000129558 001__ 129558
000129558 005__ 20231221152907.0
000129558 0247_ $$2doi$$a10.1016/j.jcis.2021.01.030
000129558 0248_ $$2sideral$$a123150
000129558 037__ $$aART-2021-123150
000129558 041__ $$aeng
000129558 100__ $$0(orcid)0000-0003-3691-3437$$aAndrés, M.A.
000129558 245__ $$aSolvent-exchange process in MOF ultrathin films and its effect on CO2 and methanol adsorption
000129558 260__ $$c2021
000129558 5060_ $$aAccess copy available to the general public$$fUnrestricted
000129558 5203_ $$aMetal-organic framework (MOF) activation is crucial for the use of MOFs in several applications and solvent-exchange process is a necessary step in many activation methods. In this contribution, we have explored in situ MOF monolayer film formation at the air-water interface. Nanoparticles (NPs) of the Al trimesate MIL-96(Al) retain chloroform into their micropores, which considerably diminishes the CO2 adsorption capacity of MOF films. However, a solvent-exchange process between chloroform and water increases CO2 film adsorption capacity by 30%. Total Reflection X-Ray Fluorescence (TRXF) allows studying the kinetics of this process at the air-water interface, that strongly depends on the NP size. The conclusions derived from in situ studies allow optimizing the ex situ activation procedure of MIL-96(Al) films deposited onto quartz crystal microbalance (QCM) substrates in order to maximize CO2 and methanol adsorption.
000129558 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E31-17R$$9info:eu-repo/grantAgreement/EC/FP7/608490/EU/Energy efficient MOF-based Mixed Matrix Membranes for CO2 Capture/M4CO2$$9info:eu-repo/grantAgreement/ES/MEC/FPU14-05367$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78257-R$$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2015-CIE-02
000129558 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000129558 590__ $$a9.965$$b2021
000129558 591__ $$aCHEMISTRY, PHYSICAL$$b33 / 165 = 0.2$$c2021$$dQ1$$eT1
000129558 592__ $$a1.397$$b2021
000129558 593__ $$aBiomaterials$$c2021$$dQ1
000129558 593__ $$aSurfaces, Coatings and Films$$c2021$$dQ1
000129558 593__ $$aColloid and Surface Chemistry$$c2021$$dQ1
000129558 594__ $$a14.5$$b2021
000129558 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000129558 700__ $$aFontaine, P.
000129558 700__ $$aGoldmann, M.
000129558 700__ $$aSerre, C.
000129558 700__ $$0(orcid)0000-0003-2095-5843$$aRoubeau, O.
000129558 700__ $$0(orcid)0000-0002-3492-6456$$aGascón, I.$$uUniversidad de Zaragoza
000129558 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000129558 773__ $$g590 (2021), 72-81$$pJ. colloid interface sci.$$tJournal of Colloid and Interface Science$$x0021-9797
000129558 8564_ $$s1317725$$uhttps://zaguan.unizar.es/record/129558/files/texto_completo.pdf$$yPostprint
000129558 8564_ $$s875302$$uhttps://zaguan.unizar.es/record/129558/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000129558 909CO $$ooai:zaguan.unizar.es:129558$$particulos$$pdriver
000129558 951__ $$a2023-12-21-13:09:28
000129558 980__ $$aARTICLE