
Modeling, Characterising and Scheduling
Applications in Kubernetes

Vı́ctor Medel1, Unai Arronategui1, José Ángel Bañares1, Rafael Tolosana1, and
Omer Rana2

1 Aragón Institute of Engineering Research (I3A)
University of Zaragoza, Zaragoza, Spain

2 School of Computer Science & Informatics
Cardiff University, UK

Abstract. The simplification of resource management for container is
one of the most important services of Kubernetes. However, the simpli-
fication of distributed provisioning and scheduling decisions can impact
significantly in cost outcomes. From an economic point of view, the most
important factor to consider in container management is performance
interference among containers executing in the same node. We propose
a model driven approach to improve resource usage in overall deploy-
ment of applications. Petri Net models, a Confirmatory Factor Analysis
(CFA)-based model and a regression model allows to predict performance
degradation of the execution of containers in applications. Time series in-
dices can provide an accurate enough characterisation of the performance
variations in the execution lifetime of applications. These indices can be
used in new scheduling strategies to reduce the number of resources used
in shared cloud environments as Kubernetes.

Keywords: Modeling · Petri Nets · Confirmatory Factor Analysis · In-
terference · Scheduling · Containers.

1 Introduction

Faster start up times and fewer required resources are the main advantages
of containers compared to traditional virtual machine technologies. These have
result in a higher participation of container technology in private and public
clouds. Kubernetes has become the facto standard for distributed execution of
applications in containers. Deployment and scheduling of applications on shared
Kubernetes platforms remains activities that can be improved also in their eco-
nomic angle. However, it can require a substantial effort, due to the complexity
of the cloud distributed infrastructures. This paper aims to enhance a model-
ing path to improve these aspects of application execution to reduce resource
requirements and, therefore, cost.

Our approach is the use of formal models with a twofold goal: (1) a better
management of the growing complexity of current systems; (2) a high quality of



the implementation reducing the time to market. This poster presents in a cohe-
sive way our works related with the modelling, characterisation of applications
and scheduling in Kubernetes.

2 Models and Methodology

In [3, 5] we presented a High Level Petri Net (reference net) based performance
and management model for Kubernetes, identifying different operational states
that may be associated with a “pod” and container in this system. The model
is an executable specification that can be used for performance evaluation. A
quantitative analysis can be conducted by a performance-oriented interpretation
of the model such as throughput, utilisation rates, or queue lengths, from which
is possible compute rewards functions [6].

The Reference net formalism is a special class of high level Petri net (adhered
to the Nets-within-Nets paradigm). The hierarchical construction of the model
allows to follow a top-down approach incorporating more details in the lower
levels. However, the construction of a complete model with all the details can
be an impossible task when there are a big number of factors that can affect the
system’s behaviour, and there is not a clear relationship between them. In this
case, the usual solution for incorporating the observed behavior to the model
is to annotate the model with deterministic time, probability distributions, or
functions obtained from the monitoring data acquired from benchmarking. This
approach can capture the whole behavior of the computational resources, and,
therefore, a more precise performance analysis can be obtained. This is the case
of the modelling and characterisation of applications interferences in container
deployments.

Performance degradation of containers running in the same machine can
be observed when resources needed for one container are used by another one.
The performance loss produced by the simultaneous execution of two containers
on the same host is the measure of the interference between both containers.
Also, this interference is time dependent, as resource requirements vary during
execution of applications.

We consider several sources of interference rooted on physical resources host-
ing the container :

– Network usage: all containers on a node share network access, thus they can
disturb each other

– CPU usage: a reservation system to share the CPU proportionally is applied
in most container management systems if there is contention.

– I/O file system access: it has similar sharing behavior as the network.
– Cache Memory and Memory bandwidth: Containers can provoke cache misses

to others containers running in the same host, degrading memory bandwidth.

We propose a methodology to estimate the interferences and to obtain func-
tions to annotate our Petri net based performance model. It consists of different
steps to estimate the execution time of an application when it’s co-scheduled



with another one. First, the interference profile of an application can be ob-
tained following a process where the timed interference indices are modeled using
Confirmatory Factor Analysis (CFA) [1]. This model is based on the definition
of human-comprehensible indices to represent resource usage. These indices are
computed from data sets obtained from experiments on resource usage from
different benchmark applications and are expressed as time series to show the
evolution of resource usage over time.

To validate our approach we executed different applications inside a container
to generate a number of different jobs, each of which represents the application
executed with different input parameters. These applications represent different
profiles characterized by the intensive use of a certain type of resource. The
objective is to get a dataset which captures the variations of the metrics to
build meaningful indices. The high correlation between the observed variables
avoids using them as raw values to describe an application and to do further
analysis. We follow the approach of reducing all observed variables of resource
usage to four human-comprehensible indices to represent resource usage over
time: CPU usage, Memory page fault, Memory hierarchy usage and Intensity of
memory hierarchy usage, and characterising resource usage of applications over
time with these interference indices.

Afterwards, we measure execution time of this application in time inter-
vals while simultaneously running benchmark applications on the same machine.
Then a regression model can be defined from the first two steps for each applica-
tion to obtain a interference linear function that models the application. Finally,
these linear functions are used to estimate interference between two application
whose interference linear functions are known.

3 Interference-aware Scheduling

When the number of tasks to schedule, at the same time, is greater than the
amount of available computers in a distributed infrastruture, interference-aware
scheduling is a policy that aims to minimize the performance degradation of these
tasks, as explained in the previous section. The goal is to schedule, in the same
machine, the tasks whose simultaneous execution produce the less performance
degradation to each other.

In [4], we showed how the default Kubernetes scheduler was not suited to
avoid performance degradation. Also, it was showed how a simple yet effective
policy could reduce resource contention. In this work, we proposed a simple
scheduling technique based on the characterisation of applications. The idea is
that clients, or developers, provide informal information about the resource most
intensively used by the application, and the scheduler uses that information to
allocate the applications using the same resource in different machines. In our
experiments, we achieved about a 20 percent improvement in the execution time
of a simple scenario compared with the default Kubernetes non-deterministic
scheduler. But it was a coarse grained approach that didn’t take into account



the variable requirements of resources during the execution of many applications,
particularly long running applications such as services.

In Paragon [2], authors use a collaborative filtering algorithm to determine
the influence of several sources of interference and propose an interference-aware
scheduler. However, the main novelty of our approach compared with Paragon
is that they considers interference remains constant over time.

4 Conclusions and Future work

This paper has presented a model driven approach to reduce costs linked to
resource management strategies with containers in Kubernetes, using Petri Net
Models, a Confirmatory Factor Analysis (CFA)-based model and a regression
model. Different methodologies applied with these models allow to predict re-
source usages of applications. Time series indices provide a characterisation of
performance variations of applications that can contribute to enhance scheduling
policies in containers platforms as Kubernetes.

As future work, in addition to the scheduler based on interference functions,
we will use the petri net model with these annotations to perform different
performance and cost analyzes.

Acknowledgments This work was co-financed by the Aragonese Government
and the European Regional Development Fund “Construyendo Europa desde
Aragón” (COSMOS research group, ref. T35 17D); and by the Spanish program
“Programa estatal del Generación de Conocimiento y Fortalecimiento Cient́ıfico
y Tecnológico del Sistema de I+D+i ”, project PGC2018-099815-B-100.

References

1. Brown, T.A.: Confirmatory factor analysis for applied research. Guilford Press
(2015)

2. Delimitrou, C., Kozyrakis, C.: Paragon: Qos-aware scheduling for heterogeneous
datacenters. In: ACM SIGPLAN Notices. vol. 48, pp. 77–88. ACM (2013)

3. Medel, V., Rana, O., Bañares, J.a., Arronategui, U.: Modelling performance & re-
source management in kubernetes. In: Proceedings of the 9th International Con-
ference on Utility and Cloud Computing. pp. 257–262. UCC ’16, ACM, New York,
NY, USA (2016)

4. Medel, V., Tolón, C., Arronategui, U., Tolosana-Calasanz, R., Bañares, J.Á., Rana,
O.F.: Client-side scheduling based on application characterization on kubernetes. In:
International Conference on the Economics of Grids, Clouds, Systems, and Services.
pp. 162–176. Springer (2017)

5. Medel, V., Tolosana-Calasanz, R., Bañares, J.Á., Arronategui, U., Rana, O.F.: Char-
acterising resource management performance in kubernetes. Computers & Electrical
Engineering 68, 286–297 (2018)

6. Tolosana-Calasanz, R., Bañares, J.Á., Pham, C., Rana, O.F.: Resource management
for bursty streams on multi-tenancy cloud environments. Future Generation Comp.
Syst. 55, 444–459 (2016)


