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Resumen 
 

En el presente trabajo se ha realizado la síntesis de diferentes suspensiones coloidales 
de nanopartículas basadas en magnetita y sílice densa y porosa, y su estudio como potencial 
aplicación en el campo de la biomedicina como agentes de contrate para imagen por resonancia 
magnética, hipertermia magnética y sistema de liberación de fármacos.  

La síntesis de las nanopartículas magnéticas se ha llevado a cabo mediante 
descomposición térmica de precursores orgánicos de hierro en disolventes orgánicos. Tras la 
síntesis es necesario refuncionalizar su superficie, para conseguir un coloide más estable y que 
pueda tener lugar la unión híbrida de estas nanopartículas sobre un soporte silíceo (denso o 
poroso) mediante un enlace peptídico. Las síntesis de las nanoplataformas multifuncionales de 
soporte poroso ha finalizado, mientras las nanopartículas híbridas de soporte denso se someten 
a un crecimiento, lo que proporcionará un recubrimiento (shell) de óxido de hierro sobre el 
soporte de sílice (core). Este paso es el intermedio para intentar sintetizar nanoplataformas 
multifuncionales huecas de óxido de hierro. 

Tras cada síntesis, se procede a la caracterización de las nanopartículas para conocer la 

morfología, el tamaño, el diámetro hidrodinámico, la carga superficial y la concentración de la 

muestra. Y por último se sucederán una serie de experimentos para probar su validez en las 

aplicaciones de hipertermia, de carga de moléculas orgánicas (cristal de violeta) y como agente 

de contraste para resonancia magnética (relaxometría).  
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1 INTRODUCCIÓN 
 

Los términos nanociencia y nanotecnología proceden del prefijo griego “nano” o del 

latín “nanus”, que significan “enano”. La nanociencia y la nanotecnología son unas de las 

disciplinas de mayor relevancia del siglo XXI, son multidisciplinares e interdisciplinares, y 

engloban distintas áreas científicas como química, física, ciencia de los materiales, ingeniería, 

biología e incluso medicina. La nanociencia puede definirse como la ciencia que estudia los 

fenómenos que tienen lugar a escala nanométrica, y la nanotecnología como el diseño, la 

síntesis, la manipulación y la aplicación de sistemas o dispositivos a través del control de la 

materia a nanoescala.  

Figura 1. Escala nanométrica. 

La figura 1 representa una escala nanométrica que compara diferentes tamaños desde 

el ser humano hasta las nanopartículas. Se considera nanomaterial a aquel que al menos una de 

sus dimensiones oscila entre un nanómetro y varios cientos de nanómetros. El interés de estas 

dimensiones radica en que, para determinados materiales, algunas de las leyes físicas a escala 

nanométrica difieren de las del material masivo, proporcionándoles propiedades únicas como, 

fluorescencia, plasmón superficial, superparamagnetismo, alta relación superficie/volumen, etc. 

Debido a esto, el uso de los nanomateriales está creciendo de forma exponencial y sus 

aplicaciones cada vez abarcan un rango más amplio. Desde aplicaciones de la vida cotidiana 

como en cosméticos, crema de protección solar, envases para alimentación, sector textil y en 

electrodomésticos, hasta aplicaciones más específicas como nanobiosensores, absorbentes para 

purificación de aguas contaminadas, agentes de contraste para imagen médica, en ingeniería de 

tejidos, etc.  

 

 

 

 

 

 

 
Figura 2.Algunos ejemplos de nanomateriales y sus aplicaciones en tecnología y biomedicina. 
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La  figura 2 recoge algunos ejemplos de materiales nanoestructurados y sus aplicaciones. 

Entre los materiales más versátiles con aplicaciones tanto en el sector de la biomedicina como 

en el área tecnológica. Cabe destacar las nanopartículas magnéticas. La magnetita (Fe3O4) es un 

material muy utilizado como agente de contraste, en biosensores, como separador catalítico, en 

hipertermia, etc. Esto se debe a que su principal característica a escala nanométrica es el 

superparamagnetismo. Es un comportamiento magnético con algunas características 

del ferromagnetismo y otras del paramagnetismo. Esto conlleva que bajo el efecto de un campo 

magnético, las nanopartículas tienen un comportamiento magnético, pero cuando cesa la 

influencia del campo, también cesa su respuesta magnética.  

Otro material muy interesante es la sílice (SiO2), tanto densa como porosa, ya que es 

biocompatible y biodegradable. Su fabricación es sencilla, engloba un amplio rango de tamaños 

y su funcionalización abarca diferentes posibilidades. En el caso de la sílice porosa su relación 

superficie/volumen es muy grande, lo que hace que sea una candidata perfecta para cargar 

moléculas huésped.  

Mientras que las nanopartículas individuales generalmente desempeñan una única 

función, la combinación de ellas permite crear sistemas híbridos que combinan diferentes  

funciones en un mismo nanosistema, produciéndose un efecto de sinergia. Para una unión 

híbrida es necesario una elección inteligente de materiales individuales a combinar, y ha de 

hacerse teniendo en cuenta las aplicaciones a las que se va a destinar. 

Las propiedades únicas y los beneficios de la sílice y la magnetita los hacen 

nanomateriales ideales para combinarlos. El propósito de conseguir estas nanopartículas 

híbridas es que combinen aplicaciones biomédicas y tecnológicas. La presencia de las 

nanopartículas magnéticas daría a la estructura híbrida aplicación como agente de contrate en  

Imagen por Resonancia Magnética (IRM), mientras que la sílice porosa aportaría al nanosistema 

híbrido propiedades absorbente para cargar moléculas orgánicas, como fármacos o tintes, que 

posteriormente podrían ser liberados por hipertermia. 

No son muchos los métodos de síntesis descritos en bibliografía que definan el anclaje 

de nanopartículas magnéticas sobre soportes de sílice densa, y menos aún sobre sílice porosa.  

Los primeros procedimientos publicados fueron el método electroquímico [1] y la 

sonicación química [2, 3] de Fe(CO)5 sobre nanopartículas de sílice. El principal inconveniente es 

que las nanopartículas híbridas que se obtienen directamente de la síntesis no tienen repuesta 

magnética, por lo cual es necesario aplicar un tratamiento térmico post-reacción que produce 

la formación de agregados magnéticos distribuidos de forma heterogénea sobre la superficie de 

la sílice (figura 3). 

 

 

 

Métodos más recientes consisten en ensamblar a la superficie de la sílice nanopartículas 

magnéticas previamente sintetizadas a través de interacciones electrostáticas [4-6]. Como 

ejemplo cabe destacar el método layer-by-layer (autoensamblaje capa a capa) que intercala 

SiO2 Fe(CO)5  + 

Sonicación 
química 

SiO
2
 Fe

2+ 
Fe

3+ 
Tratamiento 

térmico 
SiO2 

Figura 3. Síntesis por sonicación química y tratamiento térmico post-reacción. 

http://es.wikipedia.org/wiki/Ferromagnetismo
http://es.wikipedia.org/wiki/Paramagnetismo
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capas de polielectrolito cargado positivamente con capas de nanopartículas magnéticas  

cargadas negativamente (figura 4). Sin embargo, el inconveniente de este método es que su 

síntesis requiere muchas etapas experimentales y además la fuerza iónica entre capas puede ser 

debilitada con variaciones en el pH del medio, llegando a producirse el desmoronamiento de la 

estructura. 

Debido a los inconvenientes de los procedimientos anteriormente descritos, más recientemente 

se han desarrollado métodos en los que nanopartículas magnéticas han sido ancladas a la 

superficie de la sílice a través de interacciones covalentes [7-11], unión más robusta y estable 

frente a variaciones de pH que las interacciones iónicas. Kim, J., et al. (2006) desarrollaron un 

método de anclaje covalente utilizando una reacción de sustitución nucleófila (figura 5). El 

inconveniente de este método de síntesis  es que la reacción se lleva a cabo con disolventes 

orgánicos tóxicos, como el tolueno. Además las nanopartículas híbridas resultantes tienen que 

ser recubiertas en una etapa posterior con PEG (polietilenglicol) para conseguir su 

biocompatibilidad. 

 

 

 

 

 En este contexto el reto inmediato que se plantea es el diseño de un nuevo método de 

síntesis que permita la unión covalente de las nanopartículas magnéticas a un soporte de sílice 

evitando la utilización de disolventes tóxicos y permitiendo su obtención en una única etapa y 

en medio acuoso. 

2 OBJETIVOS 
 

Los objetivos principales de este trabajo son el diseño de una nueva ruta de síntesis de 

nanopartículas híbridas, compuestas por un núcleo o soporte (core) de sílice, densa o porosa, y 

un recubrimiento de nanopartículas magnéticas con potenciales aplicaciones tanto en el área 

biomédica como en el área tecnológica. Así como el estudio y caracterización de estos materiales 

de cara a su aplicación como agente de contraste en IRM y como sistema de carga de moléculas 

orgánicas y liberación por hipertermia.

Figura 5. Sustitución nucleófila realizada por Kim, J., et al. (2006) [8].                                                                    

Figura 4. Método layer-by-layer de Zhu, Y., et al. (2003) [5] 
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3 PROCEDIMIENTO EXPERIMENTAL 
 

 Síntesis de Nanopartículas Magnéticas: Fe3O4 

Las nanopartículas (NPs) de magnetita solubles en agua se sintetizan siguiendo el 

procedimiento previamente descrito en bibliografía. Los reactivos necesarios para la síntesis son 

acetil acetonato de hierro (III) (Aldrich) y trietilenglicol (TREG) (Aldrich), ácido 

dimercaptosuccínico (DMSA), etanol absoluto, acetato de etilo (Aldrich) e hidróxido sódico 

(NaOH) (Aldrich). 

En un matraz de tres bocas se introduce acetil 

acetonato de hierro (III) (0,6 g) y (TREG) (90 ml). Se 

procede a realizar el montaje de la figura 6, que consta 

de un agitador mecánico, un sistema de reflujo, un 

equipo para controlar la temperatura (termopar, manta 

y controlador de temperatura), y una corriente de argón 

para desgasificar. La mezcla se calienta hasta 180ºC a 

una velocidad de 15ºC/min, y se mantiene a dicha 

temperatura durante 30 minutos para conseguir la 

descomposición del precursor, que tiene lugar a 

temperaturas entre 180-190ºC. A continuación, se 

calienta a una velocidad de 5ºC/min hasta 280ºC, 

temperatura a la cual se mantiene durante 30 minutos. 

La solución resultante se deja enfriar hasta temperatura 

ambiente. Posteriormente se añaden acetato de etilo 

(40 ml) y etanol absoluto (10 ml) y la mezcla resultante 

se deja bajo el efecto de un imán durante al menos una 

noche para producir la separación magnética de las 

nanopartículas. 

Tras la precipitación magnética se procede a los lavados para eliminar los reactivos 

sobrantes. Sin que la solución deje de estar bajo el efecto del campo magnético del imán, se 

procede a la separación de las nanopartículas de su sobrenadante, simplemente vertiendo éste 

a otro recipiente. A continuación se añadirá etanol absoluto (10 ml) y acetato de etilo (40 ml) a 

las nanopartículas y para redispersar la mezcla, ya que estarán aglomeradas por efecto del imán, 

se utilizará un baño de ultrasonidos. Se repetirá el proceso otras dos veces. 

Para funcionalizar las nanopartículas se prepara una disolución de agua destilada (20 ml) 
con ácido dimercaptosuccínico (DMSA) (0,3 g) que se añade directamente sobre las 
nanopartículas magnéticas precipitadas dando una suspensión muy turbia, sobre la que se 
añade gotas de una disolución de hidróxido sódico (0,3g en 10 ml de agua) hasta que 
desaparezca la turbidez.  

 
Tras este proceso se procederá a su diálisis para eliminar el exceso de DMSA y NaOH. Se 

introducirá la solución dentro de la membrana de diálisis, y ésta en un baño de agua destilada 
con agitación, el cual se cambiará regularmente para contribuir a la difusión.   

 

Figura 6. Montaje para síntesis de NPs Fe3O4 
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 Síntesis de Nanopartículas Híbridas: MCM-41@Fe3O4 y 
SiO2@Fe3O4. 

El soporte de las nanoestructuras híbridas son nanopartículas de sílice densa (SiO2) y 

porosa (MCM-41), sintetizadas en el grupo siguiendo el método Stober [12] y el método 

reportado por Zeng et al. [13], respectivamente. Posteriormente a su síntesis ambas fueron 

tratadas con APTES (aminopropil trimetoxisilano) lo que permitió funcionalizar su superficie con 

grupos amino (NH2). 

Para que la reacción se lleve a cabo se mezclan una relación de masas de 

sílice/magnetita de 0,75/0,45 mg, respectivamente. Las nanopartículas se encuentran en 

disolución acuosa, y la cantidad de volumen a mezclar dependerá de la concentración de la 

disolución. La concentración de la sílice es constante (30 mg/ml) para todas las síntesis, y se 

pipetearán 0,025 ml. En las disoluciones de magnetita, varía la concentración dependiendo del 

lote sintetizado, y en cada caso será un volumen diferente, el preciso para que pipeteen 0,45 

mg de nanopartículas. Para que se produzca el ensamblaje y tenga lugar la formación del enlace 

peptídico es necesario un control exhaustivo del pH, que debe tener un valor en la disolución 

resultante en torno a 5. Se introduce la mezcla en un agitador rotativo para tubos a 40 rpm 

durante al menos 24 horas. 

 

 Síntesis de Nanopartículas Core-Shell SiO2@FexOy 

Tras el semillado de la sílice densa, se procede al segundo paso para conseguir estructura 

core-shell. Los reactivos necesarios son: Cloruro férrico hexahidratado (FeCl3x6H2O) (Aldrich),  

sulfato ferroso heptahidratado (FeSO4x7H2O) (Aldrich) y etilenglicol (Aldrich). 

El montaje de la figura 7 es el necesario 

para el proceso experimental. Consta de un 

agitador mecánico, un controlador de la velocidad 

de inyección (0,1 ml/hora) y una placa calefactora 

con control de temperatura (85ºC). El matraz 

contiene agua destilada (5 ml), etilenglicol (1 ml) 

y nanopartículas híbridas de sílice densa (0,5 ml 

de concentración de sílice 0,6 mg/ml). Sobre la 

disolución contenida en dicho matraz, se añadirán 

por inyección 0,5 ml de una disolución acuosa que 

contiene  FeCl3x6H2O (0,9 mg) y FeSO4x7H2O (1,8 

mg)  en 2 ml de agua. El proceso de adición se 

realiza durante 20 horas, después de las cuales las 

nanopartículas se aíslan por centrifugación y 

lavados con agua. 

 

 

 Experimento absorción-desorción de CV. 

El reactivo escogido para estos ensayos es el cristal de violeta (CV) o violeta de metilo 

(Aldrich), un compuesto químico utilizado como tinte o marcador. 

El experimento ha constado de varias partes, las cuales se detallan a continuación: 

Figura 7. Montaje para síntesis de NPs Core-Shell 
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El primer paso fue preparar diferentes disoluciones de CV con concentraciones 

conocidas (0,01, 0,005, 0,0025, 0,00125 mg/ml) para construir una recta de calibrado que 

relacione absorbancia con concentración. 

El segundo paso consistió en cargar las nanopartículas híbridas semilladas con CV 

durante 3h a diferentes pHs (2, 4, 6. 8, 10 y 12 aproximadamente) y ver el valor de pH óptimo 

en el cual las nanopartículas adsorbían la mayor cantidad de CV.  El pH se ajustó con disoluciones 

de HCl y NaOH. 

Una vez conocido el pH al cual la adsorción de CV es máxima, el tercer paso fue estudiar 

la cinética de adsorción del cristal de violeta. Para ello se ha seguido el siguiente procedimiento: 

Medir absorbancia del CV (inicial) una vez ajustado su pH. El siguiente paso será añadir las 

nanopartículas híbridas porosas (0,1 ml de 17,6 mg/ml de concentración) al CV (5,8 ml). 

Agitación un tiempo determinado en el agitador rotativo. Centrifugación (6000 rpm; 20 min) 

para que precipiten las nanopartículas, y poder extraer el sobrenadante, cuya concentración de 

CV se medirá en el equipo de espectroscopia UV-Vis. Después de la medición, el sobrenadante 

se añadirá de nuevo a las nanopartículas y la mezcla se someterá a ultrasonidos para obtener 

una suspensión homogénea. Ésta se pondrá en agitación de nuevo para seguir la cinética de 

absorción. Se repetirá el proceso desde la agitación, tantas veces como sea necesario hasta que 

se absorba la carga máxima.  

 

 Caracterización 

3.5.1 Microscopio Electrónico de Trasmisión (TEM) 

Preparación de la muestra. 

Para visualizar las nanopartículas en el microscopio electrónico de transmisión es 

necesario poseer una suspensión diluida de éstas. A continuación, se toma una gota (0,01 ml 

aproximadamente) de esta disolución y se deposita sobre una rejilla de cobre donde la gota se 

deja evaporar. 

Funcionamiento teórico del equipo. 

 El microscopio electrónico se compone 

de un sistema de vacío, una pantalla donde se 

proyecta una imagen aumentada de la muestra y 

una cámara fotográfica o pantalla de ordenador 

que tienen la función de registrar la imagen. 

Dentro del sistema de vacío se encuentran un 

cañón que produce un haz electrones y un 

sistema de lentes electromagnéticas. El esquema 

del microscopio electrónico se puede observar 

en la figura 8. 

Para la obtención de una imagen, el cañón 

electrónico produce un haz de electrones que es 

acelerado mediante una diferencia de potencial. 

El haz es dirigido y focalizado por las lentes 

condensadoras hacia la rejilla donde está 

depositada la muestra. Una vez que interactúen 

Figura 8.Esquema funcional del TEM 
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con la muestra unos electrones chocarán y otros la atravesarán formándose así una imagen, 

gracias a las lentes objetivo, que posteriormente será aumentada y proyectada por las lentes 

proyectoras. El equipo utilizado ha sido el FEI TECNAI T20 del Laboratorio de Microscopías 

Avanzadas de la Universidad de Zaragoza. 

 

3.5.2 Radio Hidrodinámico 

El radio hidrodinámico de una nanopartícula es el que comprende la parte inorgánica 

que se visualiza en el TEM más los ligandos orgánicos de la funcionalización anclados a ella.  

Preparación de la muestra: Para la medición se introduce una cubeta en el equipo con 

3ml de muestra, debidamente diluida en caso necesario, porque si hay demasiada concentración 

de nanopartículas no se puede realizar la medición correctamente. 

Funcionamiento teórico del equipo: La medición del diámetro hidrodinámico (Dh) de 

las partículas se realiza a partir de la medida del movimiento browniano de éstas, es decir a 

partir del movimiento al azar de las partículas dentro del solvente por efecto del choque con las 

moléculas del medio que las rodea. Al incidir la luz del láser sobre las partículas en suspensión, 

éstas dispersan luz en todas las direcciones llegando al detector la radiación dispersada a un 

ángulo determinado. Este detector registrará las fluctuaciones de la intensidad de la luz a lo 

largo del tiempo que son debidas al movimiento de las partículas. Un correlador digital compara 

las fluctuaciones a lo largo del tiempo con respecto a la primera señal creando una función de 

correlación que tras la aplicación de diversos algoritmos da como resultado el diámetro 

hidrodinámico de las partículas y su distribución. El equipo utilizado para esta caracterización ha 

sido Instruments 90 plus Particle Size Analizer. 

 

3.5.3 Potencial Zeta (ξ). 

El potencial zeta es la carga eléctrica que posee la superficie de una nanopartícula. 

Preparación de la muestra: Se realizarán distintas medidas, cada una a un pH diferente 

(2, 3, 4, 5, 6, 7, 8, 9, 10 y 11), para lo cual es necesaria una disolución tampón de KCl (100 ml a 

0,01M) de la que partir, y en diferentes viales (10 ml de KCl en cada uno) ir a justando el pH en 

cada caso con ayuda de un pHímetro y disoluciones de HCl y NaOH. En la cubeta se introducirá 

la disolución tampón pH 2 (1,5 ml), la muestra (0,1 ml, diluido debidamente si es necesario), y 

el electrodo que creará una diferencia de potencial. Se repetirá el proceso para los distintos pHs.

  

Funcionamiento teórico del equipo. 

La medición de la carga superficial de las partículas se realiza a partir de la medida de la 

velocidad con la que migran las partículas al aplicar una diferencia de potencial a los electrodos 

de la célula que contiene la suspensión (movilidad electroforética). Este registro de la movilidad 

electroforética se lleva a cabo a partir de la técnica de velocimetría de láser Doppler en la que 

se mide las fluctuaciones del haz dispersado y combina con un haz de referencia. La combinación 

de estos haces da como resultado un haz en el que la intensidad de las fluctuaciones es 

directamente proporcional a la velocidad de las partículas. A partir de la obtención de la 

movilidad electroforética se puede calcular el potencial ξ. El equipo utilizado es el Instruments 

90 plus Particle Size Analizer. 
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3.5.4 Relaxometría 

La relajación es el conjunto de procesos por los que la magnetización nuclear recupera 

el equilibrio tras someterse a pulsos de campos magnéticos externos. El tiempo de relajación es 

el tiempo que le ocupa retorna a su estado de equilibrio. 

Preparación de la muestra. 

Para realizar la caracterización, se estudian diferentes muestras de diferentes 

concentraciones atemperadas a 37ºC, preparadas en tubos RMN como se indica en la tabla  1: 

 H2O destilada Muestra 

Tubo RMN 1 0,2 ml 0 ml 

Tubo RMN 2 0,16 ml 0,4 ml 

Tubo RMN 3 0,12 ml 0,8 ml 

Tubo RMN 4 0,8 ml 0,12 ml 

Tubo RMN 5 0,4 ml 0,16 ml 

Tubo RMN 6 0 ml 0,2 ml 
Tabla 1. Tabla de concentraciones de las muestras medidas por relaxometría. 

Funcionamiento teórico del equipo. 

La base de esta técnica es la aplicación de un campo magnético fijo a lo largo de un eje 

para dar una dirección estable a la magnetización, y después una serie de pulsos perpendiculares 

para rotar la magnetización y dejar que vuelva a relajarse. Para la medición del tiempo de 

relajación trasversal T2 se ha empleado una secuencia de pulsos llamada “Carr-Purcell-

Maiboom-Gill” (CPMG). Tras la aplicación del campo magnético de 1,5 T se aplica un pulso de 

90º en el eje x que va seguido de un pulso de 180º en el eje y tras un tiempo τ. A este pulso le 

sigue otro de 180º en el mismo eje y pasados dos veces el tiempo τ se registra la señal del 

momento magnético de los núcleos en los ejes x e y, que disminuye con el tiempo. El equipo 

utilizado fue Minispec MQ60 de Brucker. 

 

3.5.5 Espectroscopia Ultravioleta-Visible 

 La espectroscopia es el estudio de la interacción entre la radiación electromagnética y 

la materia, y la espectroscopia ultravioleta-visible (UV/VIS) es la que trabaja esas zonas 

del espectro electromagnético. Esta técnica se emplea en este proyecto para cuantificar 

concentraciones de hierro. 

Funcionamiento teórico del equipo. 

 Cuando un haz de radiación UV-Vis atraviesa una disolución conteniendo 

un analito absorbente, la intensidad incidente del haz es atenuada. Esta fracción de radiación 

que ha logrado traspasar la muestra es denominada transmitancia (T) pero a efectos prácticos 

se utilizará la absorbancia (A = -logT). Este equipo permite comparar la radiación absorbida por 

una solución que contiene una cantidad desconocida de soluto, y una que contiene una cantidad 

conocida de la misma sustancia.  

Preparación de la muestra. 

 Para poder medir la muestra es necesario haberla digerido con anterioridad, para 

trasformar  moléculas complejas en moléculas más sencillas, en este caso para conseguir iones 

de Fe3+a partir de la magnetita. Para ello se utilizarán HCl (3,64 ml) y HNO3 (1,24 ml) diluidos en 

http://es.wikipedia.org/wiki/Magnetizaci%C3%B3n
http://es.wikipedia.org/wiki/Momento_magn%C3%A9tico_nuclear
http://es.wikipedia.org/wiki/Equilibrio_termodin%C3%A1mico
http://es.wikipedia.org/wiki/Pulso_electromagn%C3%A9tico
http://es.wikipedia.org/wiki/Campo_magn%C3%A9tico
http://es.wikipedia.org/wiki/Estado_fundamental
http://es.wikipedia.org/wiki/Precesi%C3%B3n
http://es.wikipedia.org/wiki/Espectro_electromagn%C3%A9tico
http://es.wikipedia.org/wiki/Analito
http://es.wikipedia.org/wiki/Transmitancia
http://es.wikipedia.org/wiki/Absorbancia
http://es.wikipedia.org/wiki/Radiaci%C3%B3n
http://es.wikipedia.org/wiki/Soluto
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agua (2,128 ml), de los cuales se prepararán dos lotes, uno para la medición del blanco que se 

reservará y otro para la digestión, al cual se añadirán las nanopartículas (0,4 ml). A continuación 

la mezcla se mantendrá agitando, con ayuda de un pequeño imán, y calentando (65ºC) durante 

150 minutos. En que la nueva muestra esté a temperatura ambiente, se enrasará en un matraz 

aforado (10 ml) con una disolución de HCl (6M). 

Tras ello se procederá a la valoración de la muestra. La primera medida deberá ser del 

blanco, para realizar la medida de referencia sin nada de soluto. La segunda se realizará con 

ayuda de una disolución de tiocianato de potasio (KSCN) (50 ml de 1,5M), que se unirá a los 

iones de hierro y la solución adquirirá una tonalidad rosácea, más intensa cuanta más alta sea 

la concentración y viceversa. En una cubeta se añadirán KSCN (1,5 ml), y la muestra (1,5 ml). Se 

repetirá el proceso 3 veces para hacer la media de los tres resultados.  
 

4  DISCUSIÓN Y RESULTADOS 
 

 Esquema de Trabajo 

 

 

 

 

 

 

 

 

 

 

 

 

 

En la figura 9 se pueden apreciar claramente las dos síntesis desarrolladas en este 

trabajo. Se distinguen 5 niveles A-E. A y B son los materiales iniciales, siendo magnetita, sílice 

porosa MCM-41 y sílice densa. El nivel C representa las nanopartículas híbridas multifuncionales.  

El proceso A + B  C es el semillado de las nanopartículas de magnetita sobre las respectivas 

sílices. El proceso C  D  es la etapa de crecimiento para dar la estructura core-shell D. Y por 

último, en el nivel E se encuentra la nanopartícula hueca, tras pasar por un procedimiento D  

E para eliminar el soporte de sílice.

(A) 

(B) 

(C) 

(D) 

(E) 

Figura 9. Esquema de síntesis de NPs. 

(C) 
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 Nanopartículas superparamagnéticas 

La síntesis de las nanopartículas de hierro se ha realizado mediante el método de 

descomposición térmica de un precursor en medio orgánico. El precursor de hierro utilizado es 

el acetil acetonato de hierro (III) y el disolvente orgánico en el que tendrá lugar la 

descomposición es el TREG. El cual actúa como reductor y estabilizante quedando adsorbido en 

la superficie de las nanopartículas (figura 10). El disolvente promueve la reducción parcial del 

Fe3+ a Fe2+, dando como resultado nanopartículas compuestas por óxido ferroso-diférrico o 

magnetita (Fe3O4), con fórmula química: Fe2+(Fe3+)2O4.  

Inicialmente, la mezcla de reacción posee una tonalidad rojiza, pero cuando el proceso 

de síntesis finaliza, la solución resultante adquiere un tono negro debido a la formación de 

nanopartículas. 

 

 

 

 

Debido a que el TREG está unido débilmente a la superficie de las nanopartículas, podría 
desorberse con el tiempo provocando aglomeración de las nanopartículas. Por ello es necesario 
después de la síntesis en TREG realizar un cambio de ligando, que se realizará sustituyendo el 
TREG por DMSA (figura 11). La reacción de refuncionalización se lleva a cabo en medio acuoso. 
El DMSA se une covalentemente a la superficie de la nanopartícula, con lo que se evita la 
aglomeración de las nanopartículas con el tiempo, dejando en la superficie grupos COOH que 
servirán para el futuro anclaje de las nanopartículas magnéticas al soporte de sílice.  

 
 
 
 
 
 
 

 

Fe3O4 + 

Figura 10. Síntesis de NPs Fe3O4. 

+ 

Figura 11. Funcionalización de  NPs magnéticas. 

Fe3O4 

Figura 12. (a) Imagen TEM y (b) distribución de tamaños de diámetro (nm) de las NPs Fe3O4. 
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La figura 12a muestra una imagen de TEM correspondiente a las nanopartículas 
magnéticas funcionalizadas con DMSA. Se observa que la morfología de las nanopartículas es 
aproximadamente esférica. A partir de estas imágenes se pueden medir los diámetros de las 
nanopartículas. Para realizar el análisis del tamaño de partícula de cada muestra se midió la 
longitud más grande de cada partícula, de al menos 100 partículas, con la ayuda del programa 
IMAQ VISION BUILDER. Para el cálculo de la distribución de tamaños de la muestra, se realiza un 
estudio estadístico ajustando los datos a un modelo de distribución normal o gaussianana (figura 
12b). Como resultado se obtiene un diámetro medio es de 7  nm con una desviación típica de ± 
2 nm.  

 
La figura 13a representa la distribución de diámetros hidrodinámicos para las 

nanopartículas de magnetita funcionalizadas con DMSA dispersas en agua. Se obtiene un 

diámetro medio de 13,77 nm, mayor al diámetro obtenido por TEM debido a la contribución del 

ligando.  

 

 

 

 

 

 

 

 

 

 

 

Figura 13. (a) Distribución de diámetros hidrodinámicos (nm) y (b) potencial zeta de NPs Fe3O4. 

La carga superficial de las nanopartículas de Fe3O4-DMSA se realizó midiendo el 

potencial zeta en todo el rango de pH. Como se observa en la figura 13b la densidad de carga 

superficial de las partículas es negativa para todos los valores de pH. 

En la práctica, se realizaron cuatro síntesis diferentes de nanopartículas 

superparamagnéticas, de cada una de las cuales es necesario saber su concentración. Ésta se 

determinó por espectroscopia UV/Vis y utilizando recta de calibrado que relaciona la 

absorbancia con la concentración: Absorbancia = 199,95.Concentración+0,0508. En la tabla 2 

quedan reflejados los resultados finales de concentraciones de hierro y magnetita de cada 

síntesis.  

 [Fe] (mg/ml) [Fe3O4] (mg/ml) 

NPs_Fe3O4_1 0,1795 ± 0,0099 0,2481 ± 0,014 

NPs_Fe3O4_2 0,5399 ± 0,0006 0,7463 ± 0,0008 

NPs_Fe3O4_3 0,7128 ± 0,0035 0,9853 ± 0,0048 

NPs_Fe3O4_4 0,7542 ± 0,0118 1,0427 ± 0,0163 

Tabla 2. Concentraciones de Fe y de Fe3O4 en mg/ml de NPs Fe3O4. 
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Las nanopartículas presentan comportamiento superparamagnético (figura 14), con una 

magnetización de saturación de 64 emu/g [12].  

 

Figura 14. Magnetización de NPs Fe3O4. (Miguel-Sancho, N., et al.(2011)) 

 

4.2.1 Agentes de Contraste 

Debido a las propiedades superparamagnéticas, las nanopartículas de Fe3O4 influyen 

acortando el tiempo de relajación de las moléculas de agua colindantes expuestas a un campo 

magnético. Este acortamiento se debe al decrecimiento en la señal y supone un contraste 

negativo en IRM, es decir que la zona destacada de la imagen será oscura, más oscura cuanta 

mayor sea la concentración de las nanopartículas. En la figura 15 se representa la inversa del 

tiempo T2 en la componente de ordenadas y la concentración de las diferentes muestras 

medidas en abscisas. El coeficiente r2 o la relajación específica es 125 mM-1s-1, obtenido de la 

pendiente de la recta. Cuanto mayor sea la relajación específica mejor agente de contraste será 

el material, ya que proporcionará mayor contraste en la imagen con menor concentración de 

nanopartículas. En el trabajo realizado por Lee H.J., et. al. [10] la relajación específica es r2=116 

mM-1s-1, menor que en nuestro caso. Comparando con nanopartículas que se encuentran ya en 

el mercado, el Endorem®/Feridex® posee una r2=120 mM-1s-1 y el Sinerem®/Combidex®, r2=65 

mM-1s-1 [14]. 

 

 

 

 

 

 

 

Figura 15. Relaxometría T2 de las NPs magnéticas. 
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4.2.2 Hipertermia Magnética 

Se realizó la medición sobre una solución acuosa de nanopartículas de magnetita de 

concentración 0,54 mg/ml de Fe, sometiéndola a un campo magnético constante (580 kHz, 300 

Gauss). El resultado fue positivo, ya que se elevó su temperatura con el paso del tiempo (figura 

16). 

 

 

 

 

 

 

 

 

 

 Nanopartículas Híbridas: MCM-41@Fe3O4 

La síntesis de las nanopartículas de sílice, que se utilizarán como soporte en la 

construcción de las nanoestructuras híbridas, fue previamente realizada en el grupo de acuerdo 

con el protocolo previamente descrito en bibliografía [13]. Tras su síntesis, las nanopartículas 

MCM-41 se funcionalizaron con APTES, lo que proporcionó grupos amino (NH2) en la superficie 

de las partículas.  

De las fotos de TEM (figura 17a) cabe destacar que su morfología es aproximadamente 

esférica y los poros tienen forma de poliedros de base hexagonal. Su diámetro medio indicado 

en la figura 17b es de 69,8 ± 3,03 nm. 

 En este caso, el diámetro diámetros hidrodinámico medio (figura 18a) es de 175,95 nm.  
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Figura 16. Hipertermia magnética de NPs magnéticas. 

Figura 17. (a) Imagen TEM y (b) distribución de tamaños de diámetro (nm) de las NPs MCM-41. 
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La carga superficial de la sílice queda representada en la figura 18b. En la gráfica se 

contempla que dependiendo del pH su potencial zeta será negativo o positivo. El punto 

isoeléctrico se observa a un pH 6,2, a pH más ácidos su carga es positiva y a pH más básico es 

negativo. Esto se debe a que el grupo terminal amino –NH2, a pH menor de 6,2 se encuentra 

protonado en forma de catión amonio –NH3
+.   

Las nanopartículas de MCM-41 están dispersas en agua con una concentración de 30 

mg/ml. 

La síntesis de las nanopartículas híbridas tiene lugar mediante la reacción de 

condensación  descrita en la figura 19. Dos moléculas se combinan para dar un único producto 

acompañado de la liberación de una molécula de agua. La reacción tiene lugar a temperatura 

ambiente y en medio acuoso. 

 

 Para que tenga lugar la formación del enlace peptídico y la liberación de la molécula de 

agua se debe trabajar en un rango de pH determinado. En la figura 19 se representan los 

potenciales zeta de ambas nanopartículas, y su carga superficial a los diferentes pH. La zona 

resaltada entre pH 4 y pH 5,5 es el rango óptimo de pH para que el enlace covalente entre  el 

grupo carboxilo (-COOH-) de las magnéticas y el amino (-NH3
+) de la sílice tenga lugar 

satisfactoriamente. Si el pH está fuera de rango, el número nanopartículas  de magnetita que 

recubran la superficie de la sílice se reducirá notablemente. La estabilidad de las nanopartículas 

Figura 18. (a) Distribución de diámetros hidrodinámicos (nm) y (b) potencial zeta de NPs MCM-41. 

Figura 19. Síntesis de nanopartículas híbridas MCM-41@Fe3O4 por reacción de condensación. 
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híbridas queda vigente cuando se las somete a pH extremos y las nanopartículas de magnetita 

siguen ancladas a la superficie de la sílice. 

En la figura 20a la imagen de TEM nos indica que el anclaje de las nanopartículas 

magnéticas a lo largo de toda la superficie de la sílice se ha producido de manera uniforme. Al 

igual que se ha realizado en apartados anteriores, es necesario un análisis estadístico para 

obtener la distribución de diámetros de las nanopartículas. El diámetro medio calculado a partir 

de las micrografías de TEM es 84,5 ± 12 nm (figura 20b), superior al de las nanopartículas de 

MCM-41 sin semillar debido al volumen extra aportado los las nanopartículas de Fe3O4 ancladas. 

 

 

El diámetro hidrodinámico medio registrado por la técnica DLS es 117 nm (figura 21a).  

El potencial zeta de las nanopartículas híbridas es el representado en la figura 21b. Es 

negativo a cualquier pH, como cabía esperar, ya que al recubrir la sílice con la magnetita, el 

potencial zeta de esta última es el dominante por estar en la superficie de la nueva nanopartícula 

híbrida. 

Figura 21. (a) Distribución de diámetros hidrodinámicos (nm) NPs MCM-41@Fe3O4 y (b) potenciales zeta de NPs MCM-
41@Fe3O4 y sus materiales iniciales. 
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Figura 20. (a) Imagen TEM y (b) distribución de tamaños de diámetro (nm) de las NPs MCM-41@Fe3O4. 
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Se realizaron diferentes síntesis de estas nanopartículas híbridas, y en la tabla 3 se 

exponen algunos de los resultados obtenidos. Se miden concentraciones de hierro mediante 

espectroscopia UV/Vis, y a partir de ahí se calcula la de magnetita. Y por diferencia de pesada se 

calcula una concentración aproximada de las nanopartículas híbridas.  

 [Fe] (mg/ml) [Fe3O4] (mg/ml) 
[MCM-41@ Fe3O4] 

(mg/ml) 

NPs_1_MCM-41@ 

Fe3O4_3 
0,2243 ± 0,0283 0,3100 ± 0,039 - 

NPs_2_MCM-41@ 

Fe3O4_3 
0,2107 ± 0,0093 0,2913 ± 0,0128 - 

NPs_3_MCM-41@ 

Fe3O4_3 
0,4133 ± 0,0050 0,5713 ± 0,0069 - 

NPs_4_MCM-41@ 

Fe3O4_2 
- - 43,5 

NPs_4_MCM-41@ 

Fe3O4_4 
- - 11,1 

Tabla 3.Concentraciones de Fe, de Fe3O4 y de semillado en mg/ml de NPs MCM-41@Fe3O4. 

4.3.1 Agentes de contraste 

En la figura 22 se representa la inversa de la relajación trasversal frente a diferentes 

concentraciones. En este caso la relajación específica es 215 mM-1s-1, superior al de las 

nanopartículas magnéticas individuales (125 mM-1s-1), y más de tres órdenes superior al del 

agente de contraste comercial  Sinerem®/Combidex®, r2=65 mM-1s-1 [14]. 

 

 

 

 

 

 

 

 

4.3.2 Absorción y desorción de CV 

Las ventajas de utilizar estas nanopartículas híbridas para carga y liberación de 

moléculas orgánicas son las siguientes: el núcleo poroso de sílice es una plataforma perfecta 

para absorción, debido a su elevada superficie específica y la presencia de nanopartículas 

magnética permite la liberación molecular por calentamiento empleando un campo magnético 

(hipertermia magnética). Además como propiedad a destacar es que son nanoplataformas que 

pueden recuperarse magnéticamente con el objeto de su reutilización.  

El compuesto químico utilizado para demostrar el potencial de estos nanosistemas 

híbridos como plataforma de carga es el cristal de violeta. 
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Figura 22. Relaxometría T2 de las NPs MCM-41@Fe3O4. 
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Lo primero fue estudiar la influencia del pH en el proceso de adsorción, con el objetivo 

de determinar el valor de pH para el cual la adsorción es máxima.  Para ello y para el resto del 

experimento, se utilizó la siguiente recta de calibrado para relacionar absorbancia con 

concentración de cristal de violeta: Absorbancia = 177,23x[CV] - 0,0395. 

En la figura 23 se representa la carga de CV (mol CV/g NP) frente al pH. El CV absorbido 

o carga de CV se calcula mediante  la siguiente ecuación:  

𝑞 =
([𝐶]𝑖𝑛𝑖𝑐𝑖𝑎𝑙 −  [𝐶]𝑓𝑖𝑛𝑎𝑙). 𝑉𝑡𝑜𝑡𝑎𝑙

𝑚_𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡í𝑐𝑢𝑙𝑎𝑠
 

La carga es la diferencia de concentraciones, de la solución acuosa inicial y de la solución con las 

nanopartículas trascurridas un tiempo, por el volumen total de disolución y dividido por los 

gramos de nanopartículas híbridas utilizados en el experimento.  

Se puede comprobar en la figura que la capacidad de absorción decrece significativamente a pH 

bajo (2-4), con una máxima absorción a pH 6,8. Esto puede ser atribuido a que la interacción 

electrostática entre las cargas superficiales de las nanopartículas y del cristal de violeta es 

máxima a este pH, ya que como se puede ver en la figura 13b, el potencial z más negativo de las 

nanopartículas magnéticas se alcanza alrededor en pH 6,8. A pH ácidos la adsorción de CV es 

menor porque hay una competencia por coordinarse la sílice entre las moléculas de tinte y los 

protones del medio. A pH básicos mayores a pH 8, las moléculas de cristal de violeta se 

descomponen.  

Una vez conocido el valor de pH óptimo para la carga se ha estudiado la cinética de 

adsorción. Los resultados de estos estudios revelan la velocidad a la que son cargadas las 

moléculas orgánicas, lo cual es muy útil para la selección de material adsorbente [16].  

En la figura 24a se representa la evolución de la carga de CV con el tiempo (18 h) a 

temperatura ambiente y pH 6,8. Se observa que en la absorción es mucho más acusada tiempos 

cortos, como cabe esperar debido al proceso de difusión. Conforme va trascurriendo el tiempo 

el gradiente es menor y absorbe más lentamente, hasta que llega un momento en el que hay 

equilibrio en la muestra y la absorción prácticamente se estabiliza. Esto ocurre 

aproximadamente a las 4 horas. 

Figura 23. Estudio de absorción de CV a diferentes pHs. 
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Del análisis de los datos cinéticos se representa t/qt frente al tiempo (figura 24b), 

resultando una línea recta con un alto coeficiente de correlación (R2>0,99), con lo que se puede 

afirmar que la cinética de adsorción de CV en las nanopartículas híbridas es de segundo orden 

[17]. Comportamientos similares de materiales mesoporosos han sido publicados 

anteriormente [15]. 

La capacidad de adsorción de equilibrio teórica obtenida de la pendiente de la recta es 

1,59x10-5 mol/g, la cual concuerda con el valor experimental (1,5x10-5 mol/g). La velocidad 

constante de reacción es 976.5 g·mol-1·min-1. Estos parámetros son comparables con otros 

reportados en artículos bibliográficos de adsorción de tintes orgánicos en disoluciones acuosas 

utilizando materiales mesoporosos [15, 18]. Y la conclusión es que las nanopartículas híbridas 

muestran una buena capacidad de adsorción del cristal de violeta en medio acuoso. 

 Por problemas técnicos del equipo sólo se ha podido realizar un ensayo de desorción 

por hipertermia. Un mililitro de disolución que contenía 1 mg de nanoparticulas cargadas fue 

sometido a un campo magnético externo durante 30 minutos (inicialmente la concentración de 

CV en disolución es despreciable), transcurrido este tiempo se midió la concentración de CV en 

disolución y se observó una liberación del 20 %, mientras que la cantidad liberada por difusión 

natural al cabo de 12 horas es despreciable. 

 

 Nanopartículas Core-Shell SiO2@FexOy. 

Para la síntesis de estas nanopartículas son necesarios varias etapas. La primera sería la 

síntesis de nanopartículas híbridas SiO2@Fe3O4. La segunda, realizar el crecimiento y conseguir 

la nanoestructura core-shell.  Y por último eliminar el soporte y obtener las nanopartículas 

huecas.  

La sílice densa ya estaba previamente sintetizada [12]. De su caracterización resaltar que 

las nanopartículas tienen forma esférica como se aprecia en la micrografía de TEM (figura 25a), 

su diámetro medio es 137±7,636 nm (figura 25b) y su radio hidrodinámico es 186,51 nm (figura 

26). 
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Figura 24. (a) Evolución temporal de adsorción y (b) cinética de segundo orden. 
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La síntesis y funcionalización de las nanopartículas SiO2@Fe3O4 es análoga al caso de las 

nanopartículas MCM-41@Fe3O4, descrito en el apartado 4.3 de este mismo proyecto.  

En la figura 27a se observa la micrografía de TEM de estas nanopartículas híbridas, 

perfectamente dispersas y uniformemente semilladas. El diámetro medio calculado a partir de 

estas imágenes es 157,9 ± 11,88 nm (figura 27b) y su radio hidrodinámico medio es de 439 nm 

(figura 28). 

 

 

 

 

 

 

 

Figura 26. Distribución de diámetros hidrodinámicos (nm) NPs SiO2 densa. 

Figura 27. (a) Imagen TEM y (b) distribución de tamaños de diámetro (nm) de las NPs SiO2@Fe3O4. 
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Figura 25. (a) Imagen TEM y (b) distribución de tamaños de diámetro (nm) de las NPs SiO2. 
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La última prueba realizada fue la medición de la concentración de hierro en la muestra 

por espectroscopia UV/Vis, necesaria para el siguiente procedimiento (tabla 4). 

 [Fe] (mg/ml) [Fe3O4] (mg/ml) 

NPs_SiO2@Fe3O4_3 0,2243 ± 0,0283  0,3100 ± 0,039 

Tabla 4. Concentraciones de Fe y de Fe3O4 en mg/ml de NPs SiO2@Fe3O4. 

No se realizaron más ensayos de caracterización, ya que es una etapa intermedia para 

conseguir las nanopartículas huecas, y con estos datos fue más que suficiente para corroborar 

que las nanopartículas se encuentran en perfecto estado y para emprender la segunda etapa de 

síntesis.  

La síntesis de las nanopartículas core-shell tiene lugar mediante la reacción descrita en 

la figura 29. 

  

Los reactivos Fe2SO4 y FeCl3 se descomponen y aportan iones de Fe2+ y Fe3+, 

respectivamente, que se depositan sobre la superficie de las nanopartículas semilladas. Estos 

iones junto a las nanopartículas magnéticas  producen un crecimiento de una capa alrededor de 

la sílice. Debido a que el crecimiento se produce a temperaturas no muy elevadas (85ºC), la capa 

formada será poco cristalina, y por lo tanto poco magnética. 

En la micrografía de TEM de la figura 30a se observa el crecimiento amorfo del shell. 

Todas las nanopartículas han sufrido crecimiento y la muestra está dispersa. Haciendo el análisis 

estadístico pertinente, el diámetro medio de la muestra es de 160 ± 10,08 nm (figura 30b). 

Figura 28. Distribución de diámetros hidrodinámicos (nm) NPs SiO2@Fe3O4. 

Figura 29. Síntesis de NP score-shell. 
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El trabajo realizado en el laboratorio ha llegado hasta este punto, dejando como 

posibilidades de futuro: completar la caracterización con radio hidrodinámico y potencial zeta y 

conseguir un comportamiento magnético optimo realizando procesos de recristalización en 

disolventes de alto punto de ebullición, además de ser el punto de partida para la síntesis de la 

nanoparticulas huecas, que se obtendrían por disolución del núcleo interno de sílice. 

 

5 CONCLUSIONES 
 

Las nanopartículas magnéticas se sintetizan a partir de un procedimiento sencillo y en 

disolución acuosa. Gracias a los resultados positivos tanto del ensayo de relaxometría, y a sus 

propiedades superparamagnéticas se puede afirmar su validez como futuro agente de contrate.  

Se ha desarrollado un método fácil y versátil para la síntesis en medio acuoso de 

nanopartículas híbridas MCM-41@Fe3O4 a través de la formación de un enlace peptídico entre 

los dos componentes. La nanopartículas que se obtienen directamente ya están estabilizadas en 

agua, lo cual es de vital importancia para su posterior aplicación en biomedicina. Se ha probado 

también su validez como agente de contraste, mejorando su relajación específica respecto a las 

nanopartículas magnéticas iniciales. La adsorción de cristal de violeta ha demostrado la 

capacidad de las nanopartículas híbridas como sistemas de carga de moléculas, lo que abre un 

amplio abanico de posibilidades para su utilización, por ejemplo, en la carga y liberación 

controlada de fármacos o sistemas de purificación de agua como adsorbente. Además podrían 

cargarse con nanopartículas metálicas de tamaño inferior al poro para su utilización en catálisis 

como catalizadores recuperables magnéticamente. 

  En la primera etapa hacia las nanopartículas huecas, se ha sintetizado estructuras core-

shellSiO2@Fe3O4. La futura línea de trabajo que se deja abierta sería conseguir nanopartículas 

huecas con buena respuesta magnética que pudieran cargarse con moléculas orgánicas para su 

liberación por hipertermia. Así como la utilización de estas nanopartículas huecas como 

nanovectores para producir a escala atómica reacciones que necesiten de una activación, que 

en este caso se conseguiría debido a la propiedad de hipertermia magnética.
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Figura 30. (a) Imagen TEM y (b) distribución de tamaños de diámetro (nm) de las NPs SiO2@FexOy. 
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7 ANEXO: Prácticas del Trabajo Fin de Máster 
 

Las prácticas del Trabajo Fin de Master las realicé en la Unidad de Investigación 

Traslacional del Hospital Miguel Servet de Zaragoza bajo la tutela de la Dra. Vanesa Andrés. En 

ella pude observar y participar en un ensayo clínico sobre fibroblastos de nuevos fármacos para 

una enfermedad rara, la enfermedad de Gaucher. 

La enfermedad de Gaucher es una enfermedad rara de herencia autosómica recesiva, 

debida a la acumulación de glucocerebrósido en el interior de las células por déficit de 

la enzima glucocerebrosidasa. Esta enfermedad afecta principalmente a médula ósea, hígado 

y bazo.  Existen tres tipos de presentación de la enfermedad: tipo I, tipo II y tipo III. El tipo I no 

afecta al sistema nervioso central, al contrario que las otras dos, con las que se puede sufrir 

neuropatía aguda (II) o crónica (III). 

Para el ensayo clínico se utilizan fibroblastos extraídos de la zona de la escápula del 

paciente mediante una biopsia de piel. Se realizan cultivos de estas células para que crezcan y 

tener más muestra con la que trabajar. Los fibroblastos son células adherentes, y como su 

nombre indica se quedarán adheridas a las placas de Petri. Cuando el cultivo ha finalizado se 

realizarán lavados con PBS y las células será levantadas con tripsina. La suspensión celular se 

someterá a centrifugación (5000g 10 min) para separar las células de la tripsina, se elimina el 

sobrenadante y se agrega medio de cultivo. Se redispersa agitando cuidadosamente y se realiza 

el contaje celular con un Scepter para conocer la concentración de células. Para el ensayo van a 

ser necesarias 24 placas de Petri, en las cuales se depositarán 2 ml de medio y el volumen de 

suspensión celular adecuado para que aproximadamente se siembren 20.000 células. Se dejará 

1 día en la estufa a 37ºC para que las células se adhieran de nuevo. El segundo día se añadirán 

en placas diferentes: 

 Dos fármacos nuevos a diferentes concentraciones: fármaco 1 (25µM) y fármaco 2 

(5µM y 10µM). 

 Un fármaco actual (ABX) a concentraciones 5, 10, 25, y 50µM 

 Un control del disolvente en el que está el fármaco (DMSO) ya que es tóxico. 

Hasta el momento se necesitaría 8 placas, pero es necesario realizar 3 réplicas para asegurarse 

de que el ensayo es fiable. De nuevo se meten las muestras en la estufa bajo las mismas 

condiciones. 

Trascurridos 3 días, se procederá a realizar lavados y se añadirá de nuevo fármaco. Y al 

cabo de 3 días más incubando en la estufa, se recogen las células, volviéndolas a levantar, en 

este caso con PBS frío y un scrapper. Se somete a centrifugación (5000g 10 min), se elimina el 

sobrenadante y se resuspende la muestra en una medio de cultivo con antibióticos y 

antifúngicos para que se conserve hasta el estudio de las células. 
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