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ABSTRACT:   

According to rational expectation models, uninformed or liquidity trading make 

market price volatility rise. This paper sets out to analyze the impact of herding, which 

may be interpreted as one of the components of uninformed trading, on the volatility of 

the Spanish stock market. Herding is examined at the intraday level, considered the 

most reliable sampling frequency for detecting this type of investor behavior, and 

measured using the Patterson and Sharma (2006) herding intensity measure. Different 

volatility measures (historical, realized and implied) are employed. The results confirm 

that herding has a direct linear impact on volatility for all of the volatility measures 

considered although the corresponding intensity is not always the same. In fact, herding 

variables seem to be useful in volatility forecasting and therefore in decision making 

when volatility is considered a key factor.  
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1. Introduction 

 
 

Price volatility in capital markets is a key topic in finance: the basis of pricing 

models, investment and risk management strategies and market efficiency models is 

accurate volatility measurement. In an ideal world where the market is efficient, prices 

instantaneously adjust to new information. Therefore volatility is only caused by the 

continuous adjustment of stock prices to new information. There is nevertheless 

abundant evidence, both in the literature and among practitioners, of price adjustments 

that are due not to the arrival of new information but to market conditions or collective 

phenomena such as herding (Thaler [1991], Shefrin [2000]). Thus, we cannot talk of 

efficient pricing or indeed of an efficient market, at least in the strict traditional sense. 

The market may operate under a limited rationality paradigm in which historical 

information is open to investors’ subjective interpretation.  

Herding is said to be present in a market when investors opt to imitate the 

trading practices of those they consider to be better informed, rather than acting upon 

their own beliefs and private information. Herd trading, therefore, despite sometimes 

being rational, cannot be considered an informed trading strategy, since herders imitate 

other investors even when in possession of their own information. Some of the main 

ideas advanced to explain this behavior are based on how the information is transmitted 

(Banerjee [1992], Bikhchandani, Hirshleifer and Welch [1992], Hirshleifer, 

Subrahmanyam and Titman [1994], Gompers and Metrick [2001] or Puckett and Yan 

[2007]), reputation costs (within agency theory and only in developed markets, 

Scharfstein and Stein [1990], Trueman [1994]) and finally, agent compensation based 

on performance relative to a benchmark (Roll [1992], Brennan [1993], Rajan [1994] or 

Maug and Naik [1996]). Some authors have recently suggested new explanations such 

as the degree of institutional ownership, the quality of the information released, 

dispersion of investor beliefs or the presence of uninformed investors, among others 

(see Patterson and Sharma [2006] henceforth PS, Demirer and Kutan [2006], Henker, 

Henker and Mitsios [2006] and Puckett and Yan [2007]).  

Generally speaking, most of the studies carried out to test for herding in capital 

markets have proved inconclusive. Hence, in recent years various measures have been 

proposed with a view to overcoming the limitations of past research (Lakonishok, 

Schleifer and Vishny [1992], Christie and Huang [1995], Wermers [1999], Chang, 
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Cheng and Khorana [2000], Hwang and Salmon [2004], PS[2006]). Radalj and 

McAleer (1993) note that the main reason for the lack of empirical evidence of herding 

may lie in the choice of data frequency, in the sense that too infrequent data sampling 

would lead to intra-interval herding being missed (at monthly, weekly, daily or even 

intradaily intervals). For the purposes of our investigation we used the PS(2006) 

measure, which we consider the most suitable, since it overcomes this problem by being 

based on intraday transactions data. We are aware of the risks attached to opting for one 

measure or another since it is difficult to isolate herding from other variables. We 

nevertheless feel that this should not raise any obstacles if we are to continue advancing 

research into investor behaviour.  

The link between investor behaviour and market volatility was first noted by 

Friedman (1953) who found that irrational investors destabilized prices by buying when 

prices were high and selling when they were low, while rational investors tended to 

move prices towards their fundamentals, by buying low and selling high. Following 

Friedman and the theory of Noisy Rational Expectations, Hellwig (1980) and Wang 

(1993) claimed that volatility is driven by uninformed or liquidity trading, given that 

price adjustments arising from uninformed trading tend to revert. The latter author 

observes that information asymmetry may drive volatility and that uninformed investors 

largely tend to follow the market trend, buying when prices rise and selling when they 

fall; a behavior that we might consider tantamount to herding. Wang (1993) reports that, 

although it is uninformed trading, this behavior may be rational in less informed 

investors if it takes place in a context of asymmetrical information. Froot, Scharfstein 

and Stein (1992) also concluded that investors tend to imitate one another, and that this 

drives volatility. More recently this relationship has been documented by Avramov, 

Chordia and Goyal (2006), who claim that both herding and contrarian trading have a 

strong impact on daily volatility1. 

Following the authors who have observed the behavior of market agents to have 

a certain influence on existing volatility, we set out to assess the effect of different 

levels of herding intensity on the degree of market volatility. As a first stage in the 

procedure, we take some series of the various volatility measures used in the literature, 

such as absolute return residuals, realized volatility (Andersen et al [2001]), historical 

volatility (Parkinson [1980] and Garman and Klass [1980]) and implied volatility from 

                                                 
1 For further information on the relationship between uninformed investors and volatility, see also Black 
(1976), De Long et al (1990) and Campbell and Kyle (1993). 
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the options market. Given that the literature has documented volume traded effects 

(Lamoureux and Lastrapes [1990]) and day-of-the-week effects (French, [1980], 

Agrawal and Tandon [1994]) on volatility, the volatility series have been purged of both 

these effects. In this way we are able to study the herding effect on our volatility series 

without running the risk of confusing other previously known effects with the one we 

wish to analyze. In a second stage we analyze both the linear and non-linear 

relationships between the volatility variables and herding. Finally we test whether our 

results are useful for forecasting purposes comparing traditional volatility models with 

others including herding measures.  

The study focuses on the Spanish stock exchange’s benchmark index, the Ibex-

35, which tracks the 35 most traded shares, and which we consider to be representative 

of the market as a whole. The Spanish market is a suitable framework in which to centre 

this analysis because it is one with documented evidence of herding (see Blasco and 

Ferreruela [2007, 2008], Lillo et al [2007] and Blasco, Corredor and Ferreruela [2010]). 

In order to provide valid conclusions, we carry out a complementary analysis using both 

the largest and smallest capitalization stocks belonging to the Ibex-35 (large cap index 

and small cap index), for determining whether our results are due to one type of stock or 

another. 

Fundamentally this study contributes to providing an explanation for that portion 

of volatility that is not due to changes in fundamentals or other known effects. It also 

adds to the literature on the herding behavior of investors and advances the 

understanding of the phenomenon and the search for the possible implications of 

different levels of herding on the market, since empirical relationships are established 

between herding intensity and market volatility. The results could prove highly relevant 

in achieving a better understanding of market functioning and serve both academics and 

practitioners, given that an understanding of which variables affect volatility and the 

nature of their influence could contribute to much more accurate forecasting and, 

furthermore, to the definition of new risk measures or new hedging strategies. In fact, 

some authors (e.g. Crépey 2004) explain how the different volatility regimes exhibited 

in certain markets may require especially useful alternative volatility measures, and how 

market complexity and incompleteness of the volatility measures are drawbacks that 

call for a recalibration of the models used for risk management. Other authors 

(Demetrescu, 2007) find that volatility clusters can appear as a consequence of the 
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volatility forecasting activity itself. Traders use different models to evaluate stock 

volatility. An increase in recently observed volatility leads to higher estimates of current 

volatility and thus higher perceived market risk. The higher the risk perceived, the 

higher the price correction. Hence, present and past volatility estimates are linked in a 

feed-back loop that might be worthy of analysis. 

At this point we should ask ourselves whether that part of volatility due to 

herding, if present, could be hedged or diversified or, in other words, whether implied 

volatility in derivatives includes the herding component or only future information or 

uncertainty. All these aspects are key factors in investment decision-making and 

portfolio or risk management. 

Other important features of the study are the use of a daily herding measure 

computed from intraday information, since this data is thought to be the most 

appropriate when trying to detect herding behavior, and the use of several volatility 

indicators in the analysis of the effects on volatility, both of which will increase the 

robustness of our results. Lastly, the time period analyzed is long enough to dilute any 

biases due to temporary market fluctuations.  

The remainder of the paper is structured as follows: section two presents the 

database used in the analysis with some descriptive statistics of the Spanish stock 

market. Section three describes the methodology and presents the main findings. 

Section four summarizes the main conclusions derived from the study. 

 

2.- Database 

The sample period runs from January 1st 1997 to December 31st 2003. The data 

were supplied by the Spanish Sociedad de Bolsas SA. The intraday data used to 

calculate the herding variable and to calculate the forecasting models include the date, 

exact time in hours, minutes and seconds, stock code, price and volume traded in 

number of titles of all trades executed during the period January 1997 to June 2003, 

leaving the period July 2003 to December 2003 for forecasting assessment. 

The Ibex-35 index tracks the movements of the 35 most liquid and most traded 

stocks in the Spanish continuous market. For the purposes of our analysis we used the 

composition of the Ibex-35, the volume in Euros traded and the number of trades for 

each of the listed stocks, together with the daily opening, closing, maximum and 
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minimum price series for the period. Further, we used Ibex-35 15 minute price data also 

supplied by the Spanish Sociedad de Bolsas SA. We exclude from the analysis all trades 

executed outside regular trading hours (10 a.m. to 5 p.m. for the whole of 1997, later 

extended by stages from 9 a.m. to 5:30 p.m. by 2003). Hence, the data used in this 

analysis cover all trades executed on Ibex-35 stocks at any time during regular stock 

exchange trading hours. 

The implied volatilities of the options on the Ibex-35 were drawn from a 

database containing historical close of trade data for the derivatives market, provided by 

MEFF (the official Spanish futures and options market), including the date of trade, the 

underlying asset of the contract (in our case the Ibex-35), contract expiry date, exercise 

price and implied volatility at the close of trading2. 

 

3.- Methodology and results 

3.1- Herding measures 

3.1.1- Herding intensity statistic 

To measure herding intensity in the market, this study uses the measure 

proposed by PS(2006), which is based on the information cascade models of 

Bikhchandani, Hirshleifer and Welch (1992), where herding intensity is measured in 

both buyer- and seller-initiated trading sequences. This measure has a major advantage 

over others in that it is constructed from intraday data, that is, a daily indicator is 

obtained but from intraday data, since we consider this to be the ideal frequency of data 

to test for the presence of this kind of investor behaviour. This has the further advantage 

for our purposes that it does not assume herding to be revealed only under extreme 

market conditions as occurs in other methodological proposals, and that it considers the 

market as a whole rather than a few institutional investors as has been usual practice in 

the empirical literature.  

In the model developed by Bikhchandani, Hirshleifer and Welch (1992) 

information cascades occur when investors base their decisions on the actions they 

observe in others, which they allow to override their own information. The probability 

                                                 
2 We use in this paper those implied volatilities offered by the MEFF. However, we previously computed 
the implied volatilities for the period 1997-1998 by numerical simulation inverting the Black-Scholes 
model. We carried out the analysis with these data and the results do not change significantly when 
compared with those obtained using the implied volatilities available from the MEFF. 
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of an information cascade is very high even if only a few early traders have made their 

investment decision.  

Following these theories, PS(2006) asserted that empirically an information 

cascade will be observed when buyer-initiated or seller-initiated runs last longer than 

would be expected if each individual investor were to base his trading decisions 

exclusively on private signals. These authors propose a statistic that measures herding 

intensity in terms of the number of runs.  If traders engage in systematic herding, the 

statistic should take significantly negative values, since the actual number of runs will 

be lower than expected. 

( ) ( )
n

pnpr
tjsx sss −−+

=
12/1

),,(     (1) 

where rs is the actual number of type s runs (up runs, down runs or zero runs), n 

is the total number of trades executed on asset j on day t, ½ is a discontinuity adjustment 

parameter and ps is the probability of finding a type of run s (a priori pi =1/3)3. Under 

asymptotic conditions, the statistic x(s, j, t) has a normal distribution with zero mean 

and variance  

222 )1(3)1(),,( ssss pppptjs −−−=σ    (2) 

Finally, PS(2006) define their herding intensity statistic as: 

)1,0(
),,(

),,(
),,( .

2
N

tjs

tjsx
tjsH da→=

σ
    (3) 

where s takes one of three different values according to whether the trade is 

buyer-initiated, seller-initiated, or zero tick, such that we have three series of H 

statistics. Ha denotes the series of statistic values for up (buyer-initiated) runs, Hb 

denotes those for down (seller-initiated) runs, and Hc those for runs with no price 

                                                 
3 Under the null hypothesis that stock prices follow a random walk reacting quickly and completely to the 
arrival of new information and if there is no discernible pattern in the information arrival process, then the 
probability assignable to each type of price sequence should be the same. However, given that stock 
markets may reflect other tendencies or phenomena than herd behaviour that may influence such 
probability, as shown by the results in Blasco, Corredor and Ferreruela (2009b), we have selected a 
sample of stocks that do not present any evidence of herd effects and we have calculated the probability 
of upwards/downwards and zero-tick price sequences. In the Spanish market, upwards and downwards 
sequences occur with a 30% probability for each. Zero-tick sequences occur over our time horizon with a 
40% probability. In this paper we use the case of pi=1/3, given that the significance and the conclusions 
do not change significantly because of the high herding intensity (the use of the alternative probabilities 
only implies a 10% reduction in the absolute value of the H statistics). 
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change, also known as zero runs. To categorize trades as buys or sells PS use the tick 

test4. In our analysis we follow the same method.5  

To construct the herding intensity measures required for our study, we begin by 

sorting the trades for each day (having excluded all those executed outside regular 

trading hours) by stock code and measuring the number of (up, down or zero) runs that 

took place that day, and then calculating the PS(2006) statistic. Thus, Ha, Hb and Hc 

statistics are calculated using each individual stock in the index and then summed up 

across all the stocks in the corresponding index6.  

For long samples, H(i,j,t) is normally distributed according to N(0,1). 

Nevertheless, following the indications in PS(2006), when the discretization of prices 

may modify the critical values, a bootstrap procedure can be used to assess the 

significance of the estimations. The bootstrap procedure designed in this paper starts 

from the choice of an initial sample of Spanish stocks that do not show any evidence of 

herd behaviour according to the results in Blasco, Corredor and Ferreruela (2009a) and, 

therefore, properly represent the null hypothesis of absence of herding effect. By 

resampling 1000 bootstrap replicas, each one including about 1000 transactions, we 

calculate the number of sequences of each type and compare with the theoretical 

number n.pi.(1-pi) and then compute the bootstrap distribution of H. 

 

3.1.2-Some characterization of the herding intensity statistic. 

Table I shows the descriptives for the herding intensity measures, where it can 

be seen that, on average, herding intensity is significantly negative (when assessed with 

either the normal distribution or the bootstrap procedure) across all types of run (up 

runs, down runs, and zero runs), but that a notable difference can be observed between 

the first two (-8.81 and -8.72 respectively when the overall Ibex35 is analyzed) and the 

last (-4.03), with much higher herding intensity levels emerging when there are price 

                                                 
4 A trade is classed as a buy if the price is higher (an up-tick) than the most recent previous trade, and as a 
sell if the price is lower (a down-tick) than the most recent previous trade. If the price is the same as the 
most recent previous trade, the trade is classed as a zero-tick. 
5 There are different means to identify a transaction as a buy or a sell. Finucane (2000) demonstrates how 
this method yields similar results to others. This, together with the unavailability of a database that 
included the bid-ask spread, led us to opt for the tick test to categorise trades. 
6 In order to see whether there is any link between the herding statistic and the return dispersion measures 
suggested in the literature, we calculate the correlation coefficients between variations in the H values and 
the corresponding variations in the cross-sectional standard deviation proposed by Christie and Huang, 
(1995). We find a positive correlation, as expected, of 12%. We also observe that upwards or downwards 
variations of these measures agree in around 60% of cases. 
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changes (up runs and down runs) than where there is no price change (zero runs). In 

other words, significant herding took place on Ibex-35 stocks7 throughout practically 

the whole of the sample period. 

Although all the stocks included in the Ibex35 exhibit a significant H statistic, 

we want to determine whether those stocks with larger capitalization may exhibit a 

more intense mimetic behaviour or not. The literature on the relationship between size 

and herding focuses on two alternative arguments. On the one hand there are the 

arguments for a higher herding level in small firms based primarily on account of firm 

size as a risk factor in asset returns. The difficulty for assessing small firms and the 

view of scarce information about them (PS [2006] and Wermer [1999]) support this 

idea. On the other hand, the arguments in favour of higher level of herding in large 

firms focus on the greater flow of information increasing the likelihood of imitative 

behavior (Sias,2004), either because uninformed investors, intentionally or not, tend to 

invest in large versus small stocks by familiarity (Palomino,1996), or because 

institutional investors mainly use large firms for restructuring portfolios or portfolio 

benchmarking. Along the same lines, Lin, Tsai and Sun (2009) find that investor 

herding is more pronounced in those stocks with good information quality, as is the case 

with larger firms. These authors suggest that herding is caused by the search cost effect, 

that is to say, individual investors may prefer to trade the stocks which require lower 

search costs, and those stocks are mainly the ones with larger market capitalization. 

Stocks with higher market caps and turnovers are the easiest to sell in a very short 

period of time so sellers with liquidity constraints would naturally flock to markets for 

these stocks. 

In order to analyse the possible differences, we estimate the herding measure for 

the stocks belonging to the selected extreme quintiles among the stocks included in the 

Ibex-35. The results are also included in Table I. The first quintile (small caps) and the 

fifth quintile (large caps) show significant differences. Large capitalization firms are 

more prone to higher herding effects8 than small capitalization firms, all being 

                                                 
7 A preliminary analysis of the complete Spanish stock market produced evidence that, although the 
financial assets not included in the Ibex35 showed negative H values, no significant values of the herding 
measure could be found. That is why only those assets belonging to the index are considered in this paper.  
8 The t-statistic for the null hypothesis of no mean difference between small and large capitalization 
stocks is 90.28 for Ha, 89.49 for Hb and 69.12 for Hc. This lends weight to the idea that firm size may 
influence the herd behaviour of agents. 
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significant. This implies that firm size (identified by capitalization) may be considered a 

characteristic attractor of herd behaviour. 

In order to provide some complementary results that may be useful for locating 

the mimetic behaviour of investors, we apply the SUR methodology (Seemingly 

Unrelated Regression) for determining the importance of two other key factors: the 

up/down situation of the market and the trading volume. For identifying the first 

explanatory variable, we include a dummy variable that takes value 1 during down 

market periods (from 1st October  1997 to 28th October 1997, from 17th July 1998 to 1st 

October 1998 and from 6th March 2000 to 9th October 2002) and 0 otherwise. The 

structure of the regressions is as follows: 

atdta

k

j
jatajaat uDHH +++= ∑

=
− 1

1
0 αδα  

btdtb

k

j
jbtbjbbt uDHH +++= ∑

=
− 1

1
0 αδα  

ctdtc

k

j
jctcjcct uDHH +++= ∑

=
− 1

1
0 αδα      (4) 

where Hat indicates up (buyer-initiated) runs, Hbt denotes those for down (seller-

initiated) runs, Hct indicates zero runs and Dd is the dummy variable. Some lags of the 

herding measure have been included to avoid autocorrelation problems in the estimation 

process. The results for the dummy variable are shown in Table II. Herding intensity 

significantly increases in crisis or down market periods. It is worth noting that in crisis 

periods, uncertainty and loss aversion may induce investors to mimic the decisions of 

others that are thought to be better informed or more able to process the information 

arriving in the market. 

Applying the same methodology, we have also analyzed trading volume as an 

explanatory factor of herding intensity. In this case, trading volume (Vt) is a continuous 

variable. The results are also presented in Table II. We find significant estimates 

suggesting that the larger the trading volume, the more intense the herding effect in the 

market. 

Combining all these elements, we suggest that firms with larger capitalization 

and high trading volume in down market situations set the ideal conditions for inducing 

intense mimetic behaviour in investors. Perhaps uninformed investors who choose to 

invest in stocks that seem familiar to them (because they generate a large amount of 

publicly available information and are very likely to be properly assessed by analysts), 
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rationally decide to imitate the decisions of others that are thought to be better informed 

than them with the aim of reducing their risk exposure. The better the characterization 

of the herding intensity, the better the design of forecasting strategies and decision 

making.9 

 

3.1.3-Further discussion. 

Some recent empirical literature has demonstrated long-memory in the signs of 

orders to buy or sell in stock markets (see, among others, Bouchaud et al. 2004 and 

Lillo and Farmer, 2004). Bouchad, Farmer and Lillo (2008) suggest that this long 

memory may be caused by a property of the order flow of each investor, independent of 

the behavior of other investors, by the common practice of order splitting or, 

alternatively, it may be due to herding behavior (see also Cont and Bouchaud, 2000). 

Under this view, high frequency strategies play an important role. Such strategies are 

not only processing fundamental information, but rather acting as technical trading 

strategies based on the information contained in the time series of prices and other 

information that is completely internal to the market. 

The results in Blasco and Ferreruela (2007) indicate that order splitting basically 

occurs along zero-tick sequences, given the brokers’ aim of avoiding unfavorable price 

changes. Additional to the usefulness of providing separate results for our herding 

measures Ha, Hb and Hc, in order to avoid biased conclusions, these authors find that 

only a small percentage of the transactions implying a price change, about 2%, could be 

attributed to splitting practices10. 

Lillo et al. (2008) also detect herding in the buying and selling activity of 

brokerage firms in the Spanish Stock Exchange and show that firms trading in this 

market are characterized by detectable trending or reversing resulting strategies 

associated to a characteristic pattern of herd behavior both at daily and at intradaily time 

horizons. Similarly, Blasco et al. (2009a) explore the usefulness of an investment 

strategy designed for those stocks attracting imitative behaviour in the Spanish market. 

                                                 
9 Blasco, Corredor and Ferreruela (2009a) offer further details for the characterization of the herding 
effect in all stocks in the Spanish market. 
10 The authors additionally carry out an additional test for detecting “leader brokers” in the Spanish 
market with the aim of empirically corroborating the arguments in favour of the presence of herd 
behaviour. They find that a small number of brokers who very often initiate the transaction sequences 
either as buyers or sellers, being the rest of the brokers considered as followers. 
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All these comments suggest that microstructural effects may influence the value 

of the volatility. The persistence in volatility, first documented by Engle (1982), may be 

influenced by microstructure components such as herding on short time scales rather 

than by the arrival of new information. La Spada et al. (2008) show that a subtle long-

range non-contemporaneous correlation between signs and sizes of price changes (non-

zero returns) may cause over-predictions of volatility for highly capitalized stocks. 

Bouchaud et al. (2004) find that the sign of the trades shows surprisingly long range 

correlations that can be subtly “corrected” by a mean reversion process in prices 

induced by liquidity providers. We try to add to this line of research by studying the 

implications for volatility of a herding measure that identifies the sign of transaction 

with the sign of return. Once such mimetic behavior has been detected in a market we 

are interested in addressing how this strategic motivation (rather than some of its 

statistical reflections) may influence volatility. 

 

3.2- Volatility measures 

3.2.1- Absolute return residuals 

The first of the volatility measures considered in this paper is the absolute return 

residual, which is obtained from the following regression: 

it
j

jitij
k

ktikit RDR εωα ∑∑
=

−
=

++=
12

1

5

1

    (5) 

where Rit is the index return i on day t, which can take one of four values: AA if 

it is the return calculated from opening on day t to opening on day t+1, AC if what is 

being measured is the return from opening to closing on day t, CC if it is the return from 

closing on day t-1 to closing on day t, and finally, CA if we are measuring the return 

from closing on day t to opening on day t+1. Following French (1980) and Keim and 

Stambaugh (1984) we include the variable Dkt to represent the day-of-the-week 

dummies in order to capture differences in mean returns that are due exclusively to 

variations in market performance on different days of the week. Finally, to remove 

autocorrelation from the return series, we include the variable jitR −  as the lagged return 

variable. itε  provides a volatility measure for each of the series used. 

The first four columns of Table III give the descriptive statistics for the four 

resulting volatility measures. On average there are no major differences, the highest 
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value being that of AAε  at 0.0129, and the lowest that of CAε , at 0.0061. This is 

consistent with market functioning since CAε  is the only one of these measures that 

captures exclusively volatility over non-trading hours and, generally speaking, news 

likely to trigger volatility is more likely to emerge during trading hours than during non-

trading time. 

 

 

3.2.2- Realized volatility  

The second of the volatility measures considered is realized volatility. Merton 

(1980) already showed that accurate volatility estimators can be obtained using fixed-

interval data, as long as the intervals tend towards zero, given that prices follow a 

geometric Brownian motion and estimation error in the return variance is proportional 

to the length of the interval, such that it decreases with shorter intervals. Andersen et al. 

(2001) show that by summing the squares of intraday returns calculated from high 

frequency data it is possible to obtain an accurate volatility estimator and find that, 

when the frequency of the data tends towards infinity, it is possible to obtain a volatility 

estimator that is error free and equal to real volatility. The variance of the discrete 

returns measured at numerous intervals is known in the literature as the integrated 

variance 2
tσ  which is a natural measure of real volatility11 where ∫ −=

1

0

22 τσσ τ dtt .  

The integrated volatility estimator, known as realized volatility, is obtained by 

summing intraday squared returns (m) according to the following expression: 

∑
=

+==
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k

mkttR rm
1

/
2

2

)(σσ      (6) 

 Where mktr /+  is the return for each of the short intervals into which the trading 

session is divided12. 

 Following this methodology, this paper uses two measures of realized volatility: 

one is realized volatility, measured from opening to closing of trade on day t, which we 

                                                 
11 For further information on realized volatility, see French, Schwert and Stambaugh (1987), Schwert 
(1989) and Ferland and Lalancette (2006). 
12 Bandi and Russell (2008) obtain optimal intervals for the calculation of realized volatility and show 
errors for 5-minute intervals to be approximately equal to those of the optimal interval, where the 5-
minute interval is the one used to calculate realized volatility in the majority of empirical studies.  We 
were forced by the lack of superior data to use 15-minute intervals to calculate this measure of volatility. 
Nevertheless, Andersen et al. (2000) showed in an experiment that volatilities start to stabilize at 30 
minute intervals. Our results can therefore be considered free of significant error, thanks to the data 
frequency used.  
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will denote by ACR−σ ; the other is realized volatility including overnight data, that is, 

events occurring from opening of trading on day t to opening of trading on day t+1, 

which we denote by AAR−σ . 

 Columns five and six in Table III show the descriptive statistics for the daily 

series of these two realized volatility measures. On average, the results are similar to 

those obtained in the previous measures, with slightly higher values of realized 

volatility being observed when overnight data are taken into account. (0.0120 for ACR−σ  

and 0.0142 for AAR−σ ). While the minimum values are similar for both measures, the 

opening to opening realized volatility measure shows the higher maximum value.  

  

3.2.3- Historic volatility: Parkinson and Garman-Klass 

 Thirdly we use the historical volatility measures proposed by Parkinson (1980) 

and Garman and Klass (1980). 

Parkinson’s measure takes the maximum and minimum daily prices of an asset 

(in our case we take the Ibex-35 as one more asset). The collection of these prices is 

more effort-intensive than that of the opening and closing prices used in the 

construction of other measures of historic volatility, since it requires continuous 

observation of the market, but, since extreme price data is more informative than 

opening and closing price data, the extra effort may provide added value to the results. 

The reason for this is that volatility reverts to the mean once it reaches extreme values, 

and this estimator therefore facilitates the tracking of extreme volatilities and enables 

forecasting. 

We calculate Parkinson’s estimator according to the following expression: 

∑
=

=
n

t
tP P

n 1

21

2ln2

1σ     (7) 

where
t

t
t L

H
P ln= , and tH  and tL  are, respectively, the maximum and 

minimum Ibex-35 prices on day t and n is the number of historical daily prices used in 

the volatility estimate. The initial choice in this paper is n=1, given our aim of finding 

significant relations between daily herding and daily volatility13. 

                                                 
13 Nevertheless, we made some previous tests using values of n=5, 50, 250 and running a rolling 
procedure. The results were still significant although the coefficients rapidly decrease when n increases. 
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 Garman and Klass suggest a slightly different approach to estimate historical 

volatility, in which opening and closing prices as well as extreme prices are included. 

We calculate historical volatilities according to the following expression: 

∑
=






 −−=
n

t
ttGK QP

n 1

22 )12ln2(
2

11σ    (8) 

where 
t

t
t O

C
Q ln= , and tC  and tO  are, respectively, the Ibex-35 opening and 

closing prices on day t and n is the number of historical prices used in the volatility 

estimate. We take n=1 as before.  

 

The next two columns of Table III show the descriptive statistics for the time 

series volatilities calculated by these measures. No major differences emerge between 

the two. On average (0.012 for Parkinson’s estimator and 0.0117 for the Garman-Klass 

estimator) the two are very similar to the measures presented so far. The level of 

leptokurtosis in the distribution is lower than in most of the other measures presented. 

The coefficients (11.30 for Parkinson’s estimator and 10.10 for the Garman-Klass 

estimator) are similar to that of |ε AC| the only lower one being that of |ε CC| (3.89). 

 

3.2.4- Implied volatility 

All the volatility measures presented so far use spot market data. Nevertheless, 

several studies of the S&P100 index coincide in stating that implied volatility in at-the-

money (henceforth ATM) options is a more efficient volatility estimator than those 

based exclusively on historical data. Fleming (1998) and Christensen and Prabhala 

(1998) among others, and more recently, for the Spanish stock market, Corredor and 

Santamaría (2001, 2004) show that implied volatility is a reliable predictor of future 

volatility versus other volatility measures. There are also numerous studies showing that 

the implied volatility indexes currently being constructed in several countries across the 

world possess significant power to predict future volatility in the stock market (Fleming, 

Ostdiek and Whaley [1995], Simon [2003], Giot [2005]).  

Some recent papers have claimed that implied volatility also reflects investor 

sentiment (Baker and Wurgler [2006]). This led us to ask ourselves whether this 

measure may be sensitive to the presence of herding behavior in the stock market. We 

believe that the inclusion of this variable as an additional volatility measure in this 
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paper will help to obtain a much more detailed as well as broader picture of the impact 

of herding on volatility.  

Implied volatility measures resulting from the inversion of Black and Scholes 

(1973) (henceforth BS) pricing model are used. The main reason is convenience, given 

that these measures are available in the market (which can also make them affect 

investor expectations). In a theoretical framework, Fleming (1998) argued that in short 

term and ATM options, the BS model gives estimations virtually identical to the ones 

given by other stochastic volatility models. Following the above literature, we now 

focus on the implied volatility in short-term (ST) ATM call options on the Ibex-35 (with 

30 days or less to maturity).  

The last column of Table III shows observable differences between descriptive 

statistics for implied volatility and the historical volatility measures. Implied volatility 

presents a slightly higher average than the previous measures (0.0165) and a closer to 

normal distribution, with a short-run asymmetry coefficient of 0.0493 and a kurtosis 

level of 1.7191.  

Table IV shows the existing correlation between the various volatility measures 

used in this paper. The correlation is low in overall terms, suggesting that it makes sense 

to use different measures because each one may supply additional information to the 

analysis. Not surprisingly, in view of the way in which they are constructed, the most 

highly inter-correlated are the Parkinson and Garman Klass measures, with a correlation 

coefficient of 0.8962. They are followed by ACR−σ , with a correlation coefficient of 

0.8794 with AAR−σ  (which is also foreseeable from the method used in their 

calculation), 0.8167 with Pσ  and 0.8638 with GKσ .  

 
 
3.3- Volatility and herding 

3.3.1- Obtaining series free of day-of-the-week and volume effects. 

Having obtained the volatility measures described above, the second stage of the 

study is to purge them of the volume and day-of-the-week effects documented in the 

literature. We did this by running a series of regressions in which each of the above-

described volatility measures was made to depend on the Monday effect and on a proxy 

for the daily trading volume and then corrected for autocorrelation. Thus, and 

subsequently taking the residuals of these regressions, we obtained series in which the 
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only effects would be due to factors other than volume or the day-of-the-week effects, 

which, if present, would be captured by the coefficients of the variables considered. 

There is a vast amount of evidence to show that volume traded and return 

volatility are positively correlated (Karpoff [1987], Gallant, Rossi and Tauchen [1992], 

Jones, Kaul and Lipson [1994]). The two paradigms that attempt to explain this 

relationship are the mixture of distributions (Epps and Epps, [1997]) and the 

microstructure paradigm (O´Hara, [1995]). From a number of empirical studies that use 

different measures of volume to test these paradigms, we have taken Jones, Kaul and 

Lipson (1994) and Chan and Fong (2000, 2006). Following these papers, we use three 

different measures of volume: the traditional measure of volume traded in Euros, the 

number of trades, and the average trade size in Euros.  

Table V gives the correlations between the various volume measures considered; 

volume traded in Euros (V), number of trades (NT) and average trade size (ATS). Most 

notable in the table are the high correlation between V and NT (0.8149) and the negative 

correlation between NT and ATS (-0.2256). Given the existing controversy in the 

literature over which of these factors actually have an impact on volatility, we believe it 

makes sense to consider all of these measures, in order to lend more robustness to the 

results. 

The estimated regressions may be written as follows: 
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where itσ  is the value on day t of each of the volatility measures considered, 

where  i can take ten different values; Mt is a dummy variable that takes a value of 1 for 

Mondays and zero for the remaining days of the week;  V, NT and ATS are the volume 

measures described above; itυ , itη  and itτ , the residuals of the regressions, are the new 

volatility series after the removal of Monday and volume effects which, if present, are 

captured by the coefficients of the variables in question. 

Table VI gives the coefficients of the volume proxies used in expressions (9), 

(10) and (11). Similar results are found for the first two volume measures considered. 
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When the variable included in the regression is volume traded in Euros, it can be seen to 

have a positive influence on volatility for all the measures of historical volatility. 

Similarly, when trading volume is measured in terms of the number of trades, it is also 

observed to have a significantly positive effect on volatility in all the terms in which it 

was measured. However, when volume is measured in terms of average trade size, all 

the significant effects of volume on volatility (| εAA |, | εCA |, realized volatility and ST 

implied volatility) that emerge are negative. In other words, volatility increases with 

increases in volume traded, but decreases with increases in trade size. Both Easley and 

O’Hara (1987) and Admati and Pfeiderer (1988) suggest that informed traders engage in 

higher volume trading than uninformed traders do. Thus, the larger observed trade size, 

the higher the amount of informed trading and therefore the less volatility we can expect 

to find in the market, Hellwig (1980) or Wang (1993)14.  

 

3.3.2- The effect of herding on volatility. 

  Having obtained the “clean” volatility series, we can now examine them to 

determine the extent of the linear effect of herding intensity on calculated volatility on 

day t.  

 To do so we run the following regressions: 

itistititit H λδωυ ++=      (12) 

itistititit H λδωη ++=      (13) 

itistititit H λδωτ ++=      (14) 

where itυ , itη  and  itτ  are the residuals of the expressions (9), (10) and (11), itω  

is a constant and Hist  is the PS(2006) herding intensity measure on day t, where s can 

take three different values, according to whether the herding has occurred during an up 

run, a down run or a zero run. 

Table VII shows the coefficients for the different measures of herding intensity 

(Ha, Hb and Hc).  Overall, we find all three types of herding to have a significantly 

negative effect on all the volatility measures except implied volatility. Such a difference 

in results may be explained by the relevance of the expiration effect in derivatives 

markets, which has not hitherto been taken into account in our models. Hence, we 

                                                 
14 Nevertheless, despite the observed differences across the three volume measures considered, if we 
focus on the adjusted R2,  we find no major differences between V, NT and ATS within each volatility 
measure. 
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include an additional dummy variable in equations referring to implied volatility, taking 

value 1 on the expiration date of Ibex-35 derivatives contracts and zero otherwise. The 

results, namely ST ATM Call*, are shown at the end of Table VII. On including such a 

modification, implied volatility is also influenced by Ha and Hc. It should be noted that 

buying pressure is more likely to affect call options demand and its implied volatility 

than selling pressure.  

Given that the level of herding intensity increases as Hs becomes more negative, 

the negative coefficients found for the herding intensity variable in regressions (12), 

(13) and (14) suggest that stocks exhibiting higher levels of herding intensity will also 

present higher volatility. Our results are consistent with those of Venezia, Nashikkar 

and Shapira (2009) given that they also find a direct relationship between herding and 

market volatility. In addition, if we identify herd trading with a type of uninformed 

trading, our results are consistent with those indicating that uninformed trading drive 

volatility (Hellwig [1980] and Wang [1993] or Froot, Scharfstein and Stein [1992], 

Avramov, Chordia and Goyal [2006]). The results for the measures of historical and 

realized volatility are very similar, irrespective of which volume proxy is used, and also 

unanimous. The variable used to measure herding intensity appears to affect the 

volatility generated that day, the effect being observed in practically all the volatility 

measures based on stock market data15.  

Overall, the results for the measures of historical and realized volatility show 

that a higher level of herding (which might be interpreted as uninformed trading) leads 

to greater price changes (volatility), that is, less stability. Herding traders either add 

momentum to price changes or cause prices to overshoot the fundamental price, 

resulting in more volatile and, perhaps, less informative prices. Nevertheless, these 

traders also provide liquidity to markets  

The differences found between the results for implied volatility and the rest of 

the measures used in the analysis deserve some particular comments. First, it is worth 

noting the difference in the results in including the expiration date as an explanatory 

variable in eq 12-14. The most frequent interpretation of implied volatility is as the 

market's future volatility forecast. Implied volatility mainly gathers together 

expectations about factors such as market price, fear of sharp drops or interest rates 

which, in turn, depend on future information. The option prices, and therefore the 
                                                 
15 There are some exceptions, certain types of herding do not impact significantly on volatility captured 
by εAA, σR-AC, σR-AA and σGK. 
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implied volatility estimates, also involve other factors such as the expiration date, the 

strike price, the bearish/bullish state of the market, liquidity problems in the options 

traded, volatility price skews due to buy/sell fees, excessive leverage effects or wide 

bid/ask spreads (see, among others, Peña, Rubio and Serna (1999) or Serna (2004). In 

the absence of the expiration effect, herd behaviour does not affect, by definition, the 

implied volatility. That is, expectations on future price changes do not account for 

unknown factors that have not yet been proved relevant. Nevertheless, when the 

expiration effect is considered, traders are conscious of the large amount of informative 

factors influencing decision making and therefore uninformed traders find it useful to 

imitate the decision of other traders that are thought to be better informed. This result 

suggests that imitative behavior increases on expiration dates as stated in Blasco, 

Corredor and Ferreruela (2009b). 

Second, our findings show that implied volatility, when estimated from ATM 

call options and the expiration effect is taken into account, is influenced by buyer 

initiated and zero tick herding. This result may indicate that options market participants, 

who are thought to be better informed than spot market participants, tend to expect 

higher future volatility when they suspect that the stock market fluctuates under a 

significant influence of uninformed traders. This attitude of option traders is compatible 

with the learning hypothesis described in Bollen and Whaley (2004). Our results using 

short-term implied volatility provide new information that has not been presented in 

former studies. 

Finally, in order to detect whether the herding caused in the small capitalization 

stocks influences volatility as the large capitalization stocks do, we carry out an 

additional analysis. We repeat the previous tests with the small cap and large cap 

indexes. We want to assess how much the herding effect in those indexes affects the 

volatility of the Ibex-35. The results presented in Table VIII, Panel A and B mainly 

support our previous findings: herding influences volatility, especially when the volume 

effects are cleared using trading volume or trade size and we consider larger 

capitalization stocks. In conclusion, we find that the phenomenon of imitative behaviour 

increases market volatility and, therefore, herding may be considered an additional risk 

factor. Our results may be explained, among other factors, by the percentage of 

institutional ownership in the Ibex-35 firms, given that institutional ownership is highly 

correlated with size. In our particular case, the Spanish market, the average percentage 

of institutional ownership for the stocks included in the large cap index is 28.31% (this 
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value increases to 31.70% if BBVA is not included) whereas those included in the small 

cap index exhibit an average percentage of institutional ownership of 15.09%16. 

According to Dennis and Strickland (2002), institutional shareholders react strongly to 

large market price changes by herding together and moving prices. Institutional 

managers are often evaluated on their short-term performance and have a strong 

incentive to herd in order to avoid the cost of unfavorable deviations from the 

consensus. Christoffersen and Tang (2009), similarly to Barber, Odean, and Zhu (2009), 

find that institutional traders are more likely to herd than retail or small investors. Their 

empirical results strongly support the theoretical predictions of Avery and Zemsky 

(1998) about information cascades. These phenomena are present in daily trading, and 

herding can destabilize prices in stocks where information in trading is normally of high 

quality, which is the case with large firms, although the price instability is not long-

lived. 

Verma and Verma (2007), in turn, suggest that individual investor sentiment 

reacts to institutional investor sentiment and that a significant negative relation exists 

between irrational sentiment and volatility. Then, if both individual and institutional 

investors feel worried about a large market price change, their sentiment and incentive 

to herd may cause increases in market volatility. The results are likely to be due to both 

investment criteria. We believe that our study contributes to the robustness and novelty 

of the herding literature through the number of volatility measures and types of volume 

considered and the explicit use of a measure of intraday herding. 

 

3.3.3- Non-linear causality 

Since the relationships between variables may be linear and/or non-linear, we 

also test for possible non-linear causality between the different measures of volatility 

and the herding level. Using the procedure described in Hiemstra and Jones (1994), we 

find no evidence at all of non-linear causality in the results. 

 A different pattern emerges, however, in the results for implied volatility in the 

prices of call ATM options. The values of the statistic are positive but non-significant at 

the standard levels of significance and higher when the cause variable is sell-side 

                                                 
16 Data have been extracted from the data base SABI (Sistema de Análisis y Balances Ibéricos) and 
BankScope and refer to the significant ownership information that was notified to the Spanish stock 
market national commission (CNMV) in 2003. Prior data are not available. The CNMV is aimed at 
supervising and inspecting the Spanish Stock Markets and the activities of all the participants in the 
market. 
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herding. This positive sign is robust to different values of the parameters in the 

Hiemstra and Jones (1994) procedure. For the remaining volatility measures, the sign of 

the non-linear causality statistic is negative, which is a clear indication that the herding 

level hampers, rather than facilitates, the prediction of non-linear volatility. This 

difference in the direction of the results could be interpreted as the already mentioned 

conceptual difference between the various volatility measures and as being somewhat 

coherent with the different sign (positive) of the coefficients for the linear effect of the 

intensity of sell-side herding on the implied volatility. For ease of reading, the results 

tables are not presented17, given the lack of significance of the results18. 

 

3.3.4- Usefulness of the herding measures in volatility forecasting 

Once the importance of herd behavior on the level of market volatility has been 

determined, the natural extension of the analysis is to assess whether this information 

can be useful in volatility forecasting. For this purpose we propose the comparison 

between two alternative types of models: (a) basic models including the variables 

defined in eq. 9, 10 and 11 and (b) extended models that incorporate additional variables 

associated with the intensity of herd behaviour. Both the basic and extended models will 

be estimated alternatively for each of the volume variables described (V, NT and ATS). 

The time interval of the data base used for the estimation process is January 1997 to 

June 2003. The out of sample forecasting runs from July 2003 to December 2003. 

 Static and dynamic predictions are calculated. Since both the basic and the 

expanded models require contemporary values for the variables of volume and the 

intensity of herding, we first need a prediction to be incorporated into the forecasting 

models. Given the high autocorrelation of these variables we consider autoregressive 

models that can be easily implemented to determine the proper values of volume traded 

and herding intensity on day t. It is worth noting that the relationship between the 

herding statistic and the trading volume variables may cause estimation problems if we 

include those variables simultaneously in the forecasting extended model. We propose a 

regression procedure for making the orthogonal correction so that only that component 

                                                 
17 Nonetheless they are available from the authors upon request. 
 
18 The linear and non-linear analysis has been repeated adding to the volatility model the leverage effect 
(throughout the asset’s returns). The results are similar to those presented here and are available from the 
authors upon request. 
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of the herding statistic not included in the volume measure is incorporated as an 

independent variable in the model.  

Tables IXa and IXb show the error terms for each model and type of prediction 

(the square root of the prediction error, the mean absolute error (MAE) and the mean 

absolute percentage error (MAPE)) for both the static and dynamic forecasting. The 

results are unanimous for all the volatility measures: when either volume or the number 

of transactions is considered, herding measures help to improve volatility forecasting. 

The only exception is the volatility computed as the residual of open to open returns 

after adjusting seasonality and autocorrelation. Nevertheless, when the average trade 

size is considered, herding measures do not contribute to obtaining lower error measures 

when the prediction models are implemented. In this sense, Song, Tan and Wu (2005) 

argue that other volume measures explain the volatility-volume relation better than the 

size of trades. Therefore, as a general rule, herding intensity variables may be useful for 

volatility forecasting when other relevant variables have also been considered. As is 

suggested in Stivers (2003), an adequate identification of actual volatility implies better 

volatility forecasting. 

According to Stoll (2000), until recent years the modern finance paradigm used 

to rest on the abstractions of frictionless markets and the traditionally strict concept of 

efficient markets. Nevertheless, the study of microstructure and the theoretical 

development in the field of asymmetric information are promising from the point of 

view of improving asset pricing, asset allocation, derivatives pricing and financial risk 

management. 

Following Bandi and Russell (2006), if asset prices can be written as the sum of 

efficient prices and a noise component that is induced by microstructure frictions, the 

variance of returns depends on the variance of the underlying efficient returns and the 

variance of the microstructure noise components. Whereas the variance of the efficient 

return process is a crucial ingredient in the practise and theory of asset valuation and 

risk management, herding is considered a microstructure component that can be 

employed to consistently estimate the microstructure noise variance containing 

information about the market’s structure and dynamics. 

It is of primary importance in the practice of portfolio and risk management to 

have an accurate estimate of the variances and covariance matrices for asset prices. By 

exploiting the considerable information potential of high frequency return data, we can 

improve, for example, the trading strategies of volatility timing. Fleming et al. (2001, 
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2003) provide a methodology to evaluate the economic benefits of asset allocation 

strategies relying on volatility timing. In this context, it is necessary to know the correct 

component parts of volatility, the most appropriate intraday frequency and the 

estimation procedure that can be utilized to learn about the efficient return variance and 

microstructure noise variance in order to make them more predictable. 

Similarly, the purpose of hedging is to minimize the risk of the portfolio. Asset 

risks change because new information is continuously received by the markets. 

Therefore, the hedge ratio should be time-varying because it depends on the conditional 

moments of the spot and futures returns. Hedging performance would benefit with the 

accurate knowledge of the volatility and covariance components. 

We find in this paper that changes in the herding intensity measure may be 

informative about the market situation and its evolution in the near future. Given that 

our results indicate that the herding intensity increases in down market periods and for 

the most heavily traded stocks, the detection of relevant herding changes may help to 

predict volatility in these situations and, therefore, to improve investment decision-

making as described before. 

 

4.- Conclusions  

This paper examines the way in which market volatility is affected by the 

presence of herding behavior. The relationship between investor behavior and market 

volatility has been examined in prior research in various financial markets, the majority 

of the findings supporting the idea that volatility increases with uninformed or liquidity 

trading. Information asymmetry can raise volatility and uninformed traders very 

frequently follow the market trend, buying when prices rise and selling when they fall, 

thus exhibiting a type of behavior that we might equate with herding. 

The herding intensity measure used in this paper is that proposed by PS(2006), 

which is based on the information cascade models described in Bikhchandani, 

Hirshleifer and Welch (1992) where the intensity of herding in the market is measured 

in both buyer- and seller-initiated trading sequences. It is a daily measure constructed 

from intraday trade data, which we believe to be the most suitable data frequency for the 

detection of possible herding behavior among traders in the market. 

We also use various measures of market volatility: absolute return residuals, 

historical volatility (Parkinson and Garman-Klass), realized volatility (Anderson et al, 
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2001) and implied volatility. All of these are purged for possible day-of-the-week or 

volume effects that might confound the findings. 

The results presented in this paper are consistent with prior literature in 

revealing a clear effect of herding on market volatility: the higher the observed level of 

herding intensity, the greater volatility we can expect to find. This result (which comes 

from linear relations) is homogeneous across two of the measures (historical and 

realized volatility) considered but does not apply entirely in the case of implied 

volatility, where the influence of the imitation effect is closely related to the expiration 

dates in option markets as well as what we interpret as a learning hypothesis in option 

traders’ behavior. These results are clearly related to the different nature and meaning of 

the alternative volatility measures. The results of the assessing of the non-linear 

relations between herding and volatility indicate that there is no such relation between 

the said variables.  The proposed forecasting models confirm the relevance of herding 

intensity measures for predicting future values of volatility and therefore for interpreting 

the concept of risk and for defining risk management strategies. If traders are able to 

better forecast future volatility values they will be able to improve asset pricing, asset 

allocation, derivatives pricing and financial risk management applications by the 

separate modelling, forecasting and pricing of the noise-microstructure and efficient 

return components of total return variability. 
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TABLES 
 
 
Table I. Descriptive data for the herding measures across up, down and zero runs. Descriptive 
statistics for the Ibex35, Small Cap Index and Large Cap Index.   
 

 Ibex35 Small cap Index Large cap index 
 Ha Hb Hc Ha Hb Hc Ha Hb Hc 
Mean -8.81 -8.72 -4.03 -6.57 -6.43 -2.69 -17.43 -17.29 -9.59 
Median -8.89 -8.77 -3.97 -6.44 -6.25 -2.44 -17.37 -17.14 -9.07 
St. Dev.  2.12 2.14 1.38 2.31 2.31 1.59 4.46 4.51 3.85 
Asymmetry 0.10 0.00 -0.26 -0.16 -0.24 -0.57 -0.46 -0.58 -1.11 
Kurtosis -0.37 -0.27 -0.35 3.59 3.06 6.50 2.71 2.74 2.99 
Minimum -14.36 -15.59 -8.92 -19.13 -19.84 -15.10 -34.32 -34.33 -24.30 
Maximum -1.08 -1.54 0.22 0.63 -0.34 1.03 -3.03 -3.90 -1.09 
Bootstrap critical value for Ha at the 1% significance level: -2.20 
Bootstrap critical value for Hb at the 5% significance level: -2.16 
Bootstrap critical value for Hc at the 10% significance level: -2.01 
 
Table II: Results for the SUR estimation (Seemingly Unrelated Regression) of the herding intensity on 
the market situation and the trading volume. ***  denotes significance at 1%, **  denotes significance at 5% 
and * denotes significance at 10%. Volume coefficients are multiplied by 107. Estimated models: 
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0 αδα  

 (a) (b) (c) 

Ddown -0.1396 -0.1441 -0.0483 

t-stat. (-2.15)**  (-2.15)**  (-1.07) 

    

Volume -0.0305 -0.0337 -0.0140 

t-stat. (-8.82) **  (-9.57) **  (-6.12) **  
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Table III. Descriptive data for the different volatility measures considered 
 

  
| ε AA | | ε AC | | ε CC | | ε CA | 

 
σR-AC 

 
σR-AA 

 
σP 

 
σGK 

ST 
ATM 
Call 

Mean 0.0129 0.0108 0.0122 0.0061 0.0120 0.0142 0.0120 0.0117 0.0165 
Median 0.0101 0.0087 0.0096 0.0045 0.0107 0.0125 0.0105 0.0103 0.0160 
St. Dev. 0.0126 0.0091 0.0104 0.0071 0.0059 0.0081 0.0065 0.0061 0.0065 
Asymmetry 3.8175 2.0839 1.6419 7.8360 2.9336 6.3570 2.4582 2.3132 0.0493 
Kurtosis 34.1569 10.8448 3.8602 135.7490 18.1877 94.9509 11.3010 10.1018 1.7191 
Minimum 0.0000 0.0000 0.0000 0.0000 0.0030 0.0034 0.0022 0.0020 0.0000 
Maximum 0.1898 0.1118 0.0694 0.1588 0.0787 0.1744 0.0687 0.0693 0.0411 
 
 
Table IV. Correlation between the different volatility measures considered 

 | ε AA | | ε AC | | ε CC | | ε CA | ACR−σ  AAR−σ  Pσ  GKσ  
ST 
ATM 
Call 

| ε AA | 1.0000         

| ε AC | 0.2767 1.0000        

| ε CC | 0.5861 0.3070 1.0000       

| ε CA | 0.2452 0.6986 0.3485 1.0000      
σR-AC 0.5642 0.5376 0.4678 0.4061 1.0000     
σR-AA 0.6764 0.5021 0.8076 0.4492 0.8794 1.0000    

σP 0.4177 0.7536 0.3727 0.5552 0.8167 0.7114 1.0000   
σGK 0.4313 0.5271 0.3479 0.4039 0.8638 0.7261 0.8962 1.0000  

ST ATM 
Call 0.3100 0.3107 0.3137 0.3043 0.5305 0.4997 0.4490 0.4847 1.0000 

 



 33

Table V. Correlation between the different trade volume measures. The data shown are the 
coefficients of correlation between daily trading volume in (V), number of trades (NT) and trade size in 
Euros (ATS)  for Ibex-35 stocks. 
 

  V NT ATS 
V 1.0000   

NT 0.8149 1.0000  
ATS 0.3301 -0.2256 1.0000 

 
Table VI. Coefficients for the trade volume measures. The data shown are the coefficients for the 
trading volume proxies in the following regressions: 
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where σit is the value on day t of each of the volatility measures considered, where i can take ten 
different values, Mt is a dummy variable that takes a value of 1 for Mondays and 0 the remaining days of 
the week, V is volume traded in Euros, NT is volume traded in number of trades and ATS is average trade 
size. The values shown in parentheses are the t-statistics.   
***  denotes significance at 1%, **  denotes significance at 5% and * denotes significance at 10%. 
 

  V NT ATS 
| εAA | Coeff. 0,0027***  0.0041***  -0.0000**  

 t-stat. (4.25) (5.88) (-2.35) 
 Adj.R2

. 
0.1159 0.1268 0.1074 

| ε AC | Coeff. 0.0030***  0.0036***  -0.0000 
 t-stat. (7.95) (8.33) (-0.51) 
 Adj.R2

Adj.R2 
0.1237 0.1296 0.0994 

| ε CC | Coeff. 0.0033***  0.0035***  0.0000 
 t-stat. (7.49) (7.19) (0.41) 
 Adj.R2

Adj.R2 
0.1520 0.0097 0.1291 

| ε CA | Coeff. 0.0012***  0.0016***  -0.0000* 
 t-stat. (3.36) (4.14) (-1.82) 

 Adj.R2 0.1165 0.1204 0.1111 
σR-AC Coeff. 0.0018***  0.0024***  -0.0000**  

 t-stat. (9.42) (10.87) (-2.18) 

 Adj.R2 0.4900 0.5005 0.4712 
σR-AA Coeff. 0.0023***  0.0029***  -0.0000**  

 t-stat. (8.05) (9.32) (-2.50) 

 Adj.R2 0.4073 0.4154 0.3911 
σP Coeff. 0.0025***  0.0029***  -0.0000 
 t-stat. (10.52) (10.93) (-0.35) 

 Adj.R2 0.3712 0.3779 0.3409 
σGK Coeff. 0.0022***  0.0027***  -0.0000 

 t-stat. (9.60) (10.38) (-0.77) 
 Adj.R2 0.3968 0.4053 0.3656 

ST ATM Call Coeff. 0.0000 0.0004* -0.0000***  
 t-stat. (-0.10) (1.78) (-3.09) 
 Adj.R2 0.6457 0.6466 0.6486 
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Table VII. Results of herding on the volatility measures of the Ibex-35. The data shown are the coefficients for the effect of the herding intensity measures on the volatility 
measures purged of volume effects and sorted by type of volume measure, where υ it is the volatility measure after removing the volume variable V, ηit is the volatility 
measure after removing the volume variable NT and τit is the volatility measure with ATS removed. ST ATM Call* indicates the coefficients corresponding to herding intensity 
when implied volatility is additionally explained by the Dummy variable relative to the expiration date of  the derivatives market. The expressions of the regressions are as 
follows: 

itistititit H λδωυ ++= ,   
itistititit H λδωη ++=  

itistititit H λδωτ ++= . 
The values in parentheses are the t-statistics.  ***  denotes significance at 1%, **  denotes significance at 5% and * denotes significance at 10%. 
 

 υ η τ 
 Ha Hb Hc Ha Hb Hc Ha Hb Hc 

| εAA | -0.0003**  -0.0003**  -0.0006**  -0.0001 -0.0001 -0.0004 -0.0007***  -0.0006***  -0.0010***  
 (-2.30) (-2.01) (-2.34) (-0.52) (-0.45) (-1.51) (-5.24) (-4.79) (-3.78) 

| ε AC | -0.0004***  -0.0004***  -0.0008***  -0.0003***  -0.0003***  -0.0007***  -0.0009***  -0.0008***  -0.0013***  
 (-4.34) (-3.83) (-4.67) (-3.31) (-2.97) (-4.09) (-8.61) (-7.90) (-7.10) 

| ε CC | -0.0005***  -0.0004***  -0.0010***  -0.0005***  -0.0004***  -0.0014***  -0.0010***  -0.0008***  -0.0015***  
 (-4.43) (-3.85) (-5.87) (-4.04) (-3.55) (-5.64) (-8.62) (-7.49) (-8.18) 

| ε CA | -0.0004***  -0.0002***  -0.0008***  -0.0003 -0.0003***  -0.0007***  -0.0008***  -0.0008***  -0.0012***  
 (-4.43) (-3.80) (-4.66) (-1.19) (-2.97) (-4.09) (-8.68) (-7.91) (-7.10) 

σR-AC -0.0002***  -0.0001* -0.0002**  -0.0001***  0.0000 -0.0001 -0.0005***  -0.0003***  -0.0005***  
 (-4.56) (-1.63) (-2.42) (-2.63) (0.12) (-1.42) (-9.76) (-6.60) (-5.01) 

σR-AA -0.0003***  -0.0002**  -0.0005**  -0.0002**  -0.0001 -0.0004* -0.0006***  -0.0005***  -0.0008***  
 (-4.07) (-2.13) (-2.55) (-2.45) (-0.75) (-1.96) (-8.94) (-6.52) (-4.28) 

σP -0.0003***  -0.0002***  -0.0005***  -0.0003***  -0.0001**  -0.0004***  -0.0007***  -0.0005***  -0.0008***  
 (-5.28) (-3.26) (-4.50) (-4.08) (-2.19) (-3.80) (-10.86) (-8.82) (-7.66) 

σGK -0.0003***  -0.0001* -0.0003***  -0.0002***  -0.0000 -0.0002**  -0.0006***  -0.0004***  -0.0006***  
 ( -4.54) (-1.78) (-2.94) (-3.11) (-0.42) (-1.98) (-9.77) (-7.15) (-6.30) 

ST ATM Call  -0.0001 0.0000 -0.0000 -0.0000 0.0001 0.0001 -0.0001 0.0000 -0.0000 
 (-1.59) (0.04) ( -0.25) (-0.19) (1.33) (0.64) (-1.28) (0.25) (-0.11) 

ST ATM Call* -0.0001***  -0.0000 -0.0001* -0.0001* 0.0000 -0.0001* -0.0001***  -0.0000 -0.0000 
 (-3.45) (-1.23) (-1.69) (-1.73) (0.37) (-1.69) (-3.00) (-0.92) (-1.46) 
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Table VIII. Panel A. Influence of herding in small cap on the volatility measures of the Ibex-35 index.  The data shown are the coefficients for the effect of the herding 
intensity measures on the volatility measures purged of volume effects and sorted by type of volume measure, where υ it is the volatility measure after removing the volume 
variable V, ηit is the volatility measure after removing the volume variable NT and τit is the volatility measure with ATS  removed. The expressions of the regressions are as 
follows: 

itistititit H λδωυ ++= ,   
itistititit H λδωη ++=  

itistititit H λδωτ ++= . 
The values in parentheses are the t-statistics.  ***  denotes significance at 1%, **  denotes significance at 5% and * denotes significance at 10%. 
 
 
 

υ η τ 

 Ha Hb Hc Ha Hb Hc Ha Hb Hc 

Small Cap Index 

| εAA | -0.0002 -0.0001 -0.0004 0.0000 0.0000 -0.0002 -0.0004**  -0.0004**  -0.0007* 
 (-0.99) (-0.67) (-0.96) (0.11) (0.25) (-0.43) (-2.53) (-2.11) (-1.70) 

| ε AC | -0.0004***  -0.0003**  -0.0006**  -0.0003**  -0.0002* -0.0005**  -0.0007***  -0.0006***  -0.0010***  
 (-3.02) (-2.45) (-2.54) (-2.25) (-1.84) (-2.13) (-5.63) (-4.87) (-4.00) 

| ε CC | -0.0003***  -0.0002**  -0.0005***  -0.0002**  -0.0002 -0.0004**  -0.0006***  -0.0005***  -0.0009***  
 (-2.87) (-1.95) (-3.18) (-2.38) (-1.60) (-2.83) (-6.24) (-5.14) (-5.70) 

| ε CA | -0.0004***  -0.0003***  -0.0006**  -0.0003**  -0.0002**  -0.0005**  -0.0007***  -0.0006***  -0.0010***  
 (-3.02) (-2.45) (-2.54) (-2.25) (-1.84) (-2.13) (-5.63) (-4.87) (-4.00) 

σR-AC -0.0002***  -0.0001 -0.0002**  -0.0001**  0.0000 -0.0001 -0.0004***  -0.0002***  -0.0004***  
 (-2.87) (-0.98) (-1.62) (-1.65) (0.02) (-1.02) (-5.62) (-3.56) (-3.03) 

σR-AA -0.0002**  -0.0001 -0.0004 -0.0001 0.0000 -0.0003 -0.0005***  -0.0003***  -0.0007**  
 (-1.82) (-0.92)  (-1.31) (-1.07) (-0.32) (-0.99) (-3.64) (-2.59) (-2.11) 

σP -0.0003***  -0.0001**  -0.0003**  -0.0002**  -0.0001 -0.0003**  -0.0005***  -0.0004***  -0.0006***  
 (-3.75) (-2.01) (-2.57) (-2.75) (-1.19) (-1.99) (-7.27) (-5.46) (-4.71) 

σGK -0.0002***  0.0000 -0.0002**  -0.0001**  0.0000 -0.0001 -0.0004***  -0.0002***  -0.0004***  
 (-3.30) (-0.68) (-1.90) (-1.98) (0.47) (-0.97) (-7.09) (-4.59) (-4.72) 

ST ATM Call  -0.0001**  0.0000 -0.0001 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 
 (-1.81)  (-0.04) (-0.85) (-0.55) (1.17) (0.12) (-1.37) (0.28) (-0.51) 

ST ATM 
Call* 

-0.0001***  0.0000 -0.0001 -0.0001 0.0000 0.0000 -0.0001**  0.0000 -0.0001 

  (-3.00) (-0.69) (-1.60) (-1.46) (0.81) (-0.38) (-2.42) (-0.27) (-1.16) 
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Table VIII. Panel B. Influence of herding in large cap stocks on the volatility measures of the Ibex-35 index.  The data shown are the coefficients for the effect of the 
herding intensity measures on the volatility measures purged of volume effects and sorted by type of volume measure, where υ it is the volatility measure after removing the 
volume variable V, ηit is the volatility measure after removing the volume variable NT and τit is the volatility measure with ATS  removed. The expressions of the regressions 
are as follows: 

itistititit H λδωυ ++= ,   
itistititit H λδωη ++=  

itistititit H λδωτ ++= . 
The values in parentheses are the t-statistics.  ***  denotes significance at 1%, **  denotes significance at 5% and * denotes significance at 10%. 
 
 
 

υ η τ 

 Ha Hb Hc Ha Hb Hc Ha Hb Hc 

Large Cap Index 
| εAA | -0.0002***  -0.0002***  -0.0002**  -0.0001 -0.0001**  -0.0002**  -0.0004***  -0.0004***  -0.0003***  

  (-2.84)  (-2.92)  (-2.67)  (-1.47)  (-1.62)  (-2.07)  (-5.28)  (-5.26)  (-3.72) 
| ε AC | -0.0002***  -0.0002***  -0.0002***  -0.0001**  -0.0001****  -0.0002***  -0.0003***  -0.0003***  -0.0003***  

  (-3.35)  (-3.62)  (-3.64)  (-2.57)  (-2.89)  (-3.22)  (-6.91)  (-7.02)  (-5.20) 
| ε CC | -0.0003***  -0.0003***  -0.0003***  -0.0003***  -0.0002***  -0.0003***  -0.0005***  -0.0004***  -0.0004***  

  (-4.42)  (-4.41)  (-4.96)  (-4.17)  (-4.19)  (-4.82)  (-7.72)  (-7.65)  (-6.31) 
| ε CA | -0.0002***  -0.0002***  -0.0002***  -0.0001**  -0.0001***  -0.0002***  -0.0003***  -0.0003***  -0.0003***  

  (-3.35)  (-3.62)  (-3.64)  (-2.57)  (-2.89)  (-3.22)  (-6.91)  (-7.02)  (-5.20) 
σR-AC -0.0001***  -0.0001**  0.0000 0.0000**  0.0000 0.0000 -0.0002***  -0.0002***  -0.0001***  

  (-3.16)  (-2.34)  (-1.48)  (-1.82)  (-1.06)  (-0.76)  (-6.98)  (-6.01)  (-3.20) 
σR-AA -0.0001***  -0.0001**  -0.0001**  -0.0001**  -0.0001 -0.0001**  -0.0002***  -0.0002***  -0.0002***  

  (-3.31)  (-2.71)  (-2.72)  (-2.10)  (-1.55)  (-2.13)  (-7.21)  (-6.46)  (-4.41) 
σP -0.0001***  -0.0001***  -0.0001***  -0.0001***  -0.0001**  -0.0001***  -0.0003***  -0.0002***  -0.0002***  

  (-3.92)  (-3.54)  (-3.45)  (-3.04)  (-2.71)  (-2.98)  (-8.27)  (-7.71)  (-5.30) 
σGK -0.0001***  -0.0001***  -0.0001**  -0.0001**  -0.0001**  -0.0001 -0.0002***  -0.0002***  -0.0001***  

  (-3.52)  (-2.84)  (-2.10)  (-2.51)  (-1.87)  (-1.53)  (-7.45)  (-6.62)  (-3.91) 
ST ATM Call  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

  (-1.12)  (-0.37) (0.29)  (-0.01) (0.66) (0.78)  (-0.97)  (-0.25) (0.31) 
ST ATM 

Call* -0.0001**  0.0000**  0.0000 0.0000 0.0000 0.0000 -0.0001**  0.0000**  0.0000 
   (-2.70)  (-1.92)  (-0.94)  (-1.29)  (-0.58)  (-0.28)  (-2.46)  (-1.72)  (-0.90) 
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Tabla IXa. Results of dynamic volatility forecast using models without herding intensity variables (a) 
and with herding intensity variables (b). The table shows the prediction error estimates for each of the 
proposed models. √: Square root of error, MAE: Mean Absolute Error. MAPE: Mean Absolute 
Percentage **  denote minimum error values.  
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where σit is the value on day t of each of the volatility measures considered, where i can take ten 
different values, Mt is a dummy variable that takes a value of 1 for Mondays and 0 the remaining days of 
the week, V is volume traded in Euros, NT is volume traded in number of trades and ATS is average trade 
size and Hs is the variable related to herding.  
 
  Mod.1a Mod.1b  Mod.2a Mod.2b  Mod.3a Mod.3b 

          
| εAA | √ 0.00927* 0.01039  0.00896* 0.00944  0.00795* 0.01003 

 MAE 0.00826* 0.00939  0.00797* 0.00847  0.00693* 0.00902 
 MAPE 72.76* 82.63  73.21* 77.30  66.31* 82.73 

| ε AC | √ 0.00771 0.00698*  0.00729 0.00610*  0.01003 0.00735* 
 MAE 0.00688 0.00618*  0.00644 0.00529*  0.00902 0.00651* 
 MAPE 60.47 53.51*  57.47 46.54*  82.73 57.97* 

| ε CC | √ 0.00907 0.00758*  0.00835 0.00643*  0.00795* 0.00831 
 MAE 0.00804 0.00664*  0.00737 0.00556*  0.00697* 0.00731 
 MAPE 92.76 79.39*  85.64 67.04*  81.25* 84.85 

| ε CA | √ 0.00397 0.00370*  0.003843 0.00328*  0.00345* 0.00366 
 MAE 0.00356 0.00328*  0.00344 0.00288*  0.00301* 0.00327 
 MAPE 103.71 98.57*  94.94 82.57*  88.63* 93.84 

σR-AC √ 0.00722 0.00680*  0.00655 0.00535*  0.00521* 0.00679 
 MAE 0.00686 0.00648*  0.00627 0.00509*  0.00484* 0.00655 
 MAPE 113.77 107.10*  103.64 84.48*  82.21* 107.85 

σR-AA √ 0.00876 0.00763*  0.00797 0.00573*  0.00650* 0.00773 
 MAE 0.00834 0.00720*  0.00764 0.00537*  0.00609* 0.00741 
 MAPE 120.99 104.66*  110.38 78.72*  90.28* 107.40 

σP √ 0.00869 0.00808*  0.00820 0.00730*  0.00787* 0.00847 
 MAE 0.00725 0.00629*  0.00657 0.00495*  0.00575* 0.00670 
 MAPE 115.38 98.23*  103.58 74.86*  90.57* 106.15 

σGK √ 0.00698 0.00652*  0.00625 0.00501*  0.00518* 0.00660 
 MAE 0.00654 0.00606*  00.587 0.00459*  0.00475* 0.00624 
 MAPE 114.57 106.54*  103.03 81.69*  85.50* 109.37 
ST ATM Call* √ 0.00758 0.00563*  0.00712 0.00459*  0.00652 0.00616* 
 MAE 0.00695 0.00494*  0.00655 0.00404*  0.00593 0.00559* 
 MAPE 92.22 66.53*  88.10 56.10*  81.97 78.56* 
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Tabla IXb. Results of static volatility forecast using models without herding intensity variables (a) and 
with herding intensity variables (b).. The table shows the prediction error estimates for each of the 
proposed models. √: Square root of error, MAE: Mean Absolute Error. MAPE: Mean Absolute 
Percentage **  denote minimum error values.  

Model 1a: 
ititi

j
jitijtimiit eVM ++++= ∑

=
− φσραασ

12

1

  

Model 1b:  
it

s
ssiti

j
jitijtimiit eHVM +++++= ∑∑

==
−

3

1

12

1

ϖφσραασ    

Model 2a: 
ititi

j
jitijtimiit eNTM ++++= ∑

=
− θσραασ

12

1

 

Model 2b: 
it

s
ssiti

j
jitijtimiit eHNTM +++++= ∑∑

==
−

3

1

12

1

ϖθσραασ  

Model 3a: 
ititi

j
jitijtimiit eATSM ++++= ∑

=
− γσραασ

12

1

 

Model 3b: 
it

s
ssiti

j
jitijtimiit eHwATSM +++++= ∑∑

==
−

3

1

12

1

γσραασ  

where σit is the value on day t of each of the volatility measures considered, where i can take ten 
different values, Mt is a dummy variable that takes a value of 1 for Mondays and 0 the remaining days of 
the week, V is volume traded in Euros, NT is volume traded in number of trades and ATS is average trade 
size and Hs is the variable related to herding.  
 
  Mod.1a Mod.1b  Mod.2a Mod.2b  Mod.3a Mod.3b 

| εAA | √ 0.00628* 0.00675  0.00628* 0.00647  0.00600* 0.00675 
 MAE 0.00537* 0.00577  0.00536* 0.00551  0.00513* 0.00577 
 MAPE 48.49* 54.17  50.06* 52.37  47.27* 55.68 

| ε AC | √ 0.00556 0.00516*  0.00559 0.00498*  0.00526* 0.00548 
 MAE 0.00470 0.00430*  0.00473 0.00412*  0.00442* 0.00463 
 MAPE 43.91 38.60*  43.77 35.70*  39.58* 41.52 

| ε CC | √ 0.00593 0.00536*  0.00584 0.00515*  0.00561* 0.00574 
 MAE 0.00516 0.00460*  0.00510 0.00438*  0.00489* 0.00501 
 MAPE 59.54 51.65*  58.17 48.01*  52.38* 54.33 

| ε CA | √ 0.00287 0.00279*  0.00283* 0.00328  0.00274* 0.00279 
 MAE 0.00242 0.00234*  0.00239* 0.00288  0.00225* 0.00234 
 MAPE 77.04 77.77*  70.11* 82.57  67.22* 70.06 

σR-AC √ 0.00223 0.00216*  0.00232 0.00201*  0.00185* 0.00223 
 MAE 0.00197 0.00191*  0.00203 0.00172*  0.00153* 0.00194 
 MAPE 32.76 31.50*  33.81 28.27*  24.69* 31.90 

σR-AA √ 0.00280 0.00250*  0.00281 0.00223*  0.00235* 0.00264 
 MAE 0.00248 0.00216*  0.00248 0.00185*  0.00196* 0.00226 
 MAPE 36.47 31.73*  36.43 27.10*  28.65* 33.23 

σP √ 0.00571 0.00568*  0.00573 0.00562*  0.00564* 0.00583 
 MAE 0.00336 0.00311*  0.00334 0.00291*  0.00309* 0.00330 
 MAPE 47.79 42.08*  47.47 37.91*  40.82* 45.24 

σGK √ 0.00279 0.00267*  0.00283 0.00249*  0.00238* 0.00274 
 MAE 0.00235 0.00225*  0.00240 0.00209*  0.00197* 0.00229 
 MAPE 42.33 39.97*  42.91 36.44*  34.09* 40.66 
ST ATM Call* √ 0.00187 0.00179*  0.00187 0.00176*  0.00181 0.00179* 
 MAE 0.00140 0.00118*  0.00140 0.00113*  0.00128 0.00123* 
 MAPE 13.99 11.55*  14.92 12.11*  14.59 14.87* 
 

 


