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A gradient-descent adjoint method for the reconstruc-
tion of boundary conditions in a river flow nitrification
model

Geovanny Gordillo,∗a Mario Morales-Hernández,b and Pilar García-Navarroa

One of the reasons of the limited applicability of predictive water quality models is the lack of data
from monitoring control stations that are required as input. In this context, the main novelty of the
present work is the recovery of information on the state variables present in a water quality model
through measured data at a target downstream location. The reconstruction of the upstream
boundary condition is the goal of the present work. For this purpose, an adjoint-state method
is developed to find the sensitivities of the functional with respect to variations on the upstream
boundary conditions of the model. The resolution of both forward and backward problems ensures
strong, accurate and reliable solutions in both steady state and unsteady scenarios. The different
cases demonstrate that the method is able to reconstruct any observed distribution with little
computational effort, including the heat balance with all its external inputs.

1 Introduction

Predictive models can be useful to represent physical processes
that occur in nature such as overland water flow, solute transport
or sediment transport among others, using physically based par-
tial differential equations1. For the numerical resolution of these
models, the initial conditions must be stated and boundary con-
ditions at the limits of the computational domain are needed in
addition to a robust numerical scheme. The first data set is es-
tablished within the whole domain, at the start of the simulation.
The availability of this information is crucial for the reliability
of the simulation models, so that their predictions are accurate
when compared with measured data at specific control sections.
However this information is not always available with the nec-
essary frequency and quality. Therefore, it is essential to have
a mechanism to reconstruct initial conditions and/or boundary
conditions that minimize the differences between predicted and
observed data. The present work is focused on the reconstruction
of the upstream water quality boundary condition in the context
of physically based 1D models provided that the hydrodynamic
upstream and downstream boundary conditions as well as all ini-
tial conditions are known.
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Quevedo, 50018, Zaragoza, Spain; E-mail: ggordillo@unizar.es
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The indirect inverse method emerges as a robust and theoreti-
cally solid technique to minimize the differences between model
results and observed data2. There are two large groups of meth-
ods to solve this type of inverse problems: the gradient descent
methods and the population search methods. Numerous studies
have been carried out for both. As an example of the second
type, Zou et al. 3 propose a genetic algorithm integrated into a
neural network to solve problems of inverse water quality mod-
eling. Azad et al. 4 investigated adaptive neuro fuzzy inference
system with particle swarm optimization (ANFIS-PSO) and ant
colony optimization for continuous domains (ANFIS−ACOR) to
estimate water quality parameters. Among the gradient descent
type, other studies have been developed in order to minimize the
environmental impact produced by the discharge of one or mul-
tiple point sources of conservative solutes5. The gradient tech-
nique has also been proposed to determine the sensitivity of a
solute concentration to real-time changes in load intensity at a re-
mote source. In this context, the adjoint equation of the fate and
transport was used to evaluate this sensitivity6,7. This formula-
tion was also used to calculate the sensitivity of dissolved oxygen
(DO) in a stream over carbonaceous biological oxygen demand
(CBOD) discharges8. In the same line, more ambitious works
have been elaborated to calculate the sensitivity of the DO with
respect to the load vector and the reaction coefficients that make
up the eutrophication cycle9,10. The application of the adjoint
method has also been extended to water distribution systems to
observe the effect produced by the variation of some parameters
such as the location of the source and the reaction rate of the
pollutant at the system output11.
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The theory of the adjoint problem has also been applied to
identify the Manning roughness coefficient in a channel network
in one dimension (1D) using a Quasi-Newton Limited-Memory
algorithm12. In this hydraulic context, the analysis of the sen-
sitivity of shallow-water flow to boundary changes in depth and
discharge was also developed to control water waves in fluvial
systems and estuaries, allowing a practical use in the applications
of shallow water equations13,14. A more ambitious implementa-
tion of this technique was reported15 that used the continuous
adjoint approximation to reconstruct the boundary conditions in
a 2D model using the Graphics Processing Unit (GPU) solved both
the physical system and the adjoint, achieving notable reduction
in the computational burden.

In the matter of water quality in rivers, the adjoint problem has
focused more on the analysis of the sensitivity at a point source
and model parameters7, missing a study of the sensitivities of
the functional to the upstream boundary condition. Therefore,
in this framework, the main novelty of this work is to determine
the sensitivity of a function error with respect to the upstream
or inlet boundary conditions present in a nitrification model, in-
cluding the influence of temperature. Through this process, it is
possible to recover upstream boundary conditions of the differ-
ent chemical species involved in the water quality model from
downstream measured data and knowing the hydrodynamic in-
formation in both steady state and unsteady scenarios.

The resolution of both physical and adjoint problem is carried
out using an explicit finite volume scheme based on Roe’s lin-
earization. The control of the sensitivity produced by the adjoint
resolution is determined by the gradient descent method. Both
quality and hydrodynamic processes are resolved in 1D.

The present work is organized as follows: in Section 2 the
mathematical development of the adjoint equations for different
levels of complexity is presented. Section 3 is devoted to the nu-
merical resolution of both the physical and adjoint system. The
evaluation of the numerical method with synthetic and real cases
is presented in Section 5. Finally, conclusions are included in Sec-
tion 6.

2 Mathematical adjoint models for the sim-
ulation of the scalar transport

The expressions that allow to solve the hydrodynamic variables
(the flow rate Q [L3T−1] and the cross section area A [L2]) are the
shallow water equations. This system of equations is expressed
as:

∂A
∂ t

+
∂Q
∂x

= qL,

∂Q
∂ t

+
∂

∂x

(
Q2

A
+gI1

)
= g[I2 +A(So −S f )],

(1)

where t [T] is the time , x [L] is the longitudinal distance, qL

[L3T−1] is the lateral inflow per unit width, g [LT−2] is the ac-
celeration due to gravity, So [LL−1] is the bed slope, I1 [L3] is
the hydrostatic pressure force integral, I2 [L2] is the integral of

the pressure force due to the longitudinal width variations and S f

[LL−1] is the friction slope expressed by means of semi-empirical
Manning’s law16.

Additionally to the hydrodynamic equations, the model in-
cludes solute transport equations of the form:

∂ (Aφ)

∂ t
+

∂ (Qφ)

∂x
−E

∂

∂x

(
A

∂φ

∂x

)
−APR(φ)− f = 0, (2)

where φ [Φ] is the cross-sectional average of scalar variable trans-
port, E [L2T−1] is the longitudinal diffusion-dispersion coeffi-
cient, f [ΦL2T−1] is the load term that accounts for external
sources (point and non-point sources) in a water volume and PR

[ΦT−1] is the term used to represent the reactivity of the scalar
species transported. The system formed by 1 and 2 can be used
to predict the evolution in a forward calculation from initial con-
ditions when suitable upstream and downstream boundary con-
ditions are supplied.

The final purpose of this section is to formulate a method able
to determine the boundary condition of a water quality model.
The reconstruction is achieved by minimizing the misfit between
the model result and the observed data at some target point (xt).
Consequently the objective is to find a set of values that minimize
an objective function (or simply a functional) that is expressed as:

J(p) =
1
2

∫ T

0

∫ L

0

[
δ (x− xt)(φ(p)− φ̂)2

]
dxdt, (3)

where p is the variable on which the functional depends, δ (x−xt)

is the Dirac delta function, φ(p) is the calculated concentration
and φ̂ is the measured concentration17. The variable p can in-
clude, in general, different elements such as model parameters
(diffusion, decay or roughness coefficients), initial conditions,
spill discharges or boundary conditions. The present work is con-
cerned with the application of the technique to explore the sensi-
tivity of the functional to the upstream boundary condition.

Gradient-based methods use information about the local gradi-
ent of the functional (∇J) to determine the best estimate of the
variable p. The new value at the next iteration can be found by
means of an iterative method as:

pm+1 = pm − ε
m(∇J)m, (4)

where m indicates the level of the iteration, ε is the step length
and ∇J is the gradient of J which can be expressed as:

∇J =
δJ
δ p

, (5)

The adjoint method is a general procedure to calculate the gra-
dient of this functional. When solving the adjoint system, the
adjoint state variables are obtained, which are the ones in charge
of gathering a global measure of the problem perturbation with
respect to the state variables. This will be described in the follow-
ing sections.

The formulation of the method proposed for the reconstruction
of boundary conditions in 1D water quality models has been di-
vided into four levels of complexity: 1) convection-diffusion and
reaction of a single constituent, 2) simplified heat balance, 3)
Streeter-Phelps model involving CBOD and DO with the presence
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of other processes such as sediment oxygen demand (SOD), and
4) nitrification model involving the transport equations of five
chemical species plus the temperature.

2.1 Adjoint model of the transport equation

Following the methodology given by Marchuk 18 , the adjoint for-
mulation of the scalar transport is addressed. The method begins
by multiplying the transport equation (2) by a function σ [ML−3]
under the condition that it is differentiable in time and space at
least once. Then the result is integrated in the time and space:

I =
∫ T

0

∫ L

0
σ

[
∂ (Aφ)

∂ t
+

∂ (Qφ)

∂x
−E

∂

∂x

(
A

∂φ

∂x

)
−APR − f

]
dxdt = 0,

(6)
where [0,L] and [0,T ] are the spatial and temporal domains re-
spectively. Using the integration by parts over x and t, eq. (6)
leads to:

I =
∫ L

0
σAφ

∣∣∣∣T
0

dx−
∫ T

0

∫ L

0
Aφ

∂σ

∂ t
dxdt +

∫ T

0
σQφ

∣∣∣∣L
0
dt

−
∫ T

0

∫ L

0
φQ

∂σ

∂x
dxdt −

∫ T

0
σAE

∂φ

∂x

∣∣∣∣L
0
dt

+
∫ T

0
AφE

∂σ

∂x

∣∣∣∣L
0
dt −

∫ T

0

∫ L

0
AφE

∂ 2σ

∂x2 dxdt

−
∫ T

0

∫ L

0
APRdxdt −

∫ T

0

∫ L

0
f dxdt = 0.

(7)

Therefore, the spatial and temporal derivatives are exchanged
from the state the adjoint variable σ . It is possible now to rewrite
(3) using (7) as:

J = J+ I. (8)

Assuming that our main interest is to estimate the sensitivity of J
with respect to the boundary conditions, variations must be taken
with respect to φ in such a way that:

δJ = δJ+δ I, (9)

with:

δ I =
∫ T

0

∫ L

0

[
−A

∂σ

∂ t
−Q

∂σ

∂x
−AE

∂ 2σ

∂x2 −A
∂PR

∂φ

]
δφdxdt

−
∫ T

0
σAE

∂φ

∂x
δφ

∣∣∣∣L
0
dt +

∫ T

0
AE

∂σ

∂x
δφ

∣∣∣∣L
0
dt

+
∫ L

0
σAδφ

∣∣∣∣T
0

dx+
∫ T

0
σQδφ

∣∣∣∣L
0
dt = 0,

(10)

and:

δJ =
∫ T

0

∫ L

0

∂ r
∂φ

δφdxdt, (11)

being r = 1
2 (φ − φ̂)2. In order to eliminate some integrals of (10),

initial and boundary conditions are assumed originally undis-
turbed:

δφ(x,T ) = δφ(x,0) = 0,

δφ(L, t) = 0.
(12)

In addition, making use of restrictions in the adjoint problem, it
is possible to eliminate the sensitivities of13:

σ(x,T ) = 0,

σ(L, t) = 0.
(13)

Finally, applying the definitions (10) and (11), the restrictions
(12) and (13) in Eq. (9) and after some rearrangement, the func-
tional variation is written as follows:

δJ =
∫ T

0

∫ L

0

[
−A

∂σ

∂ t
−Q

∂σ

∂x
−AE

∂ 2σ

∂x2 − ∂ r
∂φ

−Aσ
∂PR

∂φ

]
δφdxdt

−
∫ T

0

[
σQδφ

]
(0, t)dt.

(14)

Therefore, the functional variation with respect to the upstream
boundary condition can be represented solely as follows:

∇J(φ n
0 ) =

δJ
δφ

∣∣∣∣
(0,t)

=−Q(0, t)σ(0, t). (15)

as long as the adjoint equation for the transport of solute is de-
fined as:

−A
∂σ

∂ t
−Q

∂σ

∂x
−AE

∂ 2σ

∂x2 − ∂ r
∂φ

−Aσ
∂PR

∂φ
= 0. (16)

With this, the adjoint formulation confirms the ability to evaluate
the functional δJ without computing δφ 19.

From (15), the sensitivity of J with respect to the boundary
condition of the state variable under study can be useful to re-
cover the information of the boundary condition by means of the
gradient descent method by minimizing the error between the
calculated and the measured concentration in this case.

It is worth highlighting some additional considerations of eq.
(15): first, it is not necessary to perform the integration in space
since the information for δφ(0, t) is obtained from a single point
(boundary condition). The sensitivity of J with respect to the
boundary can be extracted directly from the adjoint solution vec-
tor of the corresponding time at x = 0. On the other hand, the
adjoint equation (16) has a structure similar to equation (2), ex-
cept for a few details. The time-space propagation is different,
that is, in the adjoint scheme, the information is conveyed from
the final time to the initial time, contrary to the physical scheme.
Furthermore, the error r made in the physical problem becomes a
source term at xt in the adjoint problem. Additionally, the form of
the decay term changes when moving from the physical problem
to the adjoint problem.
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2.2 Adjoint model for the heat balance

The transport of the water temperature [◦C] (denoted by φ1 in
this work) in channels or rivers can be modeled using eq. (2).
However, when analyzing the effects of a continuous pollutant
load, the effect of dispersion may be ignored since its contribu-
tion to the resulting in-stream pollutant concentration is usually
small in comparison to the contribution from advection and re-
action terms. Therefore, the dispersion term is not included in
what follows. In this case the process term PR1 represents the
heat source term that can be formulated through the relationship
(20–22):

PR1 =
H f

ρCph
, (17)

being ρ [ML−3] is water density, Cp [L2T−2 ◦C−1] is heat capacity
of water and H f [MT−2] the net rate of heat exchange expressed
as:

H f = Kh(Te −φ1), Te = Td +
Rs

Kh
, (18)

with Te [◦C] the equilibrium river temperature, Rs [MT−2] the so-
lar radiation and Kh [MT−2] the overall water surface heat ex-
change coefficient. The latter parameter can be expressed by
means of the empirical formula given in Table 123.

Table 1 Empirical formulae for computing Kh with: Ta [◦C]=air tempera-
ture, rh =relative humidity.

Parameter or coefficient Expression
Heat exchange coefficient, Kh Kh = 4.5+0.05φ +β f (Uw)+0.47 f (Uw)

Wind function, f (Uw) [LT−1] f (Uw) = 9.2+0.46U2
w

Coefficient β β = 0.35+0.015Tv +0.0012T 2
v

Average air temperature, Tv [
◦C] Tv = (φ1 +Td)/2

Dew point temperature, Td [◦C] Td = 237.3[T ∗
a + ln(rh)]/[17.27− ln(rh)−T ∗

a ]
T ∗

a = 17.27Ta/(237.3+Ta)

The adjoint problem can also be formulated for this case follow-
ing the procedure described in Section 2.1. The resulting adjoint
equation is similar to eq. (16) with E=0 and ∂PR1

∂φ1
defined as:

∂PR1

∂φ1
=

∂Kh

∂φ
(Te −φ1)+Kh

(
∂Te

∂φ1
−1
)
,

∂Kh

∂φ1
= 0.05+ f (uw)

[
0.0151

2
(φ1 +Td)

]
,

∂Te

∂φ1
=− Rs

Kh

∂Kh

∂φ1
.

(19)

Now, the functional similar to eq. (3) is widespread for K solutes
in a general expression:

J = ϑ

∫ T

0

∫ L

0

K

∑
k=1

rk, (20)

where rk can be normalized. If it normalizes rk =
1
2

(
φk−φ̂k

)2

(
φ̂k,(MAX)

)2 being

φ̂k,(MAX) the maximum value of the measurement24. It is worth
pointing out, that in equation 20 there is the possibility of weigh-
ing each chemical species using the parameter ϑ . This is due
each chemical species contributes differently to the value of the
functional. The weights used when there are several chemical
substances are established according to the existing literature.9,25

The gradient has an expression similar to (15), defined as:

∇J(φ n
0,1) =

δJ
δφ1

∣∣∣∣
(0,t)

=−Q(0, t)σ1(0, t), (21)

which represents the sensitivity of the functional to the tempera-
ture of the water at the upstream boundary.

2.3 Modified Streeter-Phelps adjoint model

Water quality is closely related to the deficit of DO26. That is the
reason why all water quality models consider the evolution of this
variable and all the processes in which it is involved. One of the
most extended, the modified Streeter-Phelps model, relates the
main mechanisms for the DO in a river27. For reasons of clarity,
the expressions of the proposed model are presented in Appendix
I. The terms PR2 and PR6 of the equations (33) and (34) (from
Appendix I) are defined as:

PR2 =−R3 −R4,

PR6 = R2 −R3 −R5,

(22)

being:

Re-aeration(R2) = kaθ
T 20
a (φsat −φ6) ,

C-oxidation(R3) =−kdθ
T 20
2d

(
φ6

kBOD +φ6

)
φ2,

C-settling(R4) =−vs3 (1− fd2)

h
φ2,

Sediment O2-demand(R5) =−SOD
h

θ
T 20
S ,

(23)

Since the procedure is similar to subsection 2.1 and 2.2, the
reader is referred to Appendix I for all the details of the resulting
adjoints equations. The adjoint equations using the short notation
(36) (from Appendix I) can be described as:

CA,2 +(σ2 +σ6)A
∂R3

∂φ2
+σ2A

∂R4

∂φ2
+

∂ r
∂φ2

= 0, (24)

CA,6 +σ6A
∂R2

∂φ6
+(σ2 +σ6)A

∂R3

∂φ6
+

∂ r
∂φ6

= 0, (25)

with:
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∂R2

∂φ6
=− kaθ

T 20
a ,

∂R3

∂φ2
=− kdθ

T 20
2d

(
φ6

kBOD +φ6

)
,

∂R3

∂φ6
=kdθ

T 20
2d

kBOD

(kBOD +φ6)2 φ2,

∂R4

∂φ2
=− Vs3 (1− fd5)

h
,

(26)

and the gradient of both CBOD [ML−3] and DO [ML−3] is:

∇J(φ n
0,k) =

δJk

φk(0, t)
=−σk(0, t)Q(0, t). (27)

In this new system, a meaningful aspect is that the adjoint ki-
netic model given by eq. (24) and (25) is a function of both
the adjoint variables and the physical variables, which adds an
additional complexity to the adjoint system with respect to the
physical system.

2.4 Adjoint model of nitrification

The formulation of the adjoint problem can be extended to a vital
process in the control of water quality: the nitrogen cycle. The
set of equations can be expressed as28–30:

∂ (Aφ2)

∂ t
+

∂ (Qφ2)

∂x
= APR2,

∂ (Aφ3)

∂ t
+

∂ (Qφ3)

∂x
= APR3,

∂ (Aφ4)

∂ t
+

∂ (Qφ4)

∂x
= APR4,

∂ (Aφ5)

∂ t
+

∂ (Qφ5)

∂x
= APR5,

∂ (Aφ6)

∂ t
+

∂ (Qφ6)

∂x
= APR6,

(28)

where φ3, φ4, φ5 [ML−3] are the sate variables water. Organic
Nitrogen (ON), Ammonia Nitrogen (NH3 −N) and Nitrate Nitro-
gen (NO3

−) respectively. The decay processes are slightly altered
with respect to the simplified Streeter-Phelps model:

PR2 =−R3 −R4 −R9,

PR3 =−R6 −R7,

PR4 = R6 −R8,

PR5 = R8 −R9,

PR6 = R2 −R3 −
5
4

32
14

R5 −
64
14

R9,

(29)

where the numerical coefficients are the consequence of using

grams instead of moles to express the concentrations. The pro-
cesses are defined as:

ON-mineralization(R6) = K34θ
T 20
34 φ3,

ON-settling(R7) =
vs3(1− fD3)

h
φ3,

Nitrification(R8) = K45θ
T 20
45 φ4

(
φ6

KNIT +φ6

)
,

Denitrification(R9) = K5Dθ
T 20
5D φ5

(
KNO3

KNO3 +φ6

)
,

(30)

For the sake of brevity this section is limited to presenting only the
adjoint system of each of the variables present in the formulation.
The system of adjoint variables using the short notation (36) can
be expressed as:

CA,1 −A
∂PR1

∂φ1
+

∂ r
∂φ1

= 0,

CA,2 +(σ2 +σ6)A
∂R3

∂φ2
+σ2A

∂R4

∂φ2
+

∂ r
∂φ2

= 0,

CA,3 +(σ3 −σ4)A
∂R6

∂φ3
+σ3A

∂R7

∂φ3
+

∂ r
∂φ3

= 0,

CA,4 +(σ4 −σ3)A
∂R8

∂φ4
+σ6A

64
12

∂R8

∂φ4
+

∂ r
∂φ4

= 0,

CA,5 +

(
σ5 +σ2

5
4

32
14

)
A

∂R9

∂φ5
+

∂ r
∂φ5

= 0,

CA,6 −σ6A
∂R2

∂φ6
+(σ6 +σ2)A

∂R3

∂φ6
+

(
64
12

σ6 +σ4 −σ5

)
A

∂R8

∂φ6
,

+

(
σ5 +σ2

5
4

32
14

)
A

∂R9

∂φ6
+

∂ r
∂φ6

= 0,

(31)

where:

∂R6

∂φ3
= K34θ

T 20
34 ,

∂R7

∂φ3
=

vs3(1− fD3)

h
,

∂R8

∂φ4
= K45θ

T 20
45

(
φ6

KNIT +φ6

)
,

∂R8

∂φ6
= K45θ

T 20
45

(
KNIT

(KNIT +φ6)2

)
,

∂R9

∂φ5
= K5Dθ

T 20
5D

(
KNO3

KNO3 +φ6

)
,

∂R9

∂φ6
=−K5Dθ

T 20
5D

(
KNO3

(KNO3 +φ6)2

)
,

(32)

Journal Name, [year], [vol.],1–19 | 5



System (31) and the target function (20), allows the reconstruc-
tion of the variable information in time considering the interre-
lationships of the cycle of the carbon, nitrogen cycle and heat
present in an aquatic ecosystem.

3 Numerical resolution

To solve the fate and transport equation of each chemical species
in the physical system, it is necessary that the discretization of the
advection-dispersion-reaction equation (2) is combined with the
discretization of the flow of the shallow water equations (1) to en-
sure conservative solutions. The non-linear system of partial dif-
ferential equations (shallow water and transport equations) can
be solved by means of the Godunov scheme based on the resolu-
tion of the Riemann problems at each interface between the com-
putational cells. The details of how the Roe scheme linearizes
the equations at each interface, maintaining both the equilibrium
between the source sources and the stability throughout the sim-
ulation period are detailed in Murillo and Navas-Montilla 16 , Bur-
guete et al. 31 , Gordillo et al. 32 , Morales-Hernández et al. 33 .

With this numerical scheme, it is possible to update the con-
served variables (A,Q and φk, with k = 1...6) at all points of the
domain and at all times provided that suitable initial and bound-
ary conditions are supplied. The adjoint equations can be solved
using the same scheme, keeping in mind the time-space propa-
gation directions and the feeding of the boundary conditions and
source terms.

The flowchart of both the main system (forward) and the ad-
joint system (backward) to recover the information of the bound-
ary is illustrated in Figure 1. The first step in the control logic is
to establish a set of boundary values for all state variables. With
this first guess, the physical equation is solved. In this forward
resolution, the values of both hydraulic and quality variables are
recorded at each time and in the whole domain. The process
of recording and calculating the hydrodynamic variables is only
done once in the optimization (first run forward). Then, as the
iterative process progresses, the transport equation is simply com-
puted with the stored hydrodynamic information. The next step is
to evaluate the degree of misfit between the simulated values and
the observed values. If the error found is greater than a tolerance,
the adjoint variables are calculated by a backward simulation, to
provide the direction of descent ∇J(φ n

0,k). Using this and a con-
stant step length ε, the optimization method determines the new
set of values that will enter as a boundary condition for the for-
ward problem. The final step is to evaluate the functional again.
If the convergence test is completed, the process stops. Other-
wise, it goes back to the second stage. This process will be re-
peated as many times as necessary in order to reach an expected
value of J, or even when there is no significant variation of it. The
gradient is used as a measure of the sensitivity that leads the op-
timizer to a minimum. The efficiency of this process is adequate
enough especially when dealing with convex problems. The sim-
plest implementation (following in the work) of the descent gra-
dient method found the descent direction ∇J can be followed in
Sun and Yuan 17 , Nocedal and Wright 34 , Rao 35 .

4 Evaluation of the adjoint models
To ensure the reliability and robustness of the adjoint technique,
some analytical and real cases are considered. They cover both
steady and unsteady configurations and the levels of complexity
for the water quality detailed in Section 2.

4.1 Case 1. Reconstruction of a pulse of solute

The purpose of this case is to reconstruct the boundary condition
of a Gaussian function with the convection-diffusion and reac-
tion processes. This case corresponds to an ideal situation in a
flat, frictionless, 2000 m long rectilinear channel with rectangu-
lar cross section and A = 10m2. The cross sectional average flow
velocity is u = 1m/s. To achieve the objective, the temporal evo-
lution of the concentration is previously recorded at xt = 1000
m with a direct simulation. The upstream concentration pulse
for this direct simulation is a Gaussian function with a maximum
concentration of 10 g/m3 at t = 1000 s. The solute is transported
with a diffusion coefficient E = 5 m2/s and with a decay rate of
5×10−4 s−1 throughout the simulation. With a clear target, the
optimization process is switched on. This process starts with a
first guess φ(0, t) = 0 g/m3 of the upstream boundary condition to
be recovered. For all cases the starting ε = 0.01 has been selected,
being reduced in case the functional (or error) grows in two suc-
cessive iterations. Afterwards, through the iterative method, a
new set of values is generated, each time closer to the optimum.
In this simple case, the goal of the iterative method will be to
recover the Gaussian function describe above.

Figure 2 shows the reconstruction of the boundary condition
(x0 = 0) and the target (xt = 1000 m) for several iterations, as
well as the functional evolution. Observing the reconstruction
of the boundary condition (Figure 2a) the method is able to re-
cover the temporal distribution of the Gaussian function in 50
iterations. This same process is presented in Figure 2b. The tar-
get progresses as the number of iterations increases, reaching a
result similar to that observed at x = 1000 m. Both the recon-
struction of the boundary conditions and the target are achieved
satisfactorily without presenting any oscillations that might desta-
bilize the final solution. Figure 2c presents the evolution of the
functional 3 at each iteration, showing a progressive almost lin-
ear decrease that allows the objective to be reached quickly in a
few iterations. The technique struggles to recover the shape pro-
vided by the measured data. There is not a single rule for the
required number of control data points to ensure the successful
reconstruction. The more complete this is the best results will be
achieved. This first test case uses a few hundreds data.

The next case considers the same hydraulic and chemical con-
ditions but with a discontinuous function for the solute. The exact
solution is described in Genuchten et al. 36 . The solution assumes
a pulse of solute injected at x = 0 for a period of 1000 s with the
advection and diffusion processes described in the previous case.
With the target defined at xt = 1000 m, the reconstruction pro-
cess of both the spatial and temporal distributions begins with a
first guess of φ(0, t) = 0 g/m3.

Figure 3a illustrates the reconstruction of the boundary condi-
tion at some iterations. They present small oscillations due to the
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Fig. 1 Flowchart to reconstruct the boundary condition in a water quality model

shape of the original signal. The sharp change in t = 1000 s in the
function might be the cause of the variations in the last iterations.
These differences are completely reduced when the type of func-
tion to be reconstructed is smoother as observed in the previous
example.

On the other hand, Figure 3b shows the target at xt = 1000
m. The exact solution is successfully captured by the proposed
method after 80 iterations. The spatial distribution of the solute
concentration at t = 2000 s can also be compared against the ana-
lytical solution (Figure 3c). As observed, the longitudinal profiles
tend to converge to the exact solution progressively and without
presenting any instability during the entire optimization process.
Regarding the functional (see Figure 3d), the largest decrease is
found during the first 20 iterations; after that time the value still
diminishes but in a slower way.

4.2 Case 2. Reconstruction of the Streeter-Phelps model
variables including the water temperature

This case is proposed to check the adjoint models of Section 2.2
and 2.3 and to observe the effect of point sources on the main
channel. The reconstructed numerical distributions can be com-
pared with the original steady state boundary conditions imposed
on the problem (described as a reference solution in the different
figures shown) and longitudinal output profiles of the QUAL2E
model37 p. 651.

A trapezoidal channel of length 110 km, side slope 2, bottom
width 10 m and roughness coefficient of 0.035 is considered. The
bottom slope is 2×10−4 from 0 m to 50 km and 1.8×10−4 on-
wards. A flow of 5.787 m3/s, with a temperature of 20 ◦C, and
constant DO and CBOD concentrations of 7.5 and 2 g/m3, respec-
tively, enter this channel.

The first point source is located at 10 km. A constant discharge
flow QL1 = qL∆x= 0.463 m3/s is introduced with a temperature of
28◦C, and DO and CBOD concentrations of φ6 = 2.0 and φ2 = 200
g/m3 respectively. The second source is discharged to the main
river at x = 50 km at a rate of QL2 = 1.157 m3/s, with a tem-
perature of 15◦C, and concentrations of DO=9.0 and CBOD=5

g/m3. The SOD value is 5 gm−2d−1 only in the reach between 10
and 30 km. Otherwise, it is set to zero. The processes of both
CBOD settling removal rate and de-oxygenation rate are estab-
lished at 0.25 d −1 and 0.5 d−1 respectively. The details of the
other parameters such as meteorological variables can be found
in Chapra 37, p. 651. The target is located at xt = 60 km. At this
monitoring station, the quality variables are recorded by solving
the equations (2), (33) and (34) simultaneously with the system
(1) through a direct simulation. These distributions will be the
result of the decay processes of each substance as a function of
temperature and external contributions from both point sources
as well as weather conditions. The initial conditions of T, CBOD
and DO were of 0.0 g/m3 for this case.

The results after the optimization process are presented in Fig-
ures 4 and 5. An early convergence is observed for the recon-
struction of the boundary condition of water temperature (Figure
4a). The first 5 iterations are plotted in the graphs in order to
show the initial tendency. Around 10 iterations are enough in
this case to reduce the error below the prescribed tolerance at the
target location. Additional iterations are required to reconstruct
the upstream boundary condition used in the forward simulation.
The upstream boundary reconstruction of the CBOD (Figure 4c)
shows a sudden increase during the first day in the first itera-
tions. This may be due to the external contributions mainly from
the first source. A few of them are displayed. As the iterative
process progresses, the upstream condition tends to the required
constant value. The final reconstruction successfully fits the the-
oretical concentration after 150 iterations. The reconstruction of
the upstream boundary condition of the DO (Figure 4e) shows
that the proposed method is able to achieve the constant value of
7.5 g/m3 in a more uniform way.

Figure 4b shows a variable (in time) water temperature at the
target location due to the combined effect of the initial condi-
tion assumed (φ1(x,0)=0◦C), the meteorological variables and
the sources. These conditions generate an important tempera-
ture increase in approximately two days, reaching a steady state
from there on. Although the measured target varies over time,
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Fig. 2 Case 1. Evolution of reconstructed signals with the analytical solution (Gaussian function) at iterations 1, 5, 10, 15, 20, and 50 and functional
evolution.

the method provides an acceptable reconstruction in just 10 iter-
ations. The first 5 iterations are plotted in order to show this ten-
dency. Therefore, even in the presence of lateral inflows with dif-
ferent input values, the proposed objective is achieved. Figure 4d
shows the temporal evolution of the target of the CBOD variable
at different iterations. The variations during the first two days
are attributed to the lateral inflows. This time-varying distribu-
tion is fully captured with a good approximation by the technique
developed. Additionally the objective of the DO is displayed in
Figure 4f. The temporal distribution changes considerably during
the first two days. After this time, it becomes steady. This variabil-
ity is also reconstructed by the method in 150 iterations. In real
cases, the upstream boundary condition would not be available
for comparison as it is in the test case.

The longitudinal profile of the water temperature reconstructed
by the model can be compared with the output distribution of the
QUAL2E model (see Figure 5a). The solution at the last itera-
tion clearly demonstrates that both sources and meteorological
inputs are correctly formulated in the adjoint scheme. On the
other hand, the CBOD distribution (Figure 5b) changes instanta-
neously at x = 10 km, due to the first lateral inflow. This concen-
tration decreases progressively by oxidation of CBOD, displaying

a small downward jump at 50 km as a consequence of the sec-
ond release containing a lower concentration of CBOD than the
ambient water. The continuous variability is completely captured
as the optimization process progresses. The numerical solution
is acceptably close to the value estimated by the QUAL2E model.
Figure 5c illustrates the sequence of reconstruction of the DO for
some iterations. Note that 150 iterations are required to achieve
the reference QUAL2E solution. Figure 5d shows the functional
without normalizing. A value of 4.07×10−1 is achieved in 150
iterations. In this case, even though the value of the error is not
very low, it does not show significant variation in successive itera-
tions. Figure 6 shows the normalized functional. In this case it is
observed that the method requires a greater number of iterations
to achieve similar results. The cause is due to the amount of error
that enters each time step. This value is smaller compared to the
error without normalizing. This make it to slow down the opti-
mization. Therefore, using this method it is observed that it is not
necessary to adjust the error,10 contemplating in the following
cases an error without normalizing.
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Fig. 3 Case 1. Comparison of the numerical solutions with the proposed method with the exact solution at iterations 1, 5, 15, 20 and 50, and functional
evolution.

4.3 Case 3. Reconstruction of the Streeter-Phelps model
variables with the nitrogen cycle

The example proposed by Thomann and Mueller 30 will be used
to illustrate the performance of the technique for the nitrification
model. This problem considers a channel of rectangular section
of L=50 km, h=1 m y B=30.5 m, with a constant river slope of
So = 10−4 and a Manning coefficient of 0.1 sm−1/3. The flow rate
is Q=2.832 m3/s, with a constant temperature of 25◦C, CBOD
(φ2)=2 g/m3, DO (φ6)=8.3 g/m3, NH3 −N (φ4)=0.2g/m3, and
NO3 (φ5)=0.5 g/m3.

The decay coefficients of CBOD and nitrification used for this
case are of 0.3 d−1 and 0.15 d−1 respectively. The only dis-
charge present in this case comes from a treatment plant lo-
cated at x=1720 m. This source has the following characteris-
tics QL=0.328 m3/s, CBOD (φ2)=80 g/m3, DO (φ6)=8.3 g/m3,
NH3 −N (φ4)=15 g/m3, and NO3 (φ5)=0.5 g/m3. In order to
compare the computed values of total CBOD with the field data
of CBOD5, a constant ratio of CBOD/CBOD5 = 2 is considered.

With these conditions, the simulation is run forward recording
the targets of the quality variables at xt = 9.5 km. Once the ob-
jectives are defined, the process sketched in Figure 1 is followed.
Figure 7 shows both the reference solution and optimized concen-

trations at the upstream boundary (left) and target node (right)
for the DO, CBOD5 and NH3 −N.

The reconstruction of the upstream boundary condition follows
the same pattern: there are small variations in the first instants
of time, which are totally reduced as the iterative method con-
verges. On the other hand, observing the temporal distributions
at xt = 9.5 km, the method captures in an appropriate way all the
temporary variations registered at the monitoring station.

Figure 8 shows the comparisons between the compute and the
reference solution longitudinal profiles. The three spatial distri-
butions of DO, CBOD5 and NH3 −N are reconstructed, demon-
strating that the proposed adjoint formulation is a valid and an
accurate tool.

4.4 Case 4. Ebro River

The last case study is focused on a reach of the Ebro River basin
(Spain). The reach considered for this study is located between
the cities of Alagón and Zaragoza (see Figure 9) along approxi-
mately 40 km.

The objective of this transient case is to recover the informa-
tion of the water temperature T (φ1), DO concentration (φ6) and
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NH3 −N concentration (φ4) at the upstream boundary x0 = 0
(point 1 in Figure 9). This reconstruction will be achieved
through the measurement registered at xt = 40 km located in
Zaragoza (point 2 in Figure 9). This reconstructed information
(boundary condition) of the three chemical variables is compared
with the sporadic measures available in the period studied at the
gauging station of Alagón.

The period included in this scenario ranges from 02/15/2013
to 02/25/2013. The record of the measurements of both the hy-
drodynamic (h,Q) and chemical variables (T, DO, NH3 −N) was
performed with a periodicity of 15 minutes as long as the stations
were active. The collection of samples was carried out by two
public institutions: Confederación Hidrográfica del Ebro (CHE)
and Sociedad Aragonesa de Gestión Ambiental (SARGA). The val-
ues of water depth, water discharge, water temperature, as well
as the concentrations of DO and NH3 −N were taken from CHE
while SARGA measured the meteorological variables.

The reach was discretized using ∆x = 126 m. The Manning co-
efficient used for this scenario was n = 0.025 sm−1/3. The decay
coefficients used are represented in Table 2. These parameters
were previously calibrated based on values taken from the litera-
ture38.

Figure 10 depicts the simulated and measured discharge at the
station located in Zaragoza. Significant differences are observed
around the 4th and the 5th days. One of the factors that might
cause this dissimilarity is the irrigation extraction, which is not
quantified in the model.

Figure 11 shows the reconstruction of the quality variables (T,
DO and NH3 −N) at the upstream boundary (left) and at the tar-
get location (right). The reconstruction of the temperature at
x0=0 m (Figure 11a) in the last iterations follows a similar pat-
tern to the measurements by the public agency. Furthermore, the
speed of convergence in an unsteady event is remarkable. Only
20 iterations are required to recover the information of the water
temperature with an acceptable accuracy. However, more itera-
tions are necessary to reconstruct the DO and NH3 −N concentra-
tions.

As shown in Figure 11b, the target at x = 40 km is reached as
long as the number of iterations increases.

Figure 11c shows the reconstruction of the DO concentration
at the upstream boundary (x0 = 0 m). There are significant dif-
ferences during the first 5 days, attributed mainly to the algae
processes, which are not simulated32,39. These aquatic plants
can be generators or consumers of DO in water bodies. Another
source of uncertainty is the quality of the data and the measure-
ment method. However, despite these discrepancies, it is possible
to reconstruct the objective measured at the downstream moni-
toring station (see Figure 11 d).

Finally, Figure 11 e shows the reconstructions of the variable
NH3 −N only in the last iteration for the sake of clarity. The very
noisy distributions are mostly captured by the proposed method.
During the first two days, there is no record of this variable (very
common situation) but the reconstructed values give an idea of
what was the closest situation. Furthermore, the final distribution
of NH3 −N at the target location (see Figure 11 f) becomes very
close to the measured distribution.

5 Error analysis

In order to determine the performance of the adjoint model, a
quantitative analysis was carried out of the error on both the
reconstructed boundary conditions and the targets. The evalu-
ation was based on the Root-Mean-Square Error (RMSE) for all
the cases presented (Table 3). In general, this analysis shows
that RMSE for all the predicted targets presents good agreement
with the measured targets. The best results are achieved in Case
2. However the Case 4 shows greater RMSE due to the large
number of parameters that need to be calibrated and due to the
limited information used from the other state variables such as
the CDBO. In what concerns the reconstructed boundaries, the
greatest error observed is found in Case 1 (step function). The
reason, as previously mentioned, is attributed to the sharp recon-
structed shape. The method tends to be less efficient the sharper
the reconstructed signal is. A value of 0.497 is achieved in Case
4 (OD reconstuction) when the RMSE of the target is 0.092. This
difference could be due to monitoring stations. It is known that
the equipment must be periodically calibrated and standardized
in order to obtain good metrics. All these results indicate the cor-
rect performance of the proposed adjoint method as the RMSE
values are within an acceptable range.

6 Conclusions

The present work is devoted to develop and analyze an adjoint
approach to reconstruct the boundary condition for the chemi-
cal species and the water temperature in a water quality model
for both steady and unsteady configurations. Physically based
models and their adjoint formulation have been used to build the
method so that the optimization module has been based on the
gradient descent method. The formulation of the adjoint prob-
lem has been divided into several levels of complexity, including
the heat equation with all its external contributions, in order to
analyze the performance gradually according to the needs and to
the available information. This methodology is able to recover
the water quality missing information at some point of the do-
main, as long as there is a clear downstream measurement used
as target. The method also requires that all the rest of the hydro-
dynamic initial and boundary conditions are available to enable
the flow simulation. The technique has been successfully applied
to both steady and unsteady scenarios, demonstrating its relia-
bility and robustness. The adjoint method has also proved to be
efficient to calculate the gradient of a functional with respect to
the reconstructed parameter. This feature makes the technique
attractive compared to other optimization methods which could
be expensive in terms of computational burden. The efficiency
lies in the fact that the method solves an extra non-linear system,
on the same calculation mesh, producing the same accuracy in
the results. All this leads to obtain acceptable solutions on dif-
ferent configurations with little computational effort compared
to the trial and error processes that are usually well-established
when calibrating a model. Finally, the method can be useful in
the design of new quality control points that represent the whole
basin in order to guarantee certain quality standards regulated by
the Water Framework Directive (WFD).
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Table 2 Calibrated and recommended values for Case 4

Parameter Units Calibrated value Recommended value
Carbonaceous de-oxygenation rate (kd) at 20 ◦C day−1 0.2 0.16-0.21
Half-saturation for carbonaceous (kBOD) gO2/m3 0.5 0.5
ON-mineralization rate (k71) at 20 ◦C day−1 0.075 0.075
Nitrification rate (k12) at 20 ◦C day−1 0.11 0.09-0.13
Half-saturation for nitrification (kNIT ) gO2/m3 0.5 2.0
Denitrification rate (k2d) at 20 ◦C day−1 0.089 0.09
Half-saturation for denitrification (kNO3) gO2/m3 0.113 0.1
Oxygen reaeration (θR) - 1.024 1.024
BOD decomposition (θBOD) - 1.047 1.047
Sediment oxygen demand (θSOD) - 1.08 1.08
Fraction dissolved CBOD ( fd5) - 0.22 0.5
Fraction dissolved organic nitrogen ( fD7) - 1.0 1.0

Table 3 Quantitative analysis of the adjoint model

Case Variable
RSME

Boundary
Conditions

Target

Case 1
(Gaussian function)

- 0.014 0.053

Case 1
(step function) - 0.796 0.033

Case 2
T 0.076 0.002
CDBO 0.015 0.00051
DO 0.052 0.00085

Case 3
CDBO 0.048 0.0099
DO 0.131 0.0077
NH3 −N 0.0109 0.0023

Case 4
T 0.232 0.0163
DO 0.497 0.092
NH3 −N 0.038 0.0083
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Appendix I. Adjoint model of Streeter Phelps
The procedure to derive the adjoint equations of the Streeter-
Phelps model begins by defining the transport equations for both
organic matter and dissolved oxygen:

∂ (Aφ2)

∂ t
+

∂ (Qφ2)

∂x
= APR2, (33)

∂ (Aφ6)

∂ t
+

∂ (Qφ6)

∂x
= APR6, (34)

where and PR2 and PR6 are decay processes of each species. The
details of the complete set of all decay terms are presented in the
Appendix II. Notation. The derivation of the adjoint formulation

for the Streeter-Phelps model is achieved following the same pro-
cedure described for one solute but multiplying equations (33)
and (34) by two adjoint variables σ2,σ6 (that relate the CBOD
and DO variables), followed by an integration by parts and re-
strictions in the initial/boundary conditions. In order to evalu-
ate the sensitivity of the Streeter-Phelps model with respect to
changes in upstream concentration, variations must be taken on
both the CBOD (φ2) and DO (φ6):

δ I =
∫ T

0

∫ L

0

{
CA,2 +

[
A

∂R3

∂φ2
+A

∂R4

∂φ2

]
δφ2 +CA,6 +

[
A

∂R3

∂φ6
+A

∂R2

∂φ6
+

]

δφ6

}
dxdt −

∫ T

0

[
σ2Qδφ2

]
(0, t)dt −

∫ T

0

[
σ6Qδφ6

]
(0, t)dt = 0,

(35)

where for clarity CA,k denotes the advective term of the adjoint
variables σ2 and σ6 , defined as:

CA,k =−∂ (Aσk)

∂ t
− ∂ (Qσk)

∂x
, (36)

Taking the variations in the objective functional J with respect to
φ2 and φ6 and gathering this with eq. (35):

δJ =
∫ T

0

∫ L

0

{[
CA,2 +(σ2 +σ6)A

∂R3

∂φ2
+σ2A

∂R4

∂φ2
+

∂ r
∂φ2

]
δφ2

+

[
CA,6 +(σ2 +σ6)A

∂R3

∂φ6
+σ6A

∂R2

∂φ6
+

∂ r
∂φ6

]
δφ6

}
dxdt

−
∫ T

0
σ2Qδφ2dt −

∫ T

0
σ6Qδφ6dt = 0,

(37)

Appendix II. Notation
ka [T−1]: Reaeration constant.
θ : Temperature coefficient.
φsat [ML−3]: Saturation concentration of oxygen.
kd [T−1]: Deoxygenation rate at 20 ◦C.
T 20: Defined as the difference between water temperature and
reference temperature (20◦C).
kBOD [ML−3]: Half-saturation constant for oxygen limitation.
ss3 [LT−1]: Settling velocity for CBOD.
fd2: Fraction dissolved of CBOD.
SOD [ML−2T−1]: Sediment Oxygen Demand.
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K34 [T−1]: ON-mineralization at 20 ◦C.
fD3: Fraction dissolved of ON.
K45 [T−1] : Nitrification rate at 20 ◦C.
KNIT [ML−3]: Half-saturation constant for O2-limitation of nitrifi-
cation.
K5D [T−1]: Denitrification rate at 20 ◦C.
KNO3 [ML−3]: Half-saturation for O2-limitation on denitrification.
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Fig. 4 Case 2. Comparison of reconstructed boundary conditions (a, c and e) and target (b, d and f) with reference solutions
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Fig. 7 Case 3. Comparisons of the numerical and reference solutions at both x0 = 0 (a, c and e) and xt = 9.5 km (b, d, and f) at iterations 1, 5, 10, 15,
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Fig. 9 Case 4. Alagón-Zaragoza study reach
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Fig. 11 Case 4. Comparisons of numerical optimized concentration with measurements in both x0 = 0 m (a, c and e) and xt = 40 km (b, d and f).
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