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Abstract: This paper proposes a new approach to define two frequency trigonometric spline curves
with interesting shape preserving properties. This construction requires the normalized B-basis of
the space U4(Iα) = span{1, cos t, sin t, cos 2t, sin 2t} defined on compact intervals Iα = [0, α], where
α is a global shape parameter. It will be shown that the normalized B-basis can be regarded as
the equivalent in the trigonometric space U4(Iα) to the Bernstein polynomial basis and shares its
well-known symmetry properties. In fact, the normalized B-basis functions converge to the Bernstein
polynomials as α→ 0. As a consequence, the convergence of the obtained piecewise trigonometric
curves to uniform quartic B-Spline curves will be also shown. The proposed trigonometric spline
curves can be used for CAM design, trajectory-generation, data fitting on the sphere and even to
define new algebraic-trigonometric Pythagorean-Hodograph curves and their piecewise counterparts
allowing the resolution of C(3 Hermite interpolation problems.

Keywords: trigonometric curves; B-splines; B-basis; total positivity

1. Introduction

The definition of new spaces with more flexibility than polynomials, but with the same
nice structural properties, such as variation diminishing, containment in the convex-hull,
affine invariance, or tangency to the control-polygon at the endpoints, is an interesting
trend in Computer-Aided Geometric Design (CAGD).

For a suitable basis (b0, . . . , bn) of a given space of functions defined on I ⊆ R,
γ(t) = ∑n

i=0 Pibi(t), t ∈ I, provides a parametric representation of curves, where the
coefficients are points in a given Rd determining a polygon P0 · · · Pn, which is called the
control polygon of γ.

A system (b0, . . . , bn) of functions defined on I is normalized if ∑n
i=0 bi(t) = 1 for all

t ∈ I. On the other hand, a totally positive (TP) basis is a basis whose collocation matrices
have nonnegative minors. We say that a basis provides a shape preserving representation if
the shape of any parametric curve γ imitates the shape of its control polygon. Normalized
and totally positive (NTP) bases provide shape preserving representations (cf. [1,2]). In [3],
it was proved that a space of functions with NTP bases always has an optimal shape
preserving basis that it is called the normalized B-basis and satisfies that the matrix of
change of basis of any NTP basis with respect to the normalized B-basis is totally positive
and stochastic. Roughly speaking, any parametric curve more faithfully imitates the
shape of its control polygon with respect to the normalized B-basis than using other shape
preserving representation.
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The Bernstein polynomials of a given degree n on a compact interval [a, b] are de-
fined by

bn
i (t) =

(
n
i

)
(t− a)i(b− t)n−i/(b− a)n, t ∈ [a, b], i = 0, . . . , n.

It is well-known that the Bernstein basis (bn
0 , . . . , bn

n) is the normalized B-basis of the space
of polynomials of degree at most n on the considered interval. The B-spline basis is the
normalized B-basis in the case of the space of spline polynomials.

Trigonometric functions are usually considered for the representation of closed curves
and periodical functions. The space of n order trigonometric polynomials,

U2n := span{1, cos t, sin t, cos(2t), sin(2t), . . . , cos(nt), sin(nt)},

is a classical space of functions with applications in CAGD in order to represent approx-
imately parametric curves arising in civil engineering and robotics, among other fields.
Traditionally these curves were approximated by polynomial and rational functions.

Due to the oscillation properties of trigonometric functions, the representation of
curves using trigonometric spaces is not shape preserving for very long intervals. However,
using a domain of a length α < π, the space U2n admits a normalized B-basis and solves
several shortcomings of the algebraic polynomials. Consequently, it provides an alternative
to the rational model for several purposes (see [4]). In the literature one can find many
papers introducing shape parameters for a more flexible design of trigonometric curves
(see [5–12]). For trigonometric polynomials in U2n, the length α of the parameter domain
can also be considered as a shape parameter with a tension-like effect in the parametric
curves generated by the corresponding normalized B-bases. Trigonometric spline functions
were introduced in [13] (see also [14]) and the recurrence relation for the trigonometric B-
splines of arbitrary order was obtained in [15]. In [16,17], interested readers can find a novel
technique based on the collocation finite element method for the numerical resolution of the
wave equation in which trigonometric cubic B-splines are used as approximate functions.

Spline spaces provide more flexibility for curve design and then common curve and
surface representations in CAGD use piecewise polynomials. Integral recurrence formulae
for B-splines have been often used in the past. The definition of B-spline functions as a
divided difference of a truncated power function and the Hermite–Gennochi formula lead
to integral recursions. However, trigonometric polynomial spaces do not admit an integral
construction. For this reason, this paper introduces NTP bases of U2n, such that their
derivatives at the ends of the interval of [0, α] allow us the definition of regular piecewise
trigonometric curves. In [18], one-frequency trigonometric spline curves are defined in
the space U2. This paper proposes and analyzes piecewise trigonometric curves in U4
providing two different frequencies for the design.

Polynomial Pythagorean-Hodograph (PH) curves have been widely analyzed
(see [19–25] and their references). Polynomial PH curves are defined with Bernstein bases
and possess a closed-form polynomial representation of their arc lengths, as well as an
exact rational parameterization of their offset curves. New Pythagorean-Hodograph (PH)
B-spline curves were proposed in [21]. The results in this paper will be considered in the
near future to define new algebraic-trigonometric PH curves and their piecewise counter-
parts for the resolution of C(3 Hermite interpolation problems. Moreover, the proposed
trigonometric spline curves can also be used for CAM design, trajectory generation or data
fitting on the sphere where the use of trigonometric splines provide better results than the
conventional polynomial counterpart (see Chapter 12 of [1]).

The paper is organized as follows. Section 2 provides the normalized B-basis of
the space U4(Iα) defined on a given interval with a length less than π. A corner cutting
algorithm for the evaluation and subdivision of curves generated in U4(Iα) is also provided.
This algorithm allows us to generate curves through a control polygon in a similar way to
the Bézier case [26,27]. In Section 3, we introduce NTP bases of U4 defined on appropriate
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intervals [0, α], and such that their derivatives at the ends of the interval allow us the
definition of regular spline spaces and their bases called normalized T4 B-spline basis. The
matrices relating the normalized B-bases of U4 and the spline spaces are also derived and
their total positivity analyzed. Piecewise trigonometric curves with nice properties are
also defined. Section 4 shows the convergence of the introduced trigonometric curves to
polynomial B-spline curves as the parameter α → 0. Finally, Section 5 summarizes the
conclusions and future work.

2. The Normalized B-Basis of the Space of Two Frequency Trigonometric Functions

Trigonometric polynomial spaces U2n are invariant under translations and reflexions
and, for this reason, they are usually analyzed on compact intervals Iα := [0, α].

We shall consider the design of parametric trigonometric curves whose components
are functions in the space

U4(Iα) = span{1, cos(t), sin t, cos(2t), sin(2t)}, t ∈ Iα.

In Section 4.2 of [28], the normalized B-basis (B4
0, . . . , B4

4) of U4(Iα) is given by:

B4
0(t) :=

(1− cos(α− t))2

(1− cos α)2 ,

B4
1(t) :=

2(1− cos(α− t))(cos t + cos(α− t)− cos α− 1)
(1− cos α)2 ,

B4
2(t) :=

2(1− cos(α− t))(1− cos t) + (cos t + cos(α− t)− cos α− 1)2

(1− cos α)2 ,

B4
3(t) :=

2(1− cos t)(cos t + cos(α− t)− cos α− 1)
(1− cos α)2 ,

B4
4(t) :=

(1− cos t)2

(1− cos α)2 , (1)

for t ∈ Iα and 0 < α < π. Note that the normalized B-basis can be also defined as follows:

B4
0(t) =

1
sin4(α/2)

sin4((α− t)/2), B4
4(t) = B4

0(α− t),

B4
1(t) =

4 cos(α/2)
sin4(α/2)

sin3((α− t)/2) sin(t/2), B4
3(t) = B4

1(α− t),

B4
2(t) =

2(1 + 2 cos2(α/2))
sin4(α/2)

sin2((α− t)/2) sin2(t/2). (2)

The basis functions in (1), equivalently in (2), can be regarded as the equivalent to the
Bernstein polynomial basis in U4(Iα) due to the following properties:

1. Symmetry:
B4

i (t) = B4
4−i(α− t), i = 0, . . . , 4, t ∈ Iα. (3)

2. Positivity:
B4

i (t) ≥ 0, i = 0, . . . , 4, t ∈ Iα.

3. Partition of unity:
4

∑
i=0

B4
i (t) = 1, t ∈ Iα.

Figure 1 shows the graphs of the normalized B-basis of U4(Iα) for α = π/3.
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Figure 1. Normalized B-basis of U4(Iα) for α = π/3.

Let us note that the parameter α not only controls the length of the domain but also
can be considered as a shape parameter with a tension-like effect in the parametric curves
generated by the normalized B-basis of U4. The following result will explain the behavior
as α→ 0. In order to prevent the normalized B-bases from losing their domain intervals Iα,
we shall use a reparametrization so that the new functions are defined on [0, 1] allowing
the parameter α→ 0.

Lemma 1. The normalized B-basis of U4(Iα) converges uniformly to the Bernstein basis (b4
0, . . . , b4

4)
of degree 4 on the interval [0, 1] whenever α→ 0.

Proof. Using the change t = ατ, and developing by the Taylor expansion at τ = 0, we have

b4
4(τ)− B4

4(ατ) =
4(1− cos α)2 − α4

4(1− cos α)2 τ4 +
2α6(16 cos(2αξ)− cos(αξ))

6!(cos α− 1)2 τ6, τ ∈ [0, 1],

for ξ ∈ [0, τ]. Then∣∣∣b4
4(τ)− B4

4(ατ)
∣∣∣ ≤ ∣∣∣∣4(1− cos α)2 − α4

4(1− cos α)2

∣∣∣∣+ α6

(cos α− 1)2 , τ ∈ [0, 1],

and, since

lim
α→0

4(1− cos α)2 − α4

4(1− cos α)2 = 0, lim
α→0

α6

(cos α− 1)2 = 0,

we derive
lim
α→0

max
0≤τ≤1

|b4
4(τ)− B4

4(ατ)| = 0. (4)

By definition, b4
0(τ) = b4

4(1 − τ), B4
0(ατ) = B̃4

4(α(1 − τ)) and therefore, using (4), we
deduce that

lim
α→0

max
0≤τ≤1

|b4
0(τ)− B4

0(ατ)| = 0. (5)

Using the Taylor expansion and a similar reasoning, we can also write

lim
α→0

max
0≤τ≤1

|b4
3(τ)− B4

3(ατ)| = 0, lim
α→0

max
0≤τ≤1

|b4
1(τ)− B4

1(ατ)| = 0 (6)

Finally, from the normalization property of the bases, 1 = ∑4
i=0 b4

i (τ) = ∑4
i=0 B4

i (ατ),
τ ∈ [0, 1], and taking into account Formulaes (4)–(6), we conclude

lim
α→0

max
0≤τ≤1

|b4
2(t)− B̃4

2(t)| = 0. (7)
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Definition 1. Let 0 < α < π and d ∈ N. Given pi ∈ Rd, i = 0, . . . , 4, we say that the parametric
trigonometric curve

p4(t) :=
4

∑
i=0

piB4
i (t), t ∈ Iα, (8)

is a T4-curve.

Let us observe that, using the symmetry property (3), we can write

p4(α− t) =
4

∑
i=0

p4−iB4
i (t), t ∈ Iα,

and derive that T4-curves possess a symmetry similar to that of Bézier curves. Furthermore,
since T4-curves are curves expressed in terms of a normalized B-basis, they admit a de
Casteljau-type algorithm, which is a corner cutting algorithm providing evaluation and
subdivision.

Given a T4-curve (8), and a parameter value t ∈ [0, α], the B-algorithm provides certain
values λk

i (t) that define the intermediate points pk
i (t) of a de Casteljau-like algorithm:

pk+1
i (t) = (1− λk

i (t))pk
i (t) + λk

i (t)pk
i+1(t),

where k = 0, 1, 2, 3 and i = 0, . . . , 3− k. In fact, beginning with p0
i = pi, this algorithm

yields the final value
p4

0 = p(t).

In addition, the two segments in which the parameter t divides the curve have control
points given by {p0

0, p1
0, p2

0, p3
0, p4

0} and {p4
0, p3

1, p3
2, p1

3, p0
4}, respectively. Here we provide

compact expressions of λk
i (t) for an arbitrary t ∈ [0, α]:

λ0
0(t) =

sin(t/2)
sin(α/2)

cos(α/2)
cos(t/2)

, λ0
3(t) = 1− λ0

0(α− t),

λ0
1(t) =

sin(t/2)
sin(α/2)

1 + 2 cos2(α/2)
cos((α− t)/2) + 2 cos(α/2) cos(t/2)

, λ0
2(t) = 1− λ0

1(α− t),

λ1
0(t) =

sin(t/2)
sin(α/2)

cos((α− t)/2) + 2 cos(α/2) cos(t/2)
1 + 2 cos2(t/2)

, λ1
2(t) = 1− λ1

0(α− t),

λ1
1(t) =

sin(t/2)
sin(α/2)

3 cos(t/2) + 2 sin(α/2) sin((α− t)/2)
cos(α/2) + 2 cos(t/2) cos((α− t)/2)

,

λ2
0(t) =

sin(t/2)
sin(α/2)

cos(α/2) + 2 cos(t/2) cos((α− t)/2)
3 cos(t/2)

, λ2
1(t) = 1− λ2

0(α− t),

λ3
0(t) =

sin(t/2)
sin(α/2)

cos((α− t)/2). (9)

Taking into account Lemma 1, whenever α→ 0, the T4-curve (8) degenerates to an integral
Bézier curve with control points pi, i = 0, . . . , 4, and the coefficients λk

i (t) of the algorithm
degenerate to t/α (see Figure 2). In other words, the B-algorithm reduces to the standard de
Casteljau algorithm. This property can be also checked by introducing the Taylor expansion
of the functions λk

i and taking limits.
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Figure 2. T4-curves (8) associated to a control polygon with several parameters α, as well as the
Bézier curve corresponding to the mentioned control polygon.

3. Two Frequency Trigonometric Spline Curves

Now, we shall introduce NTP bases of U4(Iα) such that their derivatives up to the
third order at the ends of the interval of [0, α] allow us the definition of regular piecewise
curves. We shall use the following notation:

Cp,q := p + q cos α, Cp,q,r := p + q cos α + r cos2 α,

for given p, q, r ∈ N.
Let us define the following systems of functions on Iα:

(N4
0 , . . . , N4

4 ) := (B4
0, . . . , B4

4)A4, (N j,4
0 , . . . , N j,4

4 ) := (B4
0, . . . , B4

4)Aj,4, j = 0, 1, 2, (10)

where (B4
0 , . . . , B4

4) is the normalized B-basis of U4(Iα) (see (1) or (2)),

A4 :=



12C1,1 0 0 0 0

0 6C1,1 0 0 0

0 0 2C2,1 0 0

0 0 0 6C1,1 0

0 0 0 0 12C1,1



−1

1 C5,6 C5,6 1 0

0 2C1,1 C3,4 1 0

0 1 2C1,1 1 0

0 1 C3,4 2C1,1 0

0 1 C5,6 C5,6 1


, (11)
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and the matrices Aj,4, for j = 0, 1, 2, are defined as follows:

A0,4 := D0



1 0 0 0 0

0 1 0 0 0

0 3 C1,2 0 0

0 3 C3,4 2C0,1 0

0 3C1,2 C7,18,12 C1,10,12 C1,2


, (12)

D0 := diag(1, 1, 2C2,1, 6C1,1, 12C1,1C1,2)
−1,

A1,4 := D1



3C1,2 C7,18,12 C1,10,12 C1,2 0

0 4C2
1,1 C1,8,8 C1,2 0

0 2C1,1 C1,6,4 C1,2 0

0 1 C1,4 C1,2 0

0 2C1,1 4C1,3C1,1 C5,6C1,2 C1,2


, (13)

D1 := diag(12C1,1C1,2, 6C1,1C1,2, 2C2,1C1,2, 3C1,2, 12C1,1C1,2)
−1,

A2,4 := D2



2C1,1 4C1,3C1,1 C5,6C1,2 C1,2 0

0 2C1,1 C3,4 1 0

0 1 2C1,1 1 0

0 1 C3,4 2C1,1 0

0 1 C5,6 C5,6 1


, (14)

D2 := diag(12C1,1C1,2, 6C1,1, 2C2,1, 6C1,1, 12C1,1)
−1.

The following result proves that the systems (10) are all NTP bases of U4(Iα).

Theorem 1. For 0 < α < π/2, the systems (N4
0 , . . . , N4

4 ) and (N j,4
0 , . . . , N j,4

4 ), j = 0, 1, 2,
defined in Formula (10) are NTP basis of U4(Iα).

Proof. It can be easily checked that the matrix A4 in (11), as well as the matrices Aj,4,
j = 0, 1, 2, in (12), (13) and (14), respectively, are stochastic for 0 < α < π/2. Moreover,
since for 0 < α < π/2

det(A4) =
1

5184
C0,1C2

1,2

C4
1,1C2,1

6= 0,

and

det(A0,4) =
1

72
C0,1C1,2

C2
1,1C2,1

6= 0, det(A1,4) =
1

864
C0,1C1,2

C3
1,1C2,1

6= 0, det(A2,4) =
1

2592
C0,1C1,2

C3
1,1C2,1

6= 0,

we conclude that they are also nonsingular matrices and the introduced systems are all
bases of U4(Iα).

Since (B4
0, . . . , B4

4) is the normalized B-basis of U4(Iα) (see [4]) , by Corollary 3.9 (iv)
of [3], it remains to prove that the matrices are TP. Let us recall that Neville elimination is
an alternative procedure to Gaussian elimination and has been used to characterize TP and
STP matrices. Applying the Neville elimination to the matrix A4 in (11), we can factorize
A4 as follows:

A4 = F3,4F2,4F1,4G1,4G2,4G3,4, (15)

with
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F3,4 :=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1/2 1/2


, F2,4 := φ2,4



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 C2,1 C1,2 0
0 0 0 2/3 1/3


, F1,4 := φ1,4



1 0 0 0 0

0 1 0 0 0

0 3 C1,2 0 0

0 0 C1,1 C0,1 0

0 0 0 C1,2 1


,

and

φ2,4 := diag(1, 1, 1, 3C1,1, 1)−1,

φ1,4 := diag(1, 1, 2C2,1, C1,2, 2C1,1)
−1.

Additionally,

G1,4 := ψ1,4



1 C11,12 0 0 0

0 C11,12 2C2,3 0 0

0 0 2C2,3 C5,6 0

0 0 0 1 0
0 0 0 0 1


, G2,4 := ψ2,4



1 0 0 0 0

0 C5,6 6C1,1 0 0

0 0 3C1,2 1 0

0 0 0 1 0
0 0 0 0 1


, G3,4 := ψ3,4



1 0 0 0 0

0 1 0 0 0

0 0 C5,6 1 0

0 0 0 1 0

0 0 0 0 1


,

with

ψ1,4 := diag(12C1,1, C15,18, C5,6, 1, 1)−1,

ψ2,4 := diag(1, C11,12, 2C2,3, 1, 1)−1,

ψ3,4 := diag(1, 1, 6C1,1, 1, 1)−1.

It can be easily checked that, for 0 < α < π/2, the entries of the matrix factors in (15)
are nonnegative and consequently, the bidiagonal matrices Fk,4 and Gk,4, k = 1, 2, 3 are TP.
Taking into account that, by Theorem 3.1 of [29], the product of TP matrices is a TP matrix,
we conclude that A4 is TP.

Now, we provide the bidiagonal factorization obtained by applying Neville elimination
to the matrices Aj,4, j = 0, 1, 2. It can be checked that

A0,4 = F3,4F2,4F1,4, (16)

where F3,4, F2,4 and F1,4 are the nonsingular, stochastic bidiagonal lower triangular matrices
in the factorization (15). Furthermore,

A1,4 = F3,4F2,4F1,4G(1)
1,4 G(1)

2,4 G(1)
3,4 , (17)

where F3,4, F2,4 and F1,4 are the matrices in the factorization (15) and

G(1)
1,4 := ψ

(1)
1,4



1 C3,4 0 0 0

0 2C1,1C3,4 (C1,2)2 0 0

0 0 3(C1,2)2 2C0,1 0

0 0 0 1 0
0 0 0 0 1


, G(1)

2,4 := ψ
(1)
2,4



1 0 0 0 0

0 C7,18,12 2C1,6,6 0 0

0 0 C1,6,6 C7,18,12 0

0 0 0 1 0
0 0 0 0 1


,

G(1)
3,4 := ψ

(1)
3,4



1 0 0 0 0

0 1 0 0 0

0 0 C1,10,12 C1,2 0

0 0 0 1 0

0 0 0 0 1


.
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with

ψ
(1)
1,4 := diag(4C1,1, C7,18,12, C3,14,12, 1, 1)−1,

ψ
(1)
3,4 := diag(1, 1, 2C1,6,6, 1, 1)−1,

ψ
(1)
2,4 := diag(1, 3C1,2C3,4, 3C1,1C1,2C1,10,12, 1, 1)−1.

Finally,
A2,4 = F3,4F2,4F1,4G(2)

1,4 G(2)
2,4 G(2)

3,4 , (18)

where F3,4, F2,4 and F1,4 are the matrices in the factorization (15) and

G(2)
1,4 := ψ

(2)
1,4



1 C5,12 0 0 0

0 C5,12 C1,6 0 0

0 0 C1,2C1,6 2C0,1 0

0 0 0 1 0
0 0 0 0 1


, G(2)

2,4 := ψ
(2)
2,4



1 0 0 0 0

0 2C1,3 3C1,2 0 0

0 0 3C1,10,12 2C1,3 0

0 0 0 1 0
0 0 0 0 1


,

G(2)
3,4 := ψ

(2)
3,4



1 0 0 0 0

0 1 0 0 0

0 0 C5,6 1 0

0 0 0 1 0

0 0 0 0 1


,

with

ψ
(2)
1,4 := diag(6C1,2, 6C1,3, C1,10,12, 1, 1)−1,

ψ
(2)
2,4 := diag(1, C5,12, C5,36,36, 1, 1)−1,

ψ
(2)
3,4 := diag(1, 1, 6C1,1, 1, 1)−1.

It can be easily checked that the bidiagonal matrices of the factorization (16), (17) and (18)
are TP for 0 < α < π/2 and the result follows.

We shall see that the NTP bases in (10) allow us to define T4-B-spline bases and T4-
B-spline curves, that is, piecewise functions and curves, respectively, on U4(Iα). In the
following result, the derivatives up to the third order of the functions of these NTP bases
are provided.

Lemma 2. The functions N4
i , N j,4

i , j = 0, 1, 2, i = 0, . . . , 4, of the NTP bases of U4(Iα) defined
in (10) satisfy the following properties (see Figure 3):

1. ∑4
i=0 N4

i (t) = 1, ∑4
i=0 N j,4

i (t) = 1, t ∈ Iα.

2. (N4
0 )

(k)(α) = 0, (N j,4
0 )(k)(α) = 0, (N4

4 )
(k)(0) = 0, (N j,4

4 )(k)(0) = 0 for j = 0, 1, 2.
3. (N4

i )
(k)(0) = (N4

i+1)
(k)(α), k = 0, . . . , 3.

4. (N4
i )

(k)(0) = (N2,4
i+1)

(k)(α), k = 0, . . . , 3.
5. (N2,4

i )(k)(0) = (N1,4
i+1)

(k)(α), k = 0, . . . , 3.
6. (N1,4

i )(k)(0) = (N0,4
i+1)

(k)(α), k = 0, . . . , 3.
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(a) (b)

(c) (d)

Figure 3. NTP bases defined in (10) for α = π
3 . (a) (N0,4

0 , . . . , N0,4
4 ), (b) (N1,4

0 , . . . , N1,4
4 ),

(c) (N2,4
0 , . . . , N2,4

4 ), (d) (N4
0 , . . . , N4

4 ).

Given p ∈ N, p ≥ 4, we are going to consider the equally spaced partition

π := {ui}
p+5
i=0 = {i α}p+5

i=0 , (19)

as well as the partition
µ := {ui}

p+5
i=0 , (20)

with
0 = u0 = · · · = u4 < u5 < · · · < up < up+1 = · · · = up+5,

and
uk = (k− 4)α, k = 4, . . . , p + 1.

Now, we define piecewise functions on either partition π or µ. When considering the
equally spaced partitions π, trigonometric B-spline bases will be obtained for the shape-
preserving representation of closed curves. On the other hand, using the piecewise func-
tions on partitions µ, clamped trigonometric curves satisfying the tangency to the control-
polygon will be defined.

For any i = 0, . . . , p, let

Ni,4(u) :=

{
N4

j
(
u− ui+4−j

)
, u ∈ [ui+4−j, ui+5−j), j = 0, . . . , 4,

0, else.
(21)

Moreover, for the partition µ, we consider the following piecewise functions,

Ñi,4(u) :=

{
Ni−j,4

j
(
u− ui+4−j

)
, u ∈ [ui+4−j, ui+5−j), 0 ≤ j ≤ i,

0, else,
(22)
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for i = 0, . . . , 3, with the convention N3,4
0 := N4

0 , and

Ñi,4(u) :=

{
Np−(i+4−j),4

j
(
u− ui+4−j

)
, u ∈ [ui+4−j, ui+5−j), i + 4− p ≤ j ≤ 4,

0, else,
(23)

for i = p− 3, . . . , p, with the convention N3,4
4 := N4

4 . In Figure 4 the piecewise functions
Ni,4(u), Ñi,4(u), i = 0, . . . , 3 are depicted.

(a) (b)

(c) (d)

(e)

Figure 4. Trigonometric piecewise functions (a) Ñ0,4(u), (b) Ñ1,4(u), (c) Ñ2,4(u), (d) Ñ3,4(u) and
(e) Ni,4(u), for α = π

3 .

The following properties of the above introduced piecewise functions can be deduced
from their definition and taking into account Theorem 1 and Lemma 2.

Proposition 1. The functions Ni,4, i = 0, . . . , p, defined in (21), and the functions Ñi,4, i =
0, . . . , 3 and i = p− 3, . . . , p, defined in (22) and (23) satisfy the following properties:

1. All the mentioned functions are piecewise trigonometric functions of the space U4(Iα).
2. The functions Ni,4(u) are symmetrical with respect to the middle of their supports and they

can be obtained by translation, i.e.,

Ni,4(u) = N0,4(u− ui).
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3. Ni,4(u) > 0 and Ñi,4(u) > 0 for u ∈ (ui, ui+5) and all applicable indices i. In fact, Ni,4 and
Ñi,4 have minimal support [ui, ui+5].

4. Ni,4(u)|[ul ,ul+1]
6= 0 for i = l − 4, . . . , l.

5. On the partitions π and µ,
p

∑
i=0

Ni,4(u) = 1, u ∈ [u4, up+1].

6. On the partitions π and µ, the functions Ni,4(u) for i = 0, . . . , p and Ñi,4(u) for i = 0, . . . , 3
and i = p− 3, . . . , p are Cj−mult(uk)-continuous, where mult(uk) is the multiplicity of the
knot uk in the support of the respective function.

Due to the analogy to the well-known polynomial B-splines, we will say that the
introduced piecewise functions are T4-B-splines.

Definition 2. Given p ∈ N, p ≥ 4, and partitions π and µ from (19) and (20), respectively. We
say that (N0,4,π , . . . , Np,4,π) with

Ni,4,π(u) := Ni,4(u), i = 0, . . . , p,

and Ni,4 defined in (21), is the normalized T4-B-spline basis over the partition π (see Figure 5a for
an illustration). On the other hand, we say that (N0,4,µ, . . . , Np,4,µ) with

Ni,4,µ(u) := Ni,4(u), i = 0, . . . , p,

and Ni,4 = Ñi,4 defined in (22), for i = 0, . . . , 3, and defined in (23), for i = p− 3, . . . , p, is the
normalized T4-B-splines over the partition µ (see Figure 5b for an illustration).

(a) (b)

Figure 5. Normalized T4-B-splines over a partition π (a), and µ (b) for α = π
3 .

The following properties guarantee shape preserving properties of normalized T4-B-
spline systems for knot partitions µ and π, with 0 < α < π/2.

Proposition 2. Given 0 < α < π/2, the T4-B-spline functions Ni,4,π and Ni,4,µ, i = 0, . . . , p,
introduced in Definition 2, satisfy the following properties:

1. (N0,4,π , . . . , Np,4,π) is an NTP basis of the generated space U of piecewise functions on
U4(Iα) defined on [u4, up+1].

2. (N0,4,µ, . . . , Np,4,µ) is the normalized B-basis of C(3 functions on [u0, up+5].

Proof. Let (N4
0 , . . . , N4

4 ) and (N j,4
0 , . . . , N j,4

4 ), j = 0, 1, 2, be the NTP bases of U4(Iα) defined
in (10). Given u ∈ [ui, ui+1),

Ni−4+j,π(u) = N4
j (u− ui), j = 0, . . . , 4,
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for i = 4, . . . , p, and j = 0, . . . , 4, we have

Ni−4+j,µ(u) =


Ni−4,4

j (u− ui), i = 4, 5, 6,

N4
j (u− ui), i = 7, . . . , p− 3,

Np−i,4
j (u− ui), i = p− 2, p− 1, p.

Consequently, taking into account Theorem 1, we deduce that the restrictions to [ui, ui+1)
of (N0,π , . . . , Np,π) and the restrictions to [ui, ui+1) of (N0,µ, . . . , Np,µ) are NTP bases of
U4(Iα) for 0 < α < π/2. Then, it can be deduced that (N0,π , . . . , Np,π) and (N0,µ, . . . , Np,µ)
are NTP bases of the corresponding generated space S of piecewise functions defined on
[u4, up+1].

In addition, the basis (N0,µ, . . . , Np,µ) also satisfies

lim
t→u+

j−4

(Nk,µ(t)/Nj,µ(t)) = 0, lim
t→u−k+1,µ

(Nj,µ(t)/Nk,µ(t)) = 0,

whenever 0 ≤ j < k ≤ p. Then, by Theorem 3.2 of Chapter 4 of [1], (N0,µ, . . . , Np,µ) is the
normalized B-basis of U .

The previous result implies that the T4-B-spline basis has optimal shape preserving
properties (see [3] and Chapter 4 of [1]) and it also has optimal stability properties for
the evaluation (cf. Chapter 5 of [1]) Now, we can define the corresponding piecewise
trigonometric curves.

Definition 3. Given d, p ∈ N, p ≥ 4, let si ∈ Rd, i = 0, . . . , p, and partitions π and µ from (19)
and (20), respectively. The parametric curve defined by

s(u) :=
p

∑
i=0

si Ni,4,π(u), u ∈ [u4, up+1), (24)

is called T4-B-spline curve with respect to the partition π and control points s0, . . . , sp. In particular,
if p = m, with m ∈ N, m ≥ 4, then we say that s(u) is an open T4-B-Spline curve. If p = m + 4
and sm+1+i = si, i = 0, . . . , 3, we say that s(u) is a closed T4-B-Spline curve. See Figure 6a for an
illustration of a closed T4-B-Spline curve.

The parametric curve defined by

s(u) :=
p

∑
i=0

si Ni,4,µ(u), u ∈ [u4, up+1), (25)

is called clamped T4-B-spline curve with respect to the partition µ and control points s0, . . . , sp. See
Figure 6b for an illustration of a clamped T4-B-Spline curve.

T4-B-Spline curves satisfy the following properties.

Proposition 3. The T4-B-Spline curves described in Definition 2 satisfy:

1. The relation between a T4-B-Spline curve and its control points is affinely invariant.
2. Any T4-B-Spline curve s(u) is locally controlled, i.e., moving a control point sl only modifies

the curve for u ∈ [ul , ul+5), moreover for τ = π or τ = µ we have

s(u)|u∈[ul ,ul+1)
=

l

∑
i=l−4

si Ni,4,τ(u) , (26)

and the curve s(u) lies in the convex hull of its control points si, i = l − 4, . . . , l.
3. The T4-B-Spline curves are monotonicity preserving: the curve has the same monotonicity as

the monotone control points.
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4. The length of a T4-B-Spline curve is bounded above by the length of its control polygon.
5. If the control polygon of a T4-B-Spline curve is planar and convex, then the T4-B-Spline curve

is also planar and convex.
6. The T4-B-Spline curve never crosses a hyperplane more often than does the control polygon.
7. Clamped T4-B-Spline curves have end point and end tangent interpolation properties:

s(0) = s0, s(um+1) = sm,

s′(0) = cot(α/2)(s1 − s0), s′(um+1) = cot(α/2)(sm − sm−1).

Finally, let us note that Definition 1, relations (10), the corner cutting algorithm for
T4-curves in (9) and the matrix factorizations (11)–(14) result in a corner cutting algorithm
for T4-B-Spline curves analogous to the one for T2-B-Spline curves detailed in [18].

4. Convergence of T4-B-Spline Curves to Quartic Polynomial B-Spline Curves

In this section we prove the convergence, when α → 0, of T4-B-Spline curves to
polynomial B-spline curves.

Theorem 2. Let π and µ partitions described in (19) and (20), respectively. When α→ 0, the T4-
B-Spline curve (24) and the clamped T4-B-Spline curve (25), with respect to π and µ, respectively,
and control points s0, . . . , sp approaches uniformly to the quartic polynomial B-spline curve with
knot vector π and µ, respectively and control points s0, . . . , sp.

Proof. Let us observe that, by (26), for τ = π or τ = µ, we can write

s(u)|u∈[ul ,ul+1)
=

l

∑
i=l−4

si Ni,4,τ(u) =
4

∑
j=0

sl+j−4N4
j (u− ul).

Let τ := (u− ul)/α for reparameterizing each segment curve on the interval 0 ≤ τ ≤ 1. By
Lemma 1, as α→ 0, the function B4

i (ατ) approaches uniformly the Bernstein polynomial
b4

i (τ), 0 ≤ τ ≤ 1, for all i = 0, . . . , 4. It can be easily checked that that the matrix A4
in (11) satisfies

lim
α→0

A4 = A, A :=


1/24 11/24 11/24 1/24 0

0 1/3 7/12 1/12 0
0 1/6 2/3 1/6 0
0 1/12 7/12 1/3 0
0 1/24 11/24 11/24 1/24

,

and therefore for τ = π we obtain

lim
α→0

s(u)|u∈[ul ,ul+1)
= lim

α→0

(
B4

0(ατ), . . . , B4
4(ατ)

)
A4

 sl−4
...
sl

 =
(

b4
0(τ), . . . , b4

4(τ)
)

A

 sl−4
...
sl

, (27)

which is the matrix form of a uniform B-spline curve of degree 4.
For τ = µ, we can follow a similar reasoning taking into account that the matrices

of (14) satisfy

lim
α→0

A0,α = A0, A0 =


1 0 0 0 0
0 1 0 0 0
0 1/2 1/2 0 0
0 1/4 7/12 1/6 0
0 1/8 37/72 23/72 1/24

,
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lim
α→0

A1,α = A1, A1 =


1/8 37/72 23/72 1/24 0

0 4/9 17/36 1/12 0
0 2/9 11/18 1/6 0
0 1/9 5/9 1/3 0
0 1/18 4/9 11/24 1/24

,

and

lim
α→0

A2,α = A2, A2 =


1/18 4/9 11/24 1/24 0

0 1/3 7/12 1/12 0
0 1/6 2/3 1/6 0
0 1/12 7/12 1/3 0
0 1/24 11/24 11/24 1/24

.

(a)

(b)

Figure 6. T4-B-splines curves (closed in (a), clamped in (b)) associated to a control polygon with
several parameters α, as well as the B-spline curve corresponding to the mentioned control polygon.

5. Conclusions and Future Work

We have proposed two frequency trigonometric spline bases with shape preserving
properties associated to uniform knot vectors. The corresponding parametric trigono-
metric spline curves have been also described. It is also shown that these curves share
many properties of polynomial spline curves. In fact, they converge to uniform quartic
B-spline curves.
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There is some worthwhile work to study further. We want to extend the bases to
knot vectors with multiple knots and to investigate whether it is possible to construct new
Algebraic-Trigonometric Pythagorean-Hodograph B-Splines curves taking into account the
results from [21].
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