000129606 001__ 129606 000129606 005__ 20240104102230.0 000129606 0247_ $$2doi$$a10.1016/j.applthermaleng.2019.02.012 000129606 0248_ $$2sideral$$a111187 000129606 037__ $$aART-2019-111187 000129606 041__ $$aeng 000129606 100__ $$aAcevedo, L. 000129606 245__ $$aLocal exergy cost analysis of cullet glass heating by microwaves 000129606 260__ $$c2019 000129606 5060_ $$aAccess copy available to the general public$$fUnrestricted 000129606 5203_ $$aIn this paper, the analysis of the local exergy costs of a cullet glass heated by microwaves in a cubical cavity activated by a susceptor is presented. The analysis is based on a previously validated 3-D electromagnetic model, but goes further by applying the concepts of local exergy efficiency and local unit exergy consumption, what enables a local analysis (in time and space) of the process efficiency. Furthermore, local exergy cost quantifies in detail the path of the exergy cost formation during microwave heating, which is determined by the local irreversibilities taking place in this transient process. Four different susceptor positions have been also compared, in order to find out not only which one is the most efficient but also to justify in detail this result by the time and space evolution of efficiency, unit exergy consumption (both external microwave power and conduction contributions) and unit exergy cost. The best conclusion of the paper is that the local exergy cost approach can contribute to the design of more efficient energy conversion systems, as it could be noted in its application to a complex process like this 3-D example of microwave cullet heating. 000129606 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000129606 590__ $$a4.725$$b2019 000129606 591__ $$aENGINEERING, MECHANICAL$$b13 / 130 = 0.1$$c2019$$dQ1$$eT1 000129606 591__ $$aTHERMODYNAMICS$$b6 / 61 = 0.098$$c2019$$dQ1$$eT1 000129606 591__ $$aMECHANICS$$b13 / 136 = 0.096$$c2019$$dQ1$$eT1 000129606 591__ $$aENERGY & FUELS$$b34 / 112 = 0.304$$c2019$$dQ2$$eT1 000129606 592__ $$a1.78$$b2019 000129606 593__ $$aIndustrial and Manufacturing Engineering$$c2019$$dQ1 000129606 593__ $$aEnergy Engineering and Power Technology$$c2019$$dQ1 000129606 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000129606 700__ $$0(orcid)0000-0002-9279-1959$$aUsón, S.$$uUniversidad de Zaragoza 000129606 700__ $$0(orcid)0000-0003-4408-6881$$aUche, J.$$uUniversidad de Zaragoza 000129606 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi. 000129606 773__ $$g152 (2019), 778-795$$pAppl. therm. eng.$$tApplied Thermal Engineering$$x1359-4311 000129606 8564_ $$s3303196$$uhttps://zaguan.unizar.es/record/129606/files/texto_completo.pdf$$yPostprint 000129606 8564_ $$s503563$$uhttps://zaguan.unizar.es/record/129606/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000129606 909CO $$ooai:zaguan.unizar.es:129606$$particulos$$pdriver 000129606 951__ $$a2024-01-04-09:04:43 000129606 980__ $$aARTICLE