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Abstract: The paper presents the Triads Geometric Consistency Index (T-GCI), a measure for
evaluating the inconsistency of the pairwise comparison matrices employed in the Analytic Hierarchy
Process (AHP). Based on the Saaty’s definition of consistency for AHP, the new measure works directly
with triads of the initial judgements, without having to previously calculate the priority vector, and
therefore is valid for any prioritisation procedure used in AHP. The T-GCI is an intuitive indicator
defined as the average of the log quadratic deviations from the unit of the intensities of all the cycles
of length three. Its value coincides with that of the Geometric Consistency Index (GCI) and this
allows the utilisation of the inconsistency thresholds as well as the properties of the GCI when using
the T-GCI. In addition, the decision tools developed for the GCI can be used when working with
triads (T-GCI), especially the procedure for improving the inconsistency and the consistency stability
intervals of the judgements used in group decision making. The paper further includes a study of
the computational complexity of both measures (T-GCI and GCI) which allows selecting the most
appropriate expression, depending on the size of the matrix. Finally, it is proved that the generalisation
of the proposed measure to cycles of any length coincides with the T-GCI. It is not therefore necessary
to consider cycles of length greater than three, as they are more complex to obtain and the calculation
of their associated measure is more difficult.

Keywords: Analytic Hierarchy Process (AHP); consistency; Geometric Consistency Index (GCI); triads;
cycles

1. Introduction

Since the origin of the species, humans have used pairwise comparisons to choose between tangible
elements. This has generally involved taking the lesser element as a reference unit, and then indicating
how many times the greater element “includes” or “dominates” the lesser. This intuitive method for
comparing elements has been formalised in the course of human history. After the seminal work of
the Majorcan Ramon Llull (1232–1315) (see [1]), the comparisons technique was formally introduced in
the second half of the 19th century [2] and further developed in the early years of the 20th century [3].
Following the substantive rationality that was prevalent in the traditional scientific method, pairwise
comparisons were generally utilised to order tangible elements, based on an objective attribute with a
known unit of reference or measurement scale.

In the mid-1970s, Thomas L. Saaty [4] instigated and refined a new school of thought in the field
of multicriteria decisions—the Analytic Hierarchy Process (AHP). Using a hierarchical model of the
problem and pairwise comparison to incorporate the preferences of the decision maker, AHP allows
for the integration of the objective aspects associated with the traditional scientific method and the
subjective aspects associated with the human factor.
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The AHP methodology comprises four stages [5]: (i) modelling, or the construction of a hierarchical
model; (ii) valuation, or the incorporation of the preferences by means of pairwise comparisons; (iii)
prioritisation, or the calculation of the local priorities associated with the nodes of the hierarchy, by
means of an existing prioritisation procedure, and the calculation of the global priorities by means of
the principle of hierarchical composition; and (iv) synthesis, or the determination of the total priorities
of the alternatives by means of one of the available aggregation procedures.

In addition to integrating the subjective with the objective, AHP permits the explicit evaluation of
the consistency of the decision maker at the time of eliciting their judgements, whilst admitting small
levels of inconsistency. An earlier analysis of inconsistency can be found in [6–8].

Given a pairwise comparison matrix A(n×n) = (aij) with aijaji = 1 and aij > 0, Saaty [4]
established that the matrix A is consistent when aijajk = aik ∀i, j, k = 1, . . . , n. In the same way [9], A is
consistent if all the cycles of length three fulfil aijajkaki = 1 ∀i, j, k = 1, . . . , n.

Although consistency in AHP is defined in terms of triads of the elements of the matrix A = (aij),
its evaluation, following Saaty’s proposal (and the majority of methods that are traditionally followed
for the evaluation of inconsistency), depends on the prioritisation procedure that is employed, that is
to say, the measurement of inconsistency is linked to the prioritisation procedure.

Nevertheless, a group of measures explicitly based on the Saaty’s definition of consistency that
are not linked to any prioritisation method are being considered. The present work puts forward an
inconsistency measure—the Triads Geometric Consistency Index (T-GCI)—which belongs to this last
group but that coincides with the Geometric Consistency Index (GCI), a measure of the former group.
This fact provides a link between both groups of inconsistency measures.

The most relevant contributions of this work are: (i) the definition of the T-GCI; (ii) the
demonstration of its relationship with one of the inconsistency measures most used in AHP, the GCI [10],
making it possible to use the properties of the GCI as well as its thresholds to make the T-GCI operative;
(iii) the study of the computational complexity of the T-GCI, comparing with that of the GCI; and (iv)
the generalisation of the T-GCI to cycles of any length.

After this brief Introduction, the remainder of the article is structured as follows. Section 2 offers a
summary of the concept of consistency in AHP and details some measurements for its evaluation that
have been used in the scientific literature. Section 3 defines the T-GCI, proves its relationship with
the GCI, explains its operational behaviour, gives thresholds for evaluation of inconsistency in AHP
and analyses its computational complexity. Section 4 places the T-GCI in a more general context of
inconsistency measurements based on cycles of any length and demonstrates that they are coincident
with the T-GCI. Section 5 highlights the most important conclusions of the work and suggests some
future lines of research.

2. Consistency in the Analytic Hierarchy Process

Defined as the cardinal transitivity in judgements (aijajk = aik ∀i, j, k), consistency in AHP is
a desirable property that reflects a certain rationality, logic or formal coherence in the actions of
individuals, especially when they compare intangible aspects for which appropriate measurement
scales are not currently available.

Some of the factors that may cause inconsistency are: (i) the ambiguity and complexity of the
problem; (ii) the knowledge of the actors in the matter under consideration; (iii) the affective aspects
(mood, emotions, personality features, attitudes and motivations) that condition the behaviour of
the actors; (iv) the level of attention (errors in the response) during the assessment process [11,12];
and (v) the rationality of the procedure followed when incorporating preferences, especially when
working with subjective aspects. Some examples are: the assessment scale [13], the use of extreme
values [14], the number of comparisons [15] and the incorrect calculation of priorities [16]. To limit the
impact of the aspects that determine the preferences of the decision makers, it is necessary to measure
their inconsistency when eliciting the judgements and to set appropriate thresholds for making the
considered measure operational.
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In the AHP literature, two large groups of inconsistency measures can be distinguished: (i) those
linked to the prioritisation procedure followed; and (ii) those based on triads, which explicitly
incorporate the definition of consistency given by Saaty. A description of some of the measures
(the most relevant and widely utilised) from the two groups is set out below.

Given a positive reciprocal pairwise comparison matrix A(n×n) = (aij), the Eigenvector (EV)
method obtains the priority vector by solving the following system:

Aw = λmax(A)w, with wj ≥ 0, j = 1, . . . , n and
n

∑
j=1

wj = 1 (1)

where λmax(A) it the maximum eigenvalue of the pairwise comparison matrix A. For this prioritisation
method, Saaty [5] proposes the measure of inconsistency known as the Consistency Ratio (CR):

CR(A) =
CI(A)

RI(n)
(2)

The numerator of this expression is the Consistency Index, CI(A), which measures the
inconsistency of matrix A as the normalised difference between the principal eigenvalue and the
size of the matrix:

CI(A) =
λmax(A)− n

n− 1
=

1
n(n− 1)

n

∑
i 6=j

(eij − 1) (3)

where eij = aijwj/wi is the error obtained when estimating the ratio wi/wj through judgement aij.
The value of the CI also corresponds to the average of the deviations of the errors with respect to
the unit.

The denominator of Equation (2), RI(n), is the Random Consistency Index. This value removes
the influence of the order of the matrix A by obtaining the expected value of the CI(A) considering
random matrices of order n with values in the set {1/9, 1/7, . . . , 1/3, 1, 3, . . . , 9}. The values of RI(n),
obtained for 100,000 simulations, can be seen in [10].

If a matrix A is consistent, λmax(A) = n and then CI(A) = CR(A) = 0. Saaty [5] argued that a
consistency ratio of less than 10% (CR ≤ 0.10) would be permissible. Several authors have criticised
this rule and its empirical justification [17,18]. In a later work, Saaty [19] proposed the thresholds 5%
for n = 3, 8% for n = 4 and 10% for n > 4.

Since the appearance of the Conventional-AHP [4,5], several prioritisation procedures and
inconsistency measures have been proposed in the literature. The most extended prioritisation procedure
is the Row Geometric Mean (RGM) or Logarithmic Least Square (LLS) method [5,20]. This method is
widely employed due to simplicity of use and its psychological and mathematical properties [10,21–23].
For the RGM, Aguarón and Moreno-Jiménez [10] proposed to use the inconsistency measure named the
Geometric Consistency Index (GCI), given by:

GCI =
1

(n− 1)(n− 2)

n

∑
i,j=1

log2 eij (4)

where eij = aijωj/ωi and ω is the priority vector obtained using the RGM method, ω = (ωi) =(
∏n

k=1 a1/n
ik

)
.

Other inconsistency measures related to the prioritisation procedures were proposed by:
(i) Golden and Wang [24], who suggested an index to measure the deviations between the pairwise
comparison matrix entries and the priorities obtained either by the EV or the RGM; (ii) Stein and
Mizzi [25], who proposed an index for the Additive Normalisation prioritisation method [26]; and (iii)
Ramík and Korviny [27], who put forward another index for the RGM. Kou and Lin [28] proposed
a prioritisation procedure based on similarity measures, the Cosine Maximisation (CM) method,
and defined the associated inconsistency measure, the Cosine Consistency Index (CCI).



Mathematics 2020, 8, 926 4 of 16

Koczkodaj [18,29,30] designed one of the first inconsistency measures that does not depend on
prioritisation methods and is based on triads:

KI(A) = max
i<j<k

{
min

{∣∣∣∣∣1− aik
aijajk

∣∣∣∣∣ ,

∣∣∣∣∣1− aijajk

aik

∣∣∣∣∣
} }

(5)

Several other inconsistency measures have appeared in this group. Especially noteworthy is that
of Pelaez and Lamata [31], who defined an index using the average of all the determinants of the 3× 3
submatrices of the pairwise comparison matrix (based on the fact that, if aijajk = aik, the corresponding
determinant is equal to 0):

PLI(A) =
n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k=j+1

(
aik

aijajk
+

aijajk

aik
− 2

)
/
(

n
3

)
(6)

Other indices in the literature have not been located in either of the two previous groups
(see [32–38]). Brunelli et al. [39] analysed the proportionality between four of the inconsistency indices
whilst Szybowski [40] defined triad and cycle inconsistency indexes that are induced by metrics,
and proved that the Koczkodaj’s measure is an index of this kind. A survey on the inconsistency
measures, their properties and relations can be seen in [41]. The current paper presents two new
inconsistency measures based, respectively, on triads and cycles, and proves that, under certain
conditions, both coincide with the GCI [10].

3. The Triads Geometric Consistency Measure (T-GCI)

This section presents and analyses a triads-based indicator that explicitly considers Saaty’s
definition of consistency expressed as aijajkaki = 1 ∀i, j, k = 1, . . . , n, that is to say, that for each list of
judgements that form a cycle of length 3, the product of their intensities is the unit. The suitability of
this definition of consistency is intuitively justified in the following example.

Let the matrices A and B be

A =

 1 2 7
1/2 1 3
1/7 1/3 1

 B =

 1 2 9
1/2 1 3
1/9 1/3 1


It can be seen that in both cases the condition of consistency is violated when considering the only

three judgements elicited: a12a23 6= a13 (2× 3 6= 7) and b12b23 6= b13 (2× 3 6= 9). The two matrices are
inconsistent, but it can be intuitively appreciated that matrix A is closer to consistency than matrix
B. It can be verified that CR(A) = 0.002 and GCI(A) = 0.008, as well as that CR(B) = 0.017 and
GCI(B) = 0.055.

To determine which of these two matrices is more inconsistent, it is not necessary to apply a
prioritisation method and calculate its associated inconsistency measure. Inconsistency measures
based on triads employ the evaluation of the intensities of cycles of length 3. If these intensities are
close to the unit, the matrix will be close to consistency, while distant values will indicate a lack of
consistency. It is therefore necessary to start by measuring the deviations from the unit of the intensities
of cycles of length 3, dijk = f

(
aijajkaki

)
, and then aggregate the deviations of all existing cycles of

length 3. In general, we can express this as:

M = g
(

d123, . . . , dijk . . . dn(n−1)(n−2)

)
, i 6= j 6= k (7)

A first possibility is to consider the difference between the intensity of the cycle and the unit (dijk =

aijajkaki − 1), and then aggregate the differences additively (M would simply be the sum function).

M1 = ∑
i 6=j 6=k

(
aijajkaki − 1

)
(8)
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This measure contemplates intensity when going through each cycle in both directions. In the
case of inconsistency, one of these intensities will always be greater than 1 and the other less than
1. When considering a cycle and its inverse, addends of type

(
aijajkaki + (aijajkaki)

−1 − 2
)

are taken.
These addends are always positive (x + 1/x ≥ 2 if x > 0), thus the overall measure will always be
non-negative (and null when the matrix is consistent):

M1 = 3 ∑
i<j<k

(
aijajkaki +

1
aijajkaki

− 2

)
(9)

Except for the factor, this last expression was the one followed by the PLI measure proposed by
Pelaez and Lamata (Equation (6)).

There are two methods for avoiding the different contribution to the inconsistency measures
of cycles with intensity greater than the unit and that of its inverses (intensity less than the unit):
(i) consider cycles of only one type, either greater than one or less than one; or (ii) consider the
definition itself, as is proposed in the current work.

With the first method, reconsidering dijk = aijajkaki − 1 as the divergence function, the maximum
as the aggregation function and only cycles with intensity greater than one, a new family of
inconsistency measures is derived:

M2 = max
i<j<k

{
aijajkaki − 1 with aijajkaki > 1

}
(10)

Measure M2 does not aggregate the deviations of the intensity of all the cycles of length 3 with
respect to 1; it only considers the extreme discrepancy. Further, the use of the maximum function
presents problems from an analytical point of view. It can easily be shown that the Koczkodaj’s
measure KI (5) corresponds to the M2 function.

To define inconsistency measures that verify the reversibility in the intensity of the cycles of length
3, that is to say, that the cycles in both directions contribute to the indicator in the same value, this work
suggests the use of the logarithms of these intensities. Obviously, the values corresponding to a cycle
and its inverse would be compensated, thus it is necessary to consider them in positive terms. The first
option, taking absolute values, results in the same analytical problems as the Koczkodaj index. The use
of the squares of the logarithms of the intensities is therefore proposed.

With this method, the divergence functions are dijk =
(

log aijajkaki − log 1
)2

, which can be
understood as the log quadratic distance between the intensity of the cycle and the unit. Finally, the
arithmetic mean function corrected by the number of involved judgements is used as the aggregation
function. In the particular case of Equation (11), the denominator indicates the number of terms,
n(n − 1)(n − 2), in the summation multiplied by the number of judgments, 3, that intervene in
each summand.

Definition 1. Given a pairwise comparison matrix, A(nxn) =
(
aij
)

with aijaji = 1 and aij > 0, the Triads
Geometric Consistency Index is defined as

T-GCI(A) =
∑i 6=j 6=k log2

(
aijajkaki

)
3n(n− 1)(n− 2)

(11)

Remark 1. Since there are 3! = 6 cycles (ijk, ikj, jik, jki, kij, kji), including the indices i, j, k, that contribute to

Equation (11) in the same way:
(

log aij + log ajk + log aki

)2
. This expression can be rewritten as:

T-GCI(A) =
2 ∑i<j<k log2

(
aijajkaki

)
n(n− 1)(n− 2)

(12)
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3.1. A Link between the Two Groups of Inconsistency Measures

The following result establishes the relationship between the proposed measure (T-GCI), based on
triads, and the GCI, based on a prioritisation method (RGM).

Theorem 1. Given a pairwise comparison matrix, A(nxn) =
(
aij
)

with aijaji = 1 and aij > 0, it holds that

T-GCI(A) = GCI(A) (13)

Proof. See Appendix A.

This result allows the utilisation of the properties and relationships with other inconsistency
measures of the GCI [41,42], as well as its inconsistency thresholds and the decision tools developed
for it, when working with the T-GCI. In particular, the procedure proposed for improving the
inconsistency [43,44] and the judgements’ consistency stability intervals used in group decision
making [45–49].

The authors of [42,50–54] posed different properties that inconsistency measures should meet.
Brunelli and Fedrizzi [50] give five axiomatic properties for inconsistency indices: (i) the existence
of a unique element representing consistency; (ii) invariance under permutation of alternatives; (iii)
monotonicity under reciprocity-preserving mapping; (iv) monotonicity on single comparisons; and
(v) continuity. Brunelli [52] added a new property: (vi) invariance under inversion of preferences.
The authors of [50,52] also proved that the indexes CR, GCI, KI and PLI satisfy the six axiomatic
properties; therefore, in line with Theorem 1, these properties are also verified by the T-GCI, as they
are verified by the GCI.

In the last decade, many authors [18,41,50–52,54–62] have made efforts to formalise the definition
of inconsistency measure; they have demanded a series of properties that guarantee the construction
of an axiomatic system. The introduction and justification of reasonable properties may help to narrow
the general definition of inconsistency index and identify problematic indices that do not satisfy these
requirements [54].

Among the many properties proposed for inconsistency measures are those of Koczkodaj and
Szybowski [63] (the normalisation of any inconsistency index) and Mazurek [64] (an upper limit on the
value of an inconsistency index). Without discussing the relevance of the reversibility of the intensity of
the cycles of length 3 (mentioned above) or these last two properties, it can be said that all of them are
fulfilled by the T-GCI; the first by construction, and the other two by slightly adapting their expression.
It would be enough to define the Normalised T-GCI as 1− e−T-GCI . It should be noted that the problem
is still unresolved, and this is evidenced by the numerous articles that are regularly published.

In addition to the properties of the indicator, another fundamental aspect when applying it in
practice is the existence of thresholds that allow the T-GCI to be operational. In this case, the thresholds
obtained in [10] for the GCI by analogy with the Saaty CR are available as a reference. These values
are: T-GCI = 0.31 for n = 3, T-GCI = 0.35 for n = 4 and T-GCI = 0.37 for n > 4.

3.2. Computational Complexity

This section describes a study of the computational complexity of both measures: the GCI and the
T-GCI. It allows the selection of the most appropriate expression with regards to the size of the matrix.

The first step in the calculation of the GCI is to determine the priorities. Next, the errors must be
identified. Then, the squares of the logarithms of the errors must be calculated, added and divided by
the denominator. For the calculation of each priority wi (there are n in total), n− 1 products are needed
to obtain ∏j aij. To calculate the nth root, a logarithm, a division and an exponential are required.
In total, n(n− 1) products, n logarithms, n divisions and n exponentials. As the cost in computer cycles
of the product and the division are usually the same, the divisions are counted as products. Similarly, the
exponentials are counted as logarithms. Therefore, to obtain the priorities, n(n− 1) + n = n2 products
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and n + n = 2n logarithms are required. When the priorities have been calculated, the errors (one
product and one division) must be obtained for each of the judgments that are above the diagonal, a
total of n(n− 1)/2, then their logarithms must be squared (one product). This equals three products and
one logarithm for each error; 3n(n− 1)/2 products and n(n− 1)/2 logarithms are therefore required.
Next, all the squared logarithms of the errors are added, which represents n(n− 1)/2− 1 sums. Finally,
the result is divided by n(n− 1) and multiplied by 2, which gives three products.

The T-GCI is obtained by calculating the term log2 aijajkaki for each of the different triads
(n(n− 1)(n− 2)/6). For this calculation, two products, one logarithm and one additional product
(square) are needed, that is, three products and one logarithm. This makes a total of n(n− 1)(n−
2)/2 products and n(n − 1)(n − 2)/6 logarithms. Next, all the squared logarithms are added,
which represent n(n− 1)(n− 2)/6− 1 sums. Finally, the result is divided by n(n− 1)(n− 2) and
multiplied by 6, which means making four products. The total number of operations of each type
necessary to obtain both measures are summarised in Table 1 .

Table 1. Computational Complexity of GCI and T-GCI.

Operation GCI T-GCI

Sums
n(n− 1)

2
− 1

n(n− 1)(n− 2)
6

− 1

Products n2 +
3n(n− 1)

2
+ 3

n(n− 1)(n− 2)
2

+ 4

Logarithms 2n +
n(n− 1)

2
n(n− 1)(n− 2)

6

It is easy to notice that the calculations needed to obtain the GCI and the T-GCI are, respectively,
of orders o(n2) and o(n3). However, for small values of n (which is common in AHP), the constants can
be very important. Table 2 shows the number of operations of each type for the values of n commonly
employed in AHP.

Table 2. Computational complexity of GCI and T-GCI for different values of n.

GCI T-GCI
n Sums Products Logarithms Sums Products Logarithms

3 2 21 9 0 7 1
4 5 37 14 3 16 4
5 9 58 20 9 34 10
6 14 84 27 19 64 20
7 20 115 35 34 109 35
8 27 151 44 55 172 56
9 35 192 54 83 256 84

It can be noted that for values of n less than 8 the T-GCI requires fewer operations (logarithms are
more complex, followed by products and sums). Obviously, this is not so important if the calculation
of the inconsistency of only one matrix is the objective, but in a simulation study with a large number
of matrices, e.g., 106, the use of one or other measure can have a significant impact on simulation time.

3.3. Example

Consider the following matrix:

A =


1 2 3 4

1/2 1 5 6
1/3 1/5 1 7
1/4 1/6 1/7 1


The steps for the calculation of both measures are followed in Tables 3 and 4. It can be seen that

for this size of matrix the calculation of the T-GCI is less complicated.
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The steps for the calculation of the GCI are (Table 3): (i) the calculation of ∏j aij for each row;
(ii) the calculation of priorities wi; (iii) the calculation of the errors eij; (iv) the calculation of the squared
logarithm of the errors; and (v) the value of the GCI.

Table 3. Calculation of the GCI.

i ∏j aij wi =
(

∏j aij

)1/4
E = (eij) = (aijwj/wi)

(
log2 eij

)
1 1× 2× 3× 4 = 24 2.213


1 1.778 1.120 0.502

1 2.100 0.847
1 2.352

1




0 0.331 0.013 0.475
0 0.550 0.028

0 0.732
0

2 1
2 × 1× 5× 6 = 15 1.968

3 1
3 ×

1
5 × 1× 7 = 7

15 0.827
4 1

4 ×
1
6 ×

1
7 × 1 = 1

168 0.278

∑
i<j

log2 eij = 2.129

GCI =
2× 2.129

(4− 1)× (4− 2)
= 0.710

Table 4 shows the calculation of the product and squared logarithms for each of the four triads or
cycles of length 3. The T-GCI is obtained by adding these values and dividing by n(n− 1)(n− 2)/6.

Table 4. Calculation of the T-GCI.

ijk aijajkaki log aijajkaki log2 aijajkaki

123 2× 5× 1
3 = 10

3 1.204 1.450
124 2× 6× 1

4 = 3 1.099 1.207
134 3× 7× 1

4 = 21
4 1.658 2.750

234 5× 7× 1
6 = 35

6 1.764 3.110

∑
i<j<k

log2 aijajkaki = 8.516

T-GCI =
2× 8.516

4× (4− 1)× (4− 2)
= 0.710

4. Inconsistency Measures Based on Cycles

In general, if A is consistent, it holds [9] that

ai1i2 ai2i3 . . . ail i1 = 1 ∀i1, i2, . . . , il (14)

An inconsistency measure can therefore be defined through the intensities of cycles of any length
l (> 2).

Definition 2. Given a pairwise comparison matrix, A(nxn) =
(
aij
)

with aijaji = 1 and aij > 0, the l−Cycles
Consistency Index is defined as

Il(A) =
∑i1 6=i2 6=···6=il log2 (ai1i2 ai2i3 . . . ail i1

)
lVn,l

(15)

where Vn,l are the number of l-variations of n elements.

Remark 2. Clearly, the T-GCI(A) = I3(A).

A cycle of length greater than 3 can be easily broken down into product of cycles of length 3.
For example (Figures 1 and 2), when l = 4:

aijajkaklali = aijajk (akiaik) aklali =
(

aijajkaki

) (
aik aklali

)
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i j

kl

ija

jka

kla

lia

Figure 1. Cycle of length 4.

i j

kl

ija

jka

kla

lia
kia

ika

Figure 2. Cycles of length 3.

Therefore, a measure of divergence dijkl = f (aijajkaklali) can be obtained as dijkl = f ′(dijk, dikl)

and a global measure can be considered as a function of the intensities of the cycles of length 3.
The following result not only allows the expression of the general index Il(A) to be obtained in

terms of cycles of length 3, but also proves that all indexes Il(A) provide the same value regardless of
the value of l.

Theorem 2. Given a pairwise comparison matrix, A(nxn) =
(
aij
)

with aijaji = 1 and aij > 0, it holds that

Il(A) = GCI(A) (16)

Proof. See Appendix A.

These cycle-based indices are equivalent, regardless of the cycle length that is considered.
Given that the complexity of calculation increases as l increases, it is sufficient to consider the T-GCI
when the objective is to measure the inconsistency from a judgements cycles-based approach.

It can be easily verified that the calculation of the index Il(A) has complexity o(nl), with n being
the order of the matrix A. From a computational point of view, its calculation for n > 3 will not be of
interest. Since all these measures are equal, it is faster to obtain the value of I3(A) = T-GCI(A).

5. Conclusions

The evaluation of the consistency of decision makers when incorporating their preferences in the
AHP, in other words, when eliciting their judgements in pairwise comparison matrices, is one of the
most outstanding characteristics of this multi-criteria technique. The initial measures of inconsistency,
including the two most widely employed in the scientific literature (CR and GCI), were associated
with indexes derived for the prioritisation method used (EV and RGM, respectively). Along with this
approach, another method, based on triads, is developed. It evaluates the inconsistency using the
definition of a consistent pairwise comparison matrix, or equivalently, in terms of the cycles of length
3, comprising the elements of the matrix.

The current paper introduces a new indicator based on triads (T-GCI) that links the two approaches
followed in the evaluation of the inconsistency of AHP. As demonstrated in the paper, this indicator
coincides with the GCI, a measure of inconsistency proposed for the RGM. The relationship between the
two indicators can take advantage of the properties and characteristics of both to exploit their potential
with regards to calculation.
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The work does not analyse the relationship between consistency and representativeness of the
priority vector derived from the pairwise comparison matrix. The main objective is to propose a
new indicator based on triads, the T-GCI, which links the two approaches considered when defining
inconsistency measures and is more efficient than the GCI for matrices with fewer than eight alternatives.
This fact is of great significance for simulation studies that require reiterating on numerous occasions
the calculation of the inconsistency measure. It is also necessary to emphasise the fact that our work
does not deal with obtaining the T-GCI for incomplete matrices. Studies analysing the estimation of
inconsistency for incomplete matrices can be seen in [65,66].

The relationship between the T-GCI and the GCI, and the similarities with different inconsistency
measures already proved for the GCI, can be used to transfer the results obtained for it to other
inconsistency measures, based on triads or the priority vectors; in particular, the setting of thresholds
to make those inconsistency indices without thresholds operational. Finally, it has been shown that
the generalisation of the T-GCI to cycles of any length can be expressed in terms of cycles of length 3,
which facilitates calculation. Future extensions that are under consideration include how to obtain
thresholds for the T-GCI that would be calculated directly, or obtained in a similar way to the methods
for other related indicators.
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Appendix A. Proofs

Proof of Theorem 1. Consider the definition of the index T-GCI(A), where the denominator of that
measure is denoted as D′ = 3n(n− 1)(n− 2). It can be seen that the sum extends, without problems,
to all subscripts i, j, k.

T-GCI(A) =
1

D′ ∑
i,j,k

log2
(

aijajkaki

)
=

1
D′ ∑

i,j,k

(
log aij + log ajk + log aki

)2
=

= ∑
i,j,k

(
log a2

ij + log a2
jk + log a2

ki + 2 log aij log ajk + 2 log aij log aki + 2 log ajk log aki

)
By symmetry, the first three terms are identical and can be written as

∑
i,j,k

log a2
ij = n ∑

i,j
log a2

ij

On the other hand, the last three addends are also equal to each other. Thus, the index can be
expressed as:

T-GCI(A) =
1

D′

(
3 ∑

i,j
log a2

ij + 6 ∑
i,j,k

log aij log ajk

)
=

=
1

3n(n− 1)(n− 2)
3

(
n ∑

i,j
log a2

ij + 2 ∑
i,j,k

log aij log ajk

)
=

=
1

n(n− 1)(n− 2)

(
n ∑

i,j
log a2

ij + 2 ∑
i,j,k

log aij log ajk

)
(A1)
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Now, consider the expression of GCI:

GCI =
∑i,j log2 eij

(n− 1)(n− 2)
=

∑i,j log2 aijwj/wi

(n− 1)(n− 2)

where eij = aijωj/ωi is the error obtained when the ratio of priorities ωi/ωj is approximated by aij

and w = (wi) is the priority vector obtained with the RGM method: ωi = ∏n
k=1 a1/n

ik .
Combining it, and naming D = (n− 1)(n− 2):

GCI =
1
D ∑

i,j
log2 aij

ωj

ωi
=

1
D ∑

i,j
log2 aij

∏n
k=1 a1/n

jk

∏n
k=1 a1/n

ik

=

=
1
D ∑

i,j
log2

aij
∏n

k=1 a1/n
jk

∏n
k=1 a1/n

ik

 =
1
D ∑

i,j

(
log aij +

1
n

n

∑
k=1

log ajk −
1
n

n

∑
k=1

log a1/n
ik

)2

=

=
1

n2D ∑
i,j

(
n log aij +

n

∑
k=1

log ajk +
n

∑
k=1

log aki

)2

=

=
1

n2D ∑
i,j

(
n log aij +

n

∑
k=1

log ajk +
n

∑
k=1

log aki

)(
n log aij +

n

∑
l=1

log ajl +
n

∑
l=1

log ali

)
=

=
1

Dn2

n2 ∑
i,j

log2 aij + n ∑
i,j,l

log aij log ajl + n ∑
i,j,l

log aij log ali+

+ n ∑
i,j,k

log aij log ajk + ∑
i,j,k,l

log ajk log ajl + ∑
i,j,k,l

log ajk log ali +

+ n ∑
i,j,k

log aij log aki + ∑
i,j,k,l

log aki log ajl + ∑
i,j,k,l

log aki log ali


It is clear that the second, third, fourth, and seventh terms are the same, represented as

n ∑i,j,k log aij log ajk. Note that the fifth term:

∑
i,j,k,l

log ajk log ajl = ∑
i

∑
j,k,l

log ajk log ajl = −n ∑
j,k,l

log al j log ajk

The same with the ninth addend:

∑
i,j,k,l

log aki log ali = ∑
j

∑
i,k,l

log aki log ali = −n ∑
i,k,l

log ali log aik

The two addends are identical and represented by changing subindices to −n ∑i,j,k log aij log ajk
The sixth and eighth addends can also be simplified:

∑
i,j,k,l

log ajk log ali = ∑
j,k

log ajk ∑
i,l

log ali = 0× 0 = 0

Therefore,

GCI =
1

Dn2

n2 ∑
i,j

log2 aij + n ∑
i,j,k

log aij log ajk + n ∑
i,j,k

log aij log ajk+

+n ∑
i,j,k

log aij log ajk − n ∑
i,j,k

log aij log ajk + 0 +

+n ∑
i,j,k

log aij log ajk + 0− n ∑
i,j,k

log aij log ajk

 =

=
1

Dn2

n2 ∑
i,j

log2 aij + 2n ∑
i,j,k

log aij log ajk
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Finally, replacing the denominator D and simplifying:

GCI =
1

n2(n− 1)(n− 2)

(
n2 ∑

i,j
log2 aij + 2n ∑

i,j,k
log aij log ajk

)
=

=
1

n(n− 1)(n− 2)

(
n ∑

i,j
log2 aij + 2 ∑

i,j,k
log aij log ajk

)
(A2)

Equations (A1) and (A2) coincide, thus it is proved that T-GCI(A) = GCI(A).

Proof of Theorem 2. This is similar to the proof of Theorem 1. Commencing with the definition of the
index Il(A) to prove that it matches Equation (A2).

Il(A) =
1

lVn,l
∑

i1 6=i2 6=···6=il

log2 (ai1i2 ai2i3 . . . ail i1
)
=

=
1

lVn,l
∑

i1 6=···6=il

(
log ai1i2 + log ai2i3 . . . + log ail i1

)2

By developing the summation:

∑
i1 6=···6=il

(
log ai1i2 + log ai2i3 . . . + log ail i1

) (
log ai1i2 + log ai2i3 . . . + log ail i1

)
= ∑

i1 6=···6=il

(
log2 ai1i2 + log2 ai2i3 . . . + log2 ail i1

)
+

+ 2 ∑
i1 6=···6=il

(
log ai1i2 log ai2i3 . . . + log ail−1il log ail i1

)
+

+ ∑
i1 6=···6=il

(
. . . log air ir+1 log aisis+1 . . .

)

In the first summation, squared logarithms of the judgements are grouped. It should be noted
that, by symmetry, each of the terms must produce the same sum:

∑
i1 6=···6=il

(
log2 ai1i2 + log2 ai2i3 . . . + log2 ail i1

)
=

= l ∑
i1 6=···6=il

log2 ai1i2 = l ∑
i3 6=···6=il

∑
i1 6=i2

log2 ai1i2

= l(n− 2)(n− 3) · · · (n− l + 1) ∑
i1 6=i2

log2 ai1i2

The second summation groups the products of the logarithms of judgements that are adjacent in
the cycle, i.e. those that have a common subscript. Again, by symmetry, they are all the same and can
be expressed as:

2 ∑
i1 6=···6=il

(
log ai1i2 log ai2i3 . . . + log ail−1il log ail i1

)
=

2l ∑
i1 6=···6=il

log ai1i2 log ai2i3 = 2l ∑
i4 6=···6=il

∑
i1 6=i2 6=i3

log ai1i2 log ai2i3 =

= 2l(n− 3) · · · (n− l + 1) ∑
i1 6=i2 6=i3

log ai1i2 log ai2i3 =
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Finally, the third sum contains products of logarithms of judgements that have no subscript in
common. That each of them is equal to zero can be verified:

∑
i1 6=···6=il

(
log air ir+1 log aisis+1

)
= ∑

i1 6=···6=il
∑

ir 6=ir+1

∑
is 6=is+1

log air ir+1 log aisis+1 =

= ∑
i1 6=···6=il

(
∑

ir 6=ir+1

log air ir+1

)(
∑

is 6=is+1

log aisis+1

)
= ∑

i1 6=···6=il

0× 0 = 0

Taking everything to the definition of the measure of inconsistency:

Il(A) =
l(n− 2)(n− 3) · · · (n− l + 1)∑i1 6=i2 log2 ai1i2

ln(n− 1) · · · (n− l + 1)
+

+
2l(n− 3) · · · (n− l + 1)∑i1 6=i2 6=i3 log ai1i2 log ai2i3

ln(n− 1) · · · (n− l + 1)
=

=
(n− 2)∑i1 6=i2 log2 ai1i2 + 2 ∑i1 6=i2 6=i3 log ai1i2 log ai2i3

n(n− 1)(n− 2)

Renaming the subscripts:

Il(A) =
(n− 2)∑i 6=j log2 aij + 2 ∑i 6=j 6=k log aij log ajk

n(n− 1)(n− 2)
(A3)

This expression is not exactly equivalent to Equation (A2), but if the latter is slightly modified:

GCI =
1

n(n− 1)(n− 2)

(
n ∑

i,j
log2 aij + 2 ∑

i,j,k
log aij log ajk

)
Summations are made that allow repetitions of subscripts. Repetitions are removed to compare

this expression with the one that was previously obtained.
It is clear that:

∑
i,j

log2 aij = ∑
i 6=j

log2 aij since aii = 1

Regarding the second term:

∑
i,j,k

log aij log ajk = ∑
i 6=j,k

log aij log ajk + ∑
i,k

log aii log aik =

= ∑
i 6=j,k

log aij log ajk + 0 =

= ∑
i 6=j 6=k

log aij log ajk + ∑
i 6=j,k=i

log aij log ajk + ∑
i 6=j,k=i

log aij log ajk =

= ∑
i 6=j 6=k

log aij log ajk + ∑
i 6=j

log aij log aji + ∑
i 6=j

log aij log ajj =

= ∑
i 6=j 6=k

log aij log ajk −∑
i 6=j

log a2
ij + 0

Grouping everything:

GCI =
n ∑i 6=j log2 aij + 2

(
∑i 6=j 6=k log aij log ajk −∑i 6=j log a2

ij

)
n(n− 1)(n− 2)

=
(n− 2)∑i 6=j log2 aij + 2 ∑i 6=j 6=k log aij log ajk

n(n− 1)(n− 2)



Mathematics 2020, 8, 926 14 of 16

This now matches Equation (A3) developed from Il(A).
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