000129620 001__ 129620
000129620 005__ 20240104102231.0
000129620 0247_ $$2doi$$a10.2166/hydro.2020.025
000129620 0248_ $$2sideral$$a120364
000129620 037__ $$aART-2020-120364
000129620 041__ $$aeng
000129620 100__ $$0(orcid)0000-0002-3635-6223$$aFernandez Pato, Javier$$uUniversidad de Zaragoza
000129620 245__ $$aAnalysis of the performance of different culvert formulations in 2D shallow flow models
000129620 260__ $$c2020
000129620 5060_ $$aAccess copy available to the general public$$fUnrestricted
000129620 5203_ $$aCulverts allow roads to safely traverse small streams or drainage ditches, and their proper design is critical to ensure a safe and reliable transportation network. A correct modelization of these hydraulic structures becomes crucial in the assessment of flood footprints or discharge peak estimation in a risk evaluation plan. The question of how to include culverts comes up frequently when assembling a hydraulic model that requires the presence of as many singular elements as possible. In this work, three different culvert integrations with the surface domain are studied and compared in the context of a 2D shallow water (SW) model. All of them are based on the Federal Highway Administration (FHWA) formulation for the culvert discharge estimation but differ in complexity and in the interaction with the numerical model for surface flow, some of them as internal boundary conditions. Several steady and unsteady validation test cases are presented and the numerical results are compared with the predictions from HEC-RAS 1D and HY-8 software. The culvert area, shape and their sensitivity to the 2D computational mesh is also analyzed.
000129620 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-094341-B-I00
000129620 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000129620 590__ $$a2.376$$b2020
000129620 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b68 / 111 = 0.613$$c2020$$dQ3$$eT2
000129620 591__ $$aWATER RESOURCES$$b59 / 97 = 0.608$$c2020$$dQ3$$eT2
000129620 591__ $$aENVIRONMENTAL SCIENCES$$b182 / 273 = 0.667$$c2020$$dQ3$$eT3
000129620 591__ $$aENGINEERING, CIVIL$$b72 / 136 = 0.529$$c2020$$dQ3$$eT2
000129620 592__ $$a0.654$$b2020
000129620 593__ $$aAtmospheric Science$$c2020$$dQ2
000129620 593__ $$aWater Science and Technology$$c2020$$dQ2
000129620 593__ $$aGeotechnical Engineering and Engineering Geology$$c2020$$dQ2
000129620 593__ $$aCivil and Structural Engineering$$c2020$$dQ2
000129620 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000129620 700__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, Sergio$$uUniversidad de Zaragoza
000129620 700__ $$0(orcid)0000-0001-6961-7250$$aMorales-Hernández, Mario$$uUniversidad de Zaragoza
000129620 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, Pilar$$uUniversidad de Zaragoza
000129620 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000129620 773__ $$g22, 5 (2020), 1093-1121$$pJ. hydroinform.$$tJOURNAL OF HYDROINFORMATICS$$x1464-7141
000129620 8564_ $$s2196202$$uhttps://zaguan.unizar.es/record/129620/files/texto_completo.pdf$$yVersión publicada
000129620 8564_ $$s2025398$$uhttps://zaguan.unizar.es/record/129620/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000129620 909CO $$ooai:zaguan.unizar.es:129620$$particulos$$pdriver
000129620 951__ $$a2024-01-04-09:06:07
000129620 980__ $$aARTICLE