movement of
code between interpreters is only possible if they use the same codification. It
introduces different levels of federation with different layers of interoperability.
Finally, the interpreter has a model inference reasoner that use the structural
information to calculate the lookahead to allow neighbour simbots to advance
their LVTs. It also uses the PN state equation (an algebraic computation) to
compute , in an efficient way, a restored state in case of failure recovery.
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Fig. 3: Distributed simulation log.

The bottom of Figure 2 presents a middleware, the Runtime Interface
(RTI) in HLA terminology, providing the services required for supporting dif-
ferent levels of simulation service federation. The federation management com-
ponent knows when federates join or leave the federation, and manages the way
to keep the system running when the topology of the federation changes. Fol-
lowing a multi-layered federation scheme, in the case of a simbot system the
remote transparency component, manages pair-wise communications directly be-
tween pairs of Simbots. Every Simbot and transition has a virtual address. If
for example, the simbot system participates as a federate in an HLA federation,
the Semantic Interoperability component translates the simbots events and the
enabling of transitions into HLA object attributes and interactions . The Feder-
ation Management component deals with the HLA Federation, and the Remote
Transparency components interchange messages by means of the event bus of an
HLA middleware following the publish-subscribe pattern (see Figure 6). Finally,
the Model-Partition and monitoring components support the mechanism for load
balancing between simbots , and can participate in the migration of simulation
code to physical resources in a federation. The Logical Clocks Vector compo-
nent allows to capture order and causal precedence of events to orchestrate the
simulation and the management of control events in the case of failure or code
migration.

4.1 Distributed interpretation of a LEF code

Compilation translates a transition in Timed Place/Transition nets specifica-
tion into an event dependency network based on the idea of Linear Enabling
Function (LEF) [4]. A LEF allows to characterize when a transition is enabled



(an event can occur) with a simple linear function fo the marking. A LEF of a
transition t is a function ft : R(N ,m0) −→ Z, that maps each marking m be-
longing to the set of reachable markings, R(N ,m0), to an integer, in such a way,
that t can occur for m, iff ft(m) ≤ 0. For example, for transition T1 in the net of
Figure 3, the LEF is: fT1(m) = 1− (m[P1]),∀m ∈ R(N ,m0), where m0 is the
initial marking depicted. Observe that at m0, the value of fT1(m0) = −1 <= 0
and fT2(m0) = 0 <= 0, i.e. both transitions are enabled at m0. More details
in [2]. A LEF codification translate the specification to code with a minimal
workload that can be migrated to support the load balancing of simulation.

To explain a distributed simulation based in the interpretation of LEFs, we
reproduce the TPN example presented by Ferscha in [10], where T1 represents
the occurrence of a machine failure event, and T2 the repair rate. Figure 3 shows
the codification associated to each transition, t′: (1) Identifier of t′. A global
name recognised in all sites of the simulation process; (2) τ(t′). Determinis-
tic firing time associated to transition t′. It stands for the duration time of
the action associated to the occurrence of t′; (3) Counter. Variable contain-
ing the current value of the LEF ft′(m), initialized with ft′(m0), and updated
whenever the transition –or a transition affecting it– occurs, according to the
received Updating Factor; (4) Immediate Updating List (IUL(t′)). Set of
transitions whose LEFs must be updated after the occurrence of t′ containing
the corresponding Updating Factor to be sent; and (5) Projected Updating
List (PUL(t′)). Set of transitions whose LEFs must be updated after the occur-
rence of t′ containing the corresponding Updating Factor to be sent. The firing
of transitions represents internal events of the simulation engine, and using the
event dependency information, it is possible to update the enabling of internal
transitions and external transitions. The distributed simulation is coordinated
by means of the interchange between simbots of time-stamped messages, which
represents how to update the enabling of external transitions when a transition
fires.

To exploit parallelism, the model example is partitioned in two LPs: LP1 and
LP2. Future Lists in each partition represent respectively the sequence of expo-
nentially distributed random times (exp(λ = 0.5) for T1 and T2. The bottom of
Figure 3 shows the logs (events recording) of a conservative distributed simula-
tion. Gray boxes shows the variables of the simulation interpreters of distributed
simbots executing LP1, and LP2, and white sides shows the input and output
buffers, and the steps executed by the respective distributed simulation man-
agers. Figure 4 shows a conservative distributed simulation manager algorithm
sketch that invokes the interpreter algorithm, and Figure 5 shows the algorithm
that implements a step of the simulation interpreter. The simulation interpreter
is executed until the LVT reaches the LHVT.

For simplicity, the simulation manager in Figure 4 shows only the re-
active behaviour when an event is received in an actor-like style. The Start
message (line 1-10) initializes the simulation manager. It initializes the Event
List (EVL) that contains the initial list of enabled internal transitions, it also
initializes to zero all time stamps received from adjacent simbots (Adj), and it



1: when Start() is received . Initialize Simbot
2: V T ← 0; FUL← {};
3: for all (t ∈ PULext) do
4: Adj[t]← 0;
5: t ! < 0, lookahead(t) >
6: end for
7: for all (t ∈ LEFs) do
8: if (ft(M) ≤ 0) then insert(EL, t);
9: end if
10: end for
11:
12: when Event(t,UF,ts) is received . Event Received
13: Adj[t]← ts;
14: insert-FUL (t, UF, ts);
15: if allReceived(Adj) then
16: LVTH=min(Adj);
17: Simulate(ts);
18: for all (t ∈ PULext) do
19: if (t ∈ FUL) then
20: t ! < UF, ts >; remove-FUL(t);
21: else
22: t ! < 0, lookahead(t) >;
23: end if
24: end for
25: end if

Fig. 4: Generic algorithm sketch of the distributed simulation manager.

sends the lookahead value to each transition in PULext, which contains the list
of transitions in adjacent simbots that can be affected by transition fires in the
simbot.

When an Event message is received, the simulation manager executes a sim-
ulation step of the simulation interpreter algorithm in Figure 5. The first step
of the simulation manager is to update the received time stamp of transition in
Adj (line 13), and it translates the external event of the Input Buffer (IB) to
the Future Updating List (FUL) (line 14), which plays the role of the future
event list in an event-driven simulation. The function insert-FUL() maintains
events ordered by time stamp. Every event in the FUL has a pointer to the
transition to be updated, the updating factor UF(t′ → t) delivered by each fired
transition (t ∈ (t′•)•), and the time at which the updating must take effect. In
the log shown in the figure, UF s are removed from the FUL to avoid redundant
information. Following, the event processing checks that a message has been re-
ceive from each adjacent simbot (allreceived(Adj), line 15). In this case, the
minimum time stamp (ts, line 16) is used as LHV T to execute a simulation
step of the interpreter. After this, messages are inserted in the Output Buffer
(OB) for each transition in PULext. Then, the simulation manager empties the
OB and sent asynchronous messages to all adjacent Simbots to allow them ad-
vance their simulations trusting not to receive messages with smaller timestamp
in the future. When transitions in adjacent simbots must be updated, the mes-
sage contains the t′• identifier, the UF and the ts (line 20). In other case, the
message contains a zero UF value, and the lookahead time stamp (line 22).
The algorithm can be improved by reducing the number of messages [11].



1: procedure Simulate(LVHT )
2: while (LVT <= LVTH) do
3: if (head-FUL.time > clock) then VT← head-FUL.time . Update Virtual Time
4: end if
5: while (head-FUL.time = VT) do . Update Event List
6: t← head-FUL.pt; ft(M) := ft(M) + head-FUL.UF;
7: if (ft(M) ≤ 0) then insert(EL, t);
8: end if
9: head-FUL← pop(FUL);
10: end while
11: EVL← Sort(EVL,CCS, Strategy); . prioritizes transitions in conflict int EVL
12: for all (t′ ∈ EL) do . Fires enabled transitions
13: if (ft′ (M) ≤ 0) then . Checks transition is enabled yet

14: for all (t ∈ IUL(t′)) do
15: ft(M)← ft(M) + UF(t′ → t);
16: if (t = t′andft(M) ≤ 0) then . Avoids race conditions
17: insert-FUL (t, 0, τ(t) + clock);
18: end if
19: end for
20: for all (t ∈ PUL(t′)) do
21: insert-FUL (t,UF(t′ → t), τ(t′) + clock);
22: end for
23: end if
24: end for
25: end while
26: end procedure

Fig. 5: Simulation interpreter of a LEFs-coded TPN

When the simulation manager executes a conservative strategy, the model
requires to exploit the lookahead information to speedup the simulation. The
lookahead comes directly from the net structure [10]. To calculate the lookahead
for every external transition, the sample use the precomputed future list of ran-
dom firing times. The lookahead of a transition is calculated as the minimum
time-stamp of events that reference this transition in the FUL, and the times
that result for the addition of the times in the future list and the LV T taking
into account a number of times equal to the enabling degree of transition.

The simulation interpreter in Figure 5 executes the interpreter until the
LV HT . First, it advances the LV T until the time stamp of the first event in
the FUL (line 3-4). Then, the algorithm updates all LEF values with UF in
the events of the FUL that has the current LV T , and inserts enabled transitions
in the EV L (lines 5-10). head-FUL is a pointer to FUL, pop(FUL) pops and
returns the head of FUL, and we access the fields of events in FUL using the dot
notation. Following, the algorithm deals with all enabled transitions in coupled
conflict sets (CCS) (line 11), solving conflicts by sorting enabled transitions
according to some defined strategy. A CCS is a structural transitive relation that
goups transitions that share some previous input place. Then, the interpreter
takes all enabled transitions in the EVL firing enabled transitions in order (lines
12-24), solving in this way conflicts.

For every enabled transition, the algorithm immediately applies IUF up-
dating factors, which represents removing tokens from previous places, once a
transition occurs (lines 14-19), but insert events in PUL, which represent that
tokens will be appear in posterior places at future clock time (lines 20-22).
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Then, all LEFs values of transitions in the FUL with the same time-stamp of the
current LVT are checked, and enabled transitions are inserted in the EVL. As
it was highlight in [2], LEFs make unnecessary the representation and updating
of the marking of the PN model, and the construction of the marking of the PN
after the occurrence of a sequence of transitions can be easily done collecting
a log containing the occurrence of transitions each one labelled with the simu-
lation time. The occurrence sequence and the net state equation (an algebraic
computation) can be used to compute the reached marking from the initial one.

Only a mailbox is associated with a simbot, which allow to adapt the al-
gorithm to support dynamic topologies of simbots, or use optimistic strategies
incorporating an exception handling mechanism.

5 Architectural approach for federating simulators

The need to build more scalable and interactive simulations considering all in-
volved aspects (devices, humans and environment), require the expertise from
several groups to be combined, and to consider more realistic scenarios. It forces
to reuse legacy simulation components, and use component with varying degrees
of fidelity depending of the required precision of results.

Reusability implies a different architectural approach to have heterogeneous
cooperating simulators of Cloud services. Reuse is regarded by many organi-
zations as the top driver for the adoption of SOA, which is fulfilled under the
mediation of a brokering structure. This is the underlying idea of the HLA stan-
dard for distributed simulation, which provides services for information exchange



and synchronization between simulations that together form a federation. Fig-
ure 6 shows the simbots system federated with heterogeneous simulators through
a broker, and adapters that translate events and interactions coming from the
environment or external simulators to simbot events. Observe that it is required
to define the interface with the environment, which is represented in the figure
with the dotted places.

Figure 6 presents a layered architecture, with the top layer supported by
distributed simulation micro-kernels, which efficiently provide a distribute in-
terpretation of the model using a pear-to-pear interaction, and dynamic load
balancing with a minimal workload. The botton layer focus on the reuse under
the mediation of a brokering middleware. It opens opportunities for collabora-
tions an alliances at different levels: a more close collaboration to share simu-
lation workload using simbots, and more open collaborations reusing different
simulators.

6 Conclusions and Future work

The paper has proposed an architecture to reduce the economic costs of the
simulation task for two reason: (1) The use of models in different phases of the
lifecycle allow to plan good strategies for the efficient use of resources by means of
a previous analysis of the model and to customize the simulation according to the
structure of the model to be simulated; (2) The implementation of a distributed
simulation to take advantage of the availability of resources, and making an
efficient use of the resources by the dynamic partitioning of the model to be
simulated.

Moreover, the paper proposed an additional line of economic costs reduc-
tion by the connection of several existing simulators running in heterogeneous
platforms. This connection try to reduce costs of model construction delegating
some parts of the model to those included in existing simulators and interpreting
this delegated parts as the environment of our system. To do that in the paper
a mechanism for the federation of DES simulators is proposed and integrated in
the simbots designed.

A compiler for ordinary Timed PN and a prototype in Akka of the distributed
Simbot actor has been developed. The use of ordinary Timed PN in the model-
ing of large complex DES can lead to models of unmanageable size. Inmediate
future work includes the use of high-level models that support modularity and
hierarchy, and the implementation of a compiler that explores the top-down de-
sign hierarchy and builds an interconnection table until it reaches the building
blocks of the design: events, and event dependencies.

The partition of the resulting flat model, the deployment of compiled code,
and the development of mechanism to support the monitoring and load balancing
redistribution of code between adjacent actors are the inmediate steps to to
show experimentally the adequacy of the architectural proposal for an efficient
distributed interpretation of the model.
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