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A B S T R A C T   

Flood prediction systems need hierarchical atmospheric, hydrologic, and hydraulic models to predict rainfall, 
runoff, streamflow, and floodplain inundation. The accuracy of such systems depends on the error propagation 
through the modeling chain, sensitivity to input data, and choice of models. In this study, we used multiple 
precipitation forcings (hindcast and forecast) to drive hydrologic and hydrodynamic models to analyze the 
impacts of various drivers on the estimates of flood inundation depth and extent. We implement this framework 
to unravel the August 2021 extreme flooding event that occurred in Central Tennessee, USA. We used two radar- 
based quantitative precipitation estimates (STAGE4 and MRMS) as well as quantitative precipitation forecasts 
(QPF) from the National Weather Service Weather Prediction Center (WPC) to drive a series of models in the 
hierarchical framework, including the Variable Infiltration Capacity (VIC) land surface model, the Routing 
Application for Parallel Computation of Discharge (RAPID) river routing model, and the AutoRoute and TRITON 
inundation models. An evaluation with observed high-water marks demonstrates that the framework can 
reasonably simulate flood inundation. Despite the complex error propagation mechanism of the modeling chain, 
we show that inundation estimates are most sensitive to rainfall estimates. Most notably, QPF significantly 
underestimates flood magnitudes and inundations leading to unanticipated severe flooding for all stakeholders 
involved in the event. Finally, we discuss the implications of the hydrodynamic modeling framework for real- 
time flood forecasting.   

1. Introduction 

Flooding is one of the most devastating natural disasters in the 
United States (US) posing a significant threat to society, ecosystem, and 
infrastructure (Bates et al., 2021; Swain et al., 2020). Flood fatalities, in 
particular, are a key reason for weather-related deaths in the US ac
counting for nearly 104 deaths per year since 2010 (NOAA/NWS, 2022). 

The magnitude and frequency of extreme weather events are projected 
to intensify due to climate change leading to greater flood risks (e.g., 
Dankers and Feyen, 2008; Davenport et al., 2021; Swain et al., 2020; 
Villarini and Zhang, 2020; Wing et al., 2022; Wobus et al., 2021). 
Extreme weather events are also exacerbated by other factors such as 
urbanization and land use/land cover change (Hemmati et al., 2021; 
Konrad, 2003; Rogger et al., 2016; Zhang et al., 2018). Therefore, flood 
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forecasting and prediction are of the utmost importance for timely flood 
warnings, hazards and risk characterization, emergency preparedness, 
flood mitigation, and resiliency. 

A recent example of one such catastrophic disaster is the 2021 
Central Tennessee flood, a widespread flash flood event, triggered as a 
consequence of extreme precipitation on August 21st, 2021, claiming 21 
lives with hundreds of homes and properties damaged (Hineman, 2021; 
Rick Rojas, 2021). The City of Waverly in Humphrey County and the 
surrounding areas were severely impacted (England et al., 2022; Hine
man, 2021; Rick Rojas, 2021). The rain gauge in the town of McEwen, 
nearest to Waverly, measured a state-record 24-hour precipitation total 
of about 17 in. on August 21. Considering a basin size of ~ 800 km2 (300 
mi2), the rainfall amount corresponds to approximately 65% of the 24- 
hour probable maximum precipitation for the Waverly region (Spring 
et al., 1986). The rainfall amount is roughly 1.5 times larger than the 
100-year return period 24-hour rainfall at the Waverly-4 W rain gauge 
(HDSC, 2021). Despite the severity, this event occurred unexpectedly, 
decreasing flood warning lead times, and leading to questions about the 
causes and predictability of such an event. Given the disastrous out
comes and the lack of hydrologic observations/monitoring in the area, 
the purpose of this study is to provide a retrospective diagnosis of the 
event and to simulate the flood inundation using an end-to-end hierar
chical modeling framework. 

Physics-based, hierarchical atmospheric, hydrologic, and hydraulic 
models (hereinafter referred to as “modeling framework”) are desired 
for reliable flood simulation (e.g., Rodríguez-Rincón et al., 2015) and 
can help reveal the propagation of uncertainty. The rainfall estimates 
obtained from quantitative precipitation estimates (QPE), or quantita
tive precipitation forecasts (QPF) may serve as the primary meteoro
logical input to a hydrologic model. The hydrologic model outputs, such 
as runoff, can then be used to drive a river routing model to simulate 
streamflow discharge. Finally, the simulated runoff and/or streamflow 
can be used to drive hydraulic models to simulate the resulting flood 
inundation. At each stage of modeling, evaluation can be made to un
derstand the reasonableness of the input/output data. In areas without 
sufficient observations, this physics-based approach may provide the 
best available reconstruction of a major hydrologic extreme event. 

Despite significant advances in numerical weather prediction and 
real-time forecasting, flood inundation forecasts inherit significant un
certainties from each component of the modeling framework (Merwade 
et al., 2008). Past studies have explored some aspects of uncertainties in 
modeling framework and resulting uncertainties, e.g., the role of inputs 
such as precipitation on streamflow forecasts (Dymond and Adams, 
2019; Ghimire et al., 2022; Ghimire et al., 2021b; Li et al., 2021; e.g., 
Vivoni et al., 2007), the role of reanalysis runoff and streamflow pre
diction (Mohanty and Simonovic, 2021; Rajib et al., 2020), different 
hydraulic models (Hocini et al., 2021; Zarzar et al., 2018), and model 
inputs, parameters and initial conditions (e.g., Afshari et al., 2018; 
Fernández-Pato et al., 2016; Pakoksung and Takagi, 2020; Rodríguez- 
Rincón et al., 2015; Sayama et al., 2015; Zarzar et al., 2018) on inun
dation predictions/forecasts. Due to the computationally intense nature 
of the modeling framework, specifically, the two-dimensional (2D) hy
drodynamic modeling, the uncertainty evaluation, and characterization 
are usually conducted at hydrometeorological levels. Only a few studies 
(e.g., Pakoksung and Takagi, 2020; Rodríguez-Rincón et al., 2015; 
Sayama et al., 2015; Zarzar et al., 2018) have extended them to inun
dation predictions. Since these uncertainties can propagate through the 
modeling framework and lead to biases in the streamflow and inunda
tion prediction/forecasts (Zappa et al., 2011; Li et al., 2021), careful 
investigation of error propagation at each element of the modeling 
framework is desired (Rodríguez-Rincón et al., 2015). Particularly for 
small-scale watersheds and localized areas affected by pluvial floods, 
such a comprehensive evaluation of error propagation become more 
important as they are more sensitive to the quality of QPFs in capturing 
intense rainfall events. 

Furthermore, the choice of hydraulic models can also introduce 

significant differences in flood predictions. Several methods and 
modeling tools with diverse complexity are available for inundation 
mapping. Terrain-based, non-physical approaches such as Height Above 
Nearest Drainage (HAND; Liu et al., 2018; Michael Johnson et al., 2019; 
Rennó et al., 2008; Viterbo et al., 2020) and AutoRoute (Follum, 2013; 
Follum et al., 2017; Follum et al., 2020) can be suitable to produce first- 
order approximations of riverine flooding. These approaches are 
computationally efficient and can be implemented in data-scarce re
gions (McGrath et al., 2018) for real-time operations. For more process- 
based modeling of flood regimes, hydrodynamic inundation models that 
solve the full shallow water equations are typically utilized. However, 
2D inundation modeling can be computationally expensive by several 
orders of magnitudes compared to low-complexity approaches. Graphics 
Processing Units (GPU) - accelerated inundation models such as Two- 
dimensional Runoff Inundation Toolkit for Operational Needs 
(TRITON; Morales-Hernández et al., 2020; Morales-Hernández et al., 
2021) that are tailored to utilize the modern heterogeneous high- 
performance computing (HPC) system have shown promising 
computing speed in hierarchical modeling frameworks (Dullo et al., 
2021a; Dullo et al., 2021b; Gangrade et al., 2019; Li et al., 2021). For 
such implementations, a better understanding of the tradeoff between 
accuracy and computational costs between different processes should 
also be carefully evaluated. 

To fill the above-mentioned knowledge gaps, we 1) develop a multi- 
model hierarchical modeling framework to reconstruct the August 2021 
Central Tennessee flood inundation event, 2) explore the sensitivity of 
input precipitation (QPEs and QPFs) on flood inundation and evaluate 
how these differences (errors) propagate through the modeling frame
work, and 3) assess the accuracy and value of different inundation 
models of varying complexity on flood predictions/forecasting. In 
particular, we utilize four forecast and hindcast precipitation datasets, a 
hydrologic model - Variable Infiltration Capacity (VIC; Liang et al., 
1994), a streamflow routing model - Routing Application for Parallel 
Computation of Discharge (RAPID; David et al., 2011), and two inun
dation models of varying complexity (AutoRoute and TRITON) to 
simulate, compare, and validate the simulated Central Tennessee flood 
event. In addition to the evaluation of the errors (uncertainties), the 
outcome of this study provides insights into the flood event and a 
modeling capability for future flood mitigation planning. 

2. Study area 

We consider US Hydrologic Unit Code Subregion (HUC) 0604 which 
encompasses the Tennessee River Basin below Pickwick Dam (~21,500 
km2) and the surrounding areas as the modeling domain (Fig. 1). The 
elevation of HUC 0604 ranges from approximately 67 m to 418 m, 
stretching from the hilly Highland Rim in the west and the Cumberland 
Plateau in the east with the enclosed Central Basin in the middle (TCO, 
2022). The basin is dominated by a humid subtropic climate, with 
average annual precipitation varying between 1,143 mm in the Central 
Basin to 1,270 – 1,400 mm in the hilly Highland Rim from south to 
north. The largest precipitation occurs during the winter and early 
spring due to the more frequent movement of large-scale storms, while 
the next largest precipitation occurs in midsummer due to active thun
derstorms (TCO, 2022). The main stem of the Tennessee River, which 
drains the entire watershed into the northwest, is mostly regulated by 
the Tennessee Valley Authority (TVA) providing flood control, and hy
dropower, among other benefits. The basin is predominantly forest 
covered (56%) followed by pasture (19%), crop cover (8%), and 
developed areas (7%), respectively (Figure S1; USGS, 2021a). Waverly, 
TN, which is the main focus of our study, is located in the center of the 
modeling domain. The tributary passing Waverly is not under any dam 
regulation and can be considered as unregulated stream reaches during 
simulation. 
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3. Data and methods 

3.1. Hierarchical modeling framework 

Model predictions are uncertain and can be influenced by a variety of 
factors, such as natural, unavoidable errors (aleatory) and imperfect 
knowledge of the physical processes involved in a phenomenon, input 
data, and limitations in the computational methods (epistemic). For 
flood modeling, risk assessments, and informing decision-making, it is 
important to understand how these errors (uncertainties) propagate 
through the modeling framework. We implement the multi-model hi
erarchical approach using two forecast and two hindcast precipitation 
datasets to drive a hydrologic model (VIC) and a river routing model 
(RAPID) to simulate runoff and streamflow. The simulated runoff and 

streamflow are then fed into two inundation models of varying 
complexity (AutoRoute and TRITON). To understand how error (un
certainty) propagates through the modeling framework, we evaluate the 
modeling skills of precipitation, streamflow, and inundation relative to 
their respective observations. Fig. 2 presents a graphical summary of the 
hierarchical modeling framework implemented to investigate the 
August 2021 Central Tennessee flood. Further details are discussed in 
the following subsections. 

3.2. Precipitation inputs 

Precipitation is expected to be the most significant input variable for 
the hierarchical modeling framework. We used two QPEs: STAGE4 
(MESONET, 2021; NCEP-EMC, 2021) and MRMS (Muliti-Radar Multi- 

Fig. 1. Study area map showing the computational model domain. A solid dark rectangle in the middle depicts the region affected the most by the August 2021 
extreme flooding event including Waverly, TN. 
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Sensor; Zhang et al., 2016), and two QPFs from the National Weather 
Service (NWS) Weather Prediction Center (WPC; NCEP-NOAA, 2021) to 
drive the hydrologic and hydraulic models. STAGE4 is a 4-km resolution 
gridded rainfall product from National Center for Environmental Pre
diction (NCEP) produced from regional hourly multi-sensor (radar and 
gauges) precipitation analyses by the 12 River Forecast Centers over the 
US (NCEP, 2021). MRMS rainfall on the other hand is a 1-km hourly 
resolution gauge-corrected rainfall product derived from Level II data 
collected by the WSR-88DP radars. We used the two most recent WPC 
QPFs prior to the August 21 event, issued 6 h apart at 00:00 and 06:00 
UTC, for the simulation referred to as QPF082100 and QPF082106, 
respectively. These QPFs are for lead times up to 3 days with 6-hour 
rainfall accumulation intervals. 

4. Hydrologic and routing model 

The VIC model solves water and energy balances to simulate surface 
runoff, baseflow, evapotranspiration, and other hydrologic processes at 
each grid cell. We use a set of calibrated parameters derived from 
Oubeidillah et al. (2014) and Naz et al. (2016) to simulate runoff at each 
1/24◦ (~4 km grid). We then use a calibrated RAPID model to route the 
simulated total runoff (i.e., VIC surface runoff plus baseflow) through 
the NHDPlusV2 river network to produce streamflow (McKay et al., 
2012). The applicability of VIC to drive RAPID (David et al., 2015; 
Tavakoly et al., 2021; Tavakoly et al., 2017) has been demonstrated in 
several previous studies (David et al., 2011; Tavakoly et al., 2017, 
2021). In this study, the VIC-RAPID framework is driven by the 
above-mentioned precipitation inputs spatially interpolated to 1/24̊ (~4 
km) spatial resolution. Temperature, wind speed, elevation, soil, land 
cover, and vegetation serve as other key inputs (Table 1). For more 
details on VIC-RAPID, refer to Oubeidillah et al. (2014), Naz et al. 
(2016), and Ghimire et al. (2023). While the VIC-RAPID modeling 

framework has been implemented in several studies for streamflow 
simulations (David et al., 2015; Tavakoly et al., 2023; Tavakoly et al., 
2021; Tavakoly et al., 2017), their integration with computationally 
intensive hydrodynamic model is less explored (Dullo et al., 2021b; 
Nandi and Reddy, 2022). We use VIC-RAPID to drive two inundation 
models to demonstrate their applicability for large-scale and 
high-resolution inundation modeling. 

Fig. 2. Graphical description of the hierarchical modeling framework used in this study.  

Table 1 
Summary of input datasets used for hierarchical modeling framework.  

Data Space-time 
resolution 

Source 

STAGE4 4 km – 1 h National Center for Environmental 
Prediction (MESONET, 2021; NCEP- 
EMC, 2021) 

MRMS 1 km – 1 h Zhang et al. (2016) 
WPC QPF 5 km – 6 h National Weather Service Weather 

Prediction Center (NCEP-NOAA, 2021) 
Rain gauge data 1 h Iowa Environment Mesonet ( 

MESONET, 2021) 
CONUS-SOIL 1 km Pennsylvania State University (Miller 

and White, 1998) 
Land Cover 

Classification 
1 km University of Maryland (Hansen et al., 

2000) 
Land Cover 1 km USGS (USGS, 2021a) 
MODIS Leaf Area 

Index (LAI) 
1 km NASA (Myneni et al., 2015) 

USGS National 
Elevation Dataset 
(NED) 

10 m USGS (USGS, 2018) 

NARR Wind Speed 32 km NCEP (Mesinger et al., 2006) 
National Water 

Information System 
15 min USGS (USGS, 2021b) 

NHDPlusV2 – USGS (USGS, 2020)  
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5. Inundation models 

5.1. AutoRoute 

AutoRoute is a raster-based, steady state, uniform flow hydraulic 
model that can quickly simulate flood hydraulic conditions for a given 
discharge which can then be fed to a flood mapping software to generate 
flood depth grids. AutoRoute can be coupled with RAPID (AutoRAPID) 
to generate flood hydraulic conditions over large-scale vector river 
networks, such as the NHDPlus (Afshari et al., 2018; Follum, 2013; 
Follum et al., 2017; Follum et al., 2020). AutoRoute solves Manning’s 
equation at automatically generated cross sections along the river 
network and requires topography and land cover datasets as inputs. The 
RAPID streamflow data for each NHDPlus river reach discussed in the 
previous section provides AutoRoute with the appropriate streamflow 
data. Because AutoRoute is a steady-state model, the maximum 
discharge from the RAPID time series is the flow utilized to estimate the 
flood inundation. The US Geological Survey (USGS) one-third arc-sec
ond National Elevation Dataset (NED) digital elevation model (DEM) 
and the 2016 National Land Cover Database (NLCD; Dewitz, 2019) 
represent the topography and surface roughness of the study domain, 
respectively. All roughness coefficients utilized by AutoRoute are 
consistent with those deployed in Follum et al. (2020). In a manner 
consistent with Follum et al. (2020), the minimum flow for each river 
reach in RAPID becomes a baseflow estimate with which AutoRoute 
estimates a parabolic bathymetry for each cross-section sampled from 
the DEM. AutoRoute estimates of riverine hydraulic conditions (depth, 
velocity, and top width) then pass to the flood mapping software, 
FloodSpreader (or AutoRoute postprocessing script, ARPP) in Follum 
et al. (2020) to estimate flood inundation depths and extents. The 
simulation time for AutoRoute/FloodSpreader for the entire domain 
(21,500 km2) is ~ 4 min using an Intel Core i7-865U processor for one 
event. 

5.2. Triton 

TRITON (https://triton.ornl.gov) is a 2D open-source flood simula
tion tool designed for modern GPU-centric HPC. The core of TRITON is a 
computationally efficient, physics-based hydraulic model that operates 
on a regular/structured grid and solves the full 2D shallow water 
equations. TRITON can operate on multiple computer platforms and 
utilize modern HPC environments, including (1) multi-core shared 
memory platform using OpenMP, (2) multi-node cluster using MPI or 
MPI + OpenMP, (3) single node GPU using CUDA, and (4) multi-node 
GPU cluster using MPI + CUDA, in which the highest TRITON compu
tational efficiency can be achieved by using multi-GPU implementation. 
TRITON utilizes topographical data (e.g., DEM, LiDAR) as its base input 
in a uniform (Cartesian) grid structure. The model can be driven by 
streamflow hydrographs at specified locations or gridded runoff 
hydrographs, or both which serve as the model’s hydrological forcing. 

For the TRITON setup, we use a one-third arc-second NED DEM from 
USGS resampled to 10 m spatial resolution over the TRITON domain 
(Fig. 1). The domain extends well beyond the area of interest (i.e., the 
HUC 0604 boundary) to minimize any potential artifacts arising due to 
boundaries. The setup includes 702 million grid cells (26,000 rows ×
27,000 columns). The flood simulation is conducted for 10 days from 
August 14th, 2021, through August 23rd, 2021, driven by RAPID 
streamflow outputs at the southern boundary of the TRITON domain, 
and via a ~ 4 km VIC runoff output distributed over the entire domain 
(see Fig. 1). We used a spatially varying Manning’s n value map which 
was prepared based on the 2016 NLCD (Dewitz, 2019) as a proxy of 
ground roughness features following the approach used by Kalyanapu 
et al. (2009). The downstream boundary conditions are defined for the 
normal flow conditions using the bed slope value for the outlet of the 
watershed obtained from the NHDPlus network (USGS, 2020). The 
simulation outputs are generated every 2 h, with a run time of ~ 2.5 h 

for one event using 384 GPUs (NVIDIA V100) on a cluster computer 
supported by the Oak Ridge Leadership Computing Facility. 

5.3. Observation data 

Using the corresponding observations, we evaluate the outputs of 
each component within the modeling framework (sources are listed in 
Table 1). We used rainfall data from three networks (MESONET, 2021): 
NWS Cooperative Observer Program (COOP), National Oceanic and 
Atmospheric Administration (NOAA) Automated Surface Observing 
System (ASOS), and Data Collection Platforms (DCP) to evaluate QPE 
and QPF at co-located rain gauge stations (Figs. 1 & 3). We used 15-min 
streamflow data from the USGS stream gauge (see Fig. 1; USGS, 2021b). 
The Trace Creek watershed covering both towns of Waverly and McE
wen, which was engulfed by the August 2021 flood, does not have 
streamflow monitoring gauges. Therefore, for the VIC-RAPID stream
flow evaluation, we focus on three USGS gauges from the surrounding 
areas that were most affected by the flood event (see Fig. 1). Next, we 
evaluated both TRITON and AutoRoute inundation outputs (resampled 
to TRITON domain to enable the grid to grid comparison) driven by 
QPEs and QPFs, against surveyed high-water marks (USACE-Nashville, 
2021). These high-water marks (HWM; see Fig. 1) correspond to the 
locations of maximum inundation on the flood plains of the most 
affected streams by the 2021 Central Tennessee floods. These HWM data 
contain an estimate of water surface elevation (WSE) at each HWM. 
There are about 320 such locations that we used for flood inundation 
evaluation. 

5.4. Evaluation metrics 

We used several popular metrics to evaluate the performance at 
different levels of the hierarchical modeling framework. The use of four 
rainfall QPEs and QPFs, and two inundation models provide 8 unique 
combinations to assess the error propagation in the modeling chain. For 
continuous verification, we report Kling-Gupta Efficiency (KGE; Gupta 
et al., 2009) and Mean Absolute Error (MAE). KGE encompasses three 
components representing different characteristics: Pearson’s correlation 

(r), the mean ratio 
(

β =
μs
μo

)
, and the variance ratio 

(
α = σs

σo

)
, where µ and 

σ denote mean and standard deviation, respectively. The subscripts ‘s’ 
and ‘o’ represent simulation (estimation) and observation, respectively. 
The ideal value of KGE is equal to 1, which is achieved only if each 
component is equal to 1. 

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (α − 1)2

+ (β − 1)2
√

(1) 

MAE is computed as, 

MAE =

∑N
i=1|Qs − Qo|

N
(2) 

where Qs and Qo represent simulated (estimated) and observed var
iables, respectively. N represents the length of the time series. 

We also report a multiplicative bias, B, which depicts a systematic 
under or over-prediction of the simulation (estimation) relative to the 
reference. For the uniform space–time grid, B is similar to β. The ideal 
value of B is 1. 

B =

∑N
x,tQs(x, t)

∑N
x,tQo(x, t)

(3) 

where x and t represent the grid location and time, respectively. 
To capture the peak flow performance, we compute the percent peak 

difference (PPD) between the simulated and observed streamflow time 
series. 

PPD = 100 ×
Qs,peak − Qo,peak

Qo,peak
(4) 
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where Qs,peak, and Qo,peak represent peak flow from simulated and 
observed streamflow time series, respectively. 

We evaluate rainfall and flood inundation using both categorical and 
continuous verification measures. The categorical verification measures 
represent the detectability of rainfall/flood inundation and are 
computed based on rain/no rain (inundation/ no inundation) compar
ison between the two raster grids using the contingency table presented 
in Table S1 of Supplementary Information (e.g., CAWCR, 2017; Ghimire 
et al., 2021b). For categorical verification, we use Hit Rate (HR), False 
Alarm Ratio (FAR), Frequency Bias (FB), and Gilbert Skill Score (GSS). 
Table 2 presents a detailed description of these measures. In addition to 
the error metrics presented above, we use correlation (R), and Root 
Mean Squared Error (RMSE) for continuous verification that quantifies 
the forecasting skill in terms of the magnitude of rainfall/inundation 
relative to the corresponding reference. 

6. Results and discussion 

6.1. Performance evaluation 

6.1.1. Rainfall QPE and QPF 
Both rainfall QPEs and QPFs are known to have significant errors 

(uncertainties). Since precipitation is the main driver of the rainfall- 
runoff-inundation models, understanding how these errors propagate 
to the model outputs is important. First, we conducted both categorical 
(detection) and continuous (estimation) verifications for QPEs and QPFs 
to understand associated errors and uncertainties. A one-to-one com
parison of rainfall accumulation at rain gauges and corresponding QPE 
and QPFs (Fig. S3) reveals that among all four rainfall forcings, MRMS 
results in the least MAE across all rain gauges followed by STAGE4, 
QPF082100, and QPF082106 respectively. Fig. 3a shows the spatial 

Fig. 3. Rainfall differences (error) with respect to MRMS QPE. (a) MRMS rainfall accumulation over the August 2021 extreme event. Color-coded circles show 
rainfall accumulation at co-located rain gauges. (b), (c), and (d) demonstrate the differences of STAGE4, QPF082100, and QPF082106 rainfall accumulations with 
respect to MRMS shown in (a). 
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distribution of MRMS-based rainfall accumulation for the event overlaid 
with color-coded rainfall gauge accumulated data, suggesting that 
MRMS captures the total rainfall accumulation pattern well when 
compared to that of the rain gauges. A comparison of four representative 
rain gauges in the most affected region shows that MRMS estimates are 
also closest to the rain gauge observations (Fig. 3a and S3) with bias (B) 
values close to 1. STAGE4 and both QPFs show a significant underesti
mation of rainfall i.e., B is much smaller than 1 at these locations. Fig. 3 

(panels b through d, also see Fig. S2) further shows the spatial distri
bution of rainfall accumulation differences for STAGE4 and QPFs, 
relative to MRMS rainfall for the August 2021 event. STAGE4 and two 
QPFs show underestimation in the most affected region while also 
showing the spatial shift. Note that MRMS rainfall considered here as a 
reference is not free of uncertainties either as revealed by the compar
ison with co-located rain gauge stations. The gridded products will likely 
include differences due to differences in spatial scale when compared to 
in-situ observations. Also, note that MRMS implements rain gauge ad
justments to its estimation potentially leading to better performance. 

For more robust estimates of rainfall errors, while accounting for its 
spatial variability, we present the grid-based verification results in 
Fig. 4a. Given the superior performance of MRMS based on the com
parison with rain gauge observations (see Fig. S3, and as discussed 
above), we evaluate STAGE4 and two QPFs against MRMS. During the 
categorical evaluation, a threshold of 0.5 mm is used, which corresponds 
to a drizzle, to distinguish between rainfall and no rainfall. All cate
gorical verification measures consistently demonstrate a higher perfor
mance of STAGE4 compared to both most recent QPFs (Fig. 4a). Though 
HR is not significantly different among the three, FB and FAR are 
significantly higher which explains much higher overall skill scores in 
terms of GSS by STAGE4. Much larger values of FB for both QPFs suggest 
that more pixels detect rainfall but significantly underestimate the 
values as demonstrated by corresponding continuous verification mea
sures B, R, RMSE, and MAE (Fig. 4b-4d) across three USGS monitored 
basins (see Fig. 1). Among QPFs, the values of B, R, and RMSE depicted 
by QPF issued at UTC-00:00 are slightly better than the one issued at 
UTC-00:06, August 21, which somewhat agrees with the numerical 
weather prediction model’s difficulty with short lead time forecasts to 
capture initial rainfall amount and distribution (Lin et al., 2005; Seo 
et al., 2018; Viterbo et al., 2020). Also, note a general spatial scale 
dependence of verification measures for QPFs, B and R in particular, 

Table 2 
Binary evaluation metrics for categorical verification of rainfall and inundations.  

Criterion Formula Range Description 

Hit rate (HR) HR =
M1B1

M1B1 + M0B1 
0 – 1 Measure of the tendency of 

the model to accurately 
predict the benchmark 
flood extents 

False alarm 
ratio (FAR) 

FAR =
M1B0

M1B0 + M1B1 
0 – 1 Measure of the tendency to 

overpredict flood extent 
Critical 

success 
index (CSI) 

CSI =

M1B1
M1B1 + M0B1 + M1B0 

0 – 1 Measure of fit with the 
penalty for overprediction 
and underprediction 

Error (E) E =
M1B0
M0B1 

0 – ∞ Measure of the tendency 
toward overprediction or 
underprediction 

Frequency 
bias (FB) 

FB =
M1B1 + M1B0
M1B1 + M0B1 

0 – ∞ Measure of the tendency 
toward overprediction or 
underprediction 

Gilbert skill 
score (GSS) 

GSS =
N
D  

− 1/3 – 
1 

Measure of the tendency to 
accurately predict 
accounting for hits related 
to random chance 

where.N = M1B1× M0B0 − M0B1× M1B0 D = (M0B1 + M1B0)(M1B1 +

M0B1 + M1B0 + M0B0) + (M1B1 × M0B0 − M0B1 × M1B0)

Fig. 4. Verification results of rainfall QPEs and QPFs. The verifications of STAGE4, QPF082100, and QPF082106 are with respect to MRMS QPE. (a) shows the 
computational domain scale categorical verification while (b), (c), and (d) demonstrate the continuous verification measures across three USGS-monitored river 
basins. RMSE and MAE are in the units of mm. 
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consistent with results from previous studies (e.g., Ghimire et al., 2021b; 
Seo et al., 2018). 

6.2. Streamflow 

Similar patterns can be observed in the performance indicators 
linked to each QPE/QPF forcing as we have observed when evaluating 
the rainfall forcings across basins (Figs. 4 and 5). The MRMS-driven VIC- 
RAPID demonstrates a superior performance with a KGE > 0.5 and B 
close to 1. STAGE4 and QPF-driven VIC-RAPID show significantly lower 
performance. Most importantly, MRMS captures both the timing and 

magnitude of the streamflow peaks reasonably, which is crucial from a 
real-time flood forecasting perspective. The QPF-driven VIC-RAPID, 
however, does not capture them well. Note that for the smaller basin (e. 
g., Piney River), the QPFs bias is the largest (Fig. 5), hence propagating 
to the streamflow forecasts showing the values of both KGE and B much 
smaller than 1. Though we do not show it in Fig. 5, the streamflow 
forecasts for the Trace Creek watershed (~70 km2; Fig. 1) show similar 
behavior as Piney River with KGE = 0.14 and B = 0.45 (details are 
described in Section 4.2). These results further depict the influence of 
QPE/QPF spatial scale on streamflow forecasting, also demonstrated in 
Vivoni et al. (2007) and Ghimire et al. (2021b) as well as the sensitivity 

Fig. 5. Simulated streamflow hydrographs forced with rainfall QPEs and QPFs in the VIC-RAPID modeling framework. Green dots correspond to three select USGS 
stream gauges in the region (solid dark rectangle in the middle) most affected by the extreme flooding in August 2021. The values shown on each plot at the top left 
corner depict corresponding performance metrics in terms of Kling-Gupta Efficiency, multiplicative bias, and percent peak difference (KGE, B, PPD). The colors 
represent respective streamflow hydrographs. 
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of streamflow to spatial and temporal displacement in meteorological 
forcings as highlighted in Viterbo et al. (2020). 

6.3. Flood inundation 

In Fig. 6, we overlay the HWM locations on the maximum inundation 
extents. A binary evaluation is conducted to determine wet pixel fraction 
(WPF) i.e., a ratio of the number of HWM locations identified as wet/ 
flooded under the simulation (using a threshold of 0.1 m) to the total 
number of HWM locations. MRMS-driven flood inundation with 
TRITON achieves the highest performance (WPF ~ 94%) in the region, 
followed by STAGE4-based inundations (WPF ~ 49%). AutoRoute per
forms in a similar pattern for MRMS and STAGE4, but with lower per
formance (WPF ~ 65% and 31%, respectively). Both TRITON and 
AutoRoute when driven by QPFs result in a lower performance with 
WPF in the range of 13–25%. The performance of inundation predictions 
follows a similar pattern as that of rainfall errors and streamflow pre
diction errors. We discuss more on the error propagation across model 
cascades in the following section. 

WPF-based evaluations alone can overstate the performance and 
therefore, flood extent comparison alone is not the best benchmark for 
evaluation (Hunter et al., 2005; Rodríguez-Rincón et al., 2015). For a 
comprehensive evaluation, we supplement our analysis by comparing 
simulated inundation depths by TRITON and AutoRoute with water 
depths at HWM locations. Fig. 7 shows an evaluation of simulated water 
depths at 320 co-located HWM locations for each rainfall forcing. Both 
hydrodynamic models can capture the inundation depths reasonably 
well when driven by MRMS, with MAE in the range of 0.8–1.0 m. With 
the use of other forcings (i.e., STAGE4 and QPFs), both models result in 
lower performance (MAE in the range of 1.25–1.50 m). TRITON dem
onstrates an overall better performance (i.e., smaller MAE) relative to 
AutoRoute. 

Further, for a more robust evaluation, we also explore the distribu
tion of the WSE errors across 320 HWM locations. WSE can be more 
reliable compared to water depth comparison at gauging stations mainly 
due to the uncertainty in the exact location and elevation of the gauge 
stations and the uncertainties in the DEM topography. The violin plots in 
Fig. 8 help capture the variability of the inundation prediction errors. 
The variability of WSE errors across models and rainfall forcings is 
almost similar except for the systematic biases. As discussed above, 
MRMS specifically shows the smallest median WSE error for both 
models. Systematic underestimation of WSE by the QPFs (absolute me
dian error > 1 m) shows that the rainfall volume bias (underestimation) 
propagated along model cascades (i.e., to streamflow and inundation 
forecasts), which is consistent with previous results (Ghimire et al., 
2022). This underestimating of inundation estimates largely explains 
why the risk of the August 2021 flood was misjudged, which led to a 
surprise for both flood emergency managers and the local population. 
Also, note that there is a large variability in inundation depth errors 
which highlights the sensitivity of depth estimations in valley-filling 
events. Insufficient representation of local geomorphologic character
istics such as slope between floodplain and channel, low-lying areas, and 
roughness features contribute to such variability in the peak flood 
magnitudes (Rodríguez-Rincón et al., 2015). 

Further, we conduct a grid-by-grid evaluation of flood inundation 
between TRITON and AutoRoute-generated depth estimates. Assuming 
AutoRoute as a baseline, we compared TRITON inundation estimates for 
each of the forcings (e.g., Fig. 9 for MRMS, Figures S5 through S7 for 
STAGE4 and QPFs). Based on Fig. 9a, the color-coded grid cells in blue 
indicate all the pixels that can be classified as wet (threshold of 0.1 m) by 
both AutoRoute and TRITON. The pixels in the red and green represent 
wet cells for TRITON only and AutoRoute only, respectively. We find 
that both models can predict wet cells along the main stem of the river in 
the northwest quadrant of the watershed. The TRITON-only values are 
generally more prominent in the eastern headwaters and the southern 
portion along the main channel, with overall Hit Rate = 0.82 and FAR =

0.44. Here, a higher value of FAR can be associated with the fact that 
AutoRoute simulates fluvial floods only while TRITON simulates both 
fluvial and pluvial floods. Further, water depth differences in panel (b) 
and Figure S8 indicate that a major difference is observed along the main 
channel where TRITON simulated depths are much higher compared to 
AutoRoute. The difference can be attributed to the fact that TRITON can 
utilize a downstream boundary condition during the simulation and 
therefore can simulate the backwater effect. 

Overall, TRITON performs better, perhaps due to its high computa
tional demand while being still efficient (run time of 2.5 h for the entire 
event) to solve the full shallow water equations. AutoRoute also per
forms reasonably well, especially considering its lower computational 
demands and high speed (using a single Intel processor and a runtime of 
~ 4 min). Similar findings are also reported in other studies such as 
Hocini et al. (2021) showing an increased grading in model prediction 
capability between low-complexity models and the ones which solve 2D 
shallow water equations. Given their unique features, both types of 
models may provide their unique contributions during operational ap
plications, i.e., a mix of both types of models may provide an effective 
strategy to balance the needs for speed and accuracy under constrained 
resources. 

6.4. Error propagation in the framework 

We present the error propagation along the three levels of model 
cascades in terms of model performance owing to the complexity of 
disaggregating many sources of uncertainty. In Fig. 10, we show the 
evolution of the bias, B, through model cascades. Errors in rainfall QPFs 
are generally amplified when propagated to the streamflow predictions 
as indicated by both median B and its variability. Increased variability of 
B in streamflow demonstrates higher sensitivity of the rainfall-runoff 
process to the precipitation forcings, and basin scales, among other 
characteristics. Despite increased variability of B for streamflow, the 
QPFs show improved performance in terms of the median. This could be 
due to the potential QPF random error aggregation by the river network, 
in addition to the sensitivity of rainfall-runoff processes, particularly for 
larger basin scales. 

The propagation of errors to the inundation simulations by two hy
draulic models reveals an interesting pattern. The median bias for 
MRMS-forced inundation prediction by TRITON is close to 1 demon
strating its potential to reproduce inundation observed during the 
August 21 event (Fig. 10). STAGE4 and QPFs-forced TRITON simula
tions generally show underpredictions in a similar pattern as that of 
precipitation forcings. Similar behavior in bias propagation was also 
observed by Rodríguez-Rincón et al. (2015). This suggests that bias 
propagation to streamflow is more sensitive to that of inundation, and 
further, the bias propagation to streamflow can be reverted in the next 
modeling step i.e., inundation, and therefore highlights the need to 
systematically study the modeling frameworks and associated un
certainties. The AutoRoute inundation simulations show a very similar 
pattern of bias propagation except that they generally show inundation 
depth underestimation, notably for MRMS. One key explanation for such 
behavior is due to the ability of TRITON to simulate both fluvial and 
pluvial floods as opposed to AutoRoute. Note, however, that Auto
Route’s ability to reasonably simulate large-scale flood inundations 
using fewer computational resources makes it a good candidate for real- 
time flood inundation forecasting. It is particularly true when adequate 
computational resources are not readily available for TRITON. 

We use the Analysis of Variance (ANOVA) approach to identify the 
dominant sources contributing to the variance of the water surface 
depths within an eight-member ensemble. ANOVA approach, utilized by 
several hydrologic modeling studies (Bosshard et al., 2013; Gangrade 
et al., 2020; Meresa and Romanowicz, 2017), allows for explaining the 
total variance as a sum of variances from the individual factors and re
sidual error. Here, the two main factors included in the ensembles are 
the four rainfall forcings and two flood inundation models. The grid-by- 
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Fig. 6. Simulated flood inundation depth and extent comparison between TRITON (left column) and AutoRoute (right column) forced with rainfall QPEs and QPFs. 
Flood extents are shown for the Waverly region. The values on the top right corner show the wet pixel fraction (WPF) metric. The red dots represent the high- 
water marks. 
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grid ANOVA results are presented in Fig. 11. The results highlight that 
for the region along the main river channel (south to north in the 
TRITON domain), as well as upstream catchment areas (eastern side of 
the TRITON domain) greater variability is caused by the choice of flood 
model. However, in the areas like Waverly, McEwen, and Centerville, 
the choice of meteorological forcings results in greater variability. 

6.5. Limitations 

Despite promising results, our experimental setup has some limita
tions. We use a default model setup for AutoRoute and TRITON. Model 
calibration and validation can be an important step in improving the 
accuracy of inundation predictions. More sophisticated approaches to 

Fig. 7. Evaluation of simulated water depths at collocated high-water marks (HWM) locations. Each dot corresponds to the surveyed HWM locations (n = 320). The 
first row corresponds to the TRITON simulations while the second row represents the AutoRoute simulations. The color depicts the density of points with yellow color 
pointing to the largest number of data points. 

Fig. 8. Violin plots demonstrating the variability of water surface elevation (WSE) errors across (a) TRITON and (b) AutoRoute model simulations forced with 
different precipitation forcings. The color-coded labels represent the median WSE error in [m] i.e., the white dot in each violin where the dark solid line in the middle 
of each violin represents the corresponding interquartile range. 
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establishing the model’s initial conditions, model parameterization, and 
external river boundary conditions can improve prediction accuracy. As 
our results in Fig. 10 indicated, inundation depth and extent predictions 
depend more on the characterization of the river and floodplain than on 
the characterization of the rainfall-runoff relationship. Approaches to 
improving the DEM such as burning the large rivers’ bathymetry (e.g., 
Bates et al., 2021), subgrid-scale representation of smaller streams (Neal 
et al., 2012), local adaptation of the inundation model (e.g., Bates et al., 
2021) accounting for many human interventions such as dams, levees, 
and adaptation infrastructures could lead to improvement in future 
model applications. Note that this framework does not isolate the 

uncertainties arising from the hydrologic model, streamflow routing, 
and observational data as our objective is to explore the error propa
gation to inundation predictions. Also, the effect of storm direction 
relative to the basin orientation, shape, and size on the hydrologic 
response (e.g., Ghimire et al., 2021a; Perez et al., 2021; Seo et al., 2012; 
Volpi et al., 2013) is not disaggregated. Future evaluations can include 
additional choices at all levels of the cascading modeling framework. 

7. Summary and conclusions 

In this study, we demonstrate the need to use a physics-based 

Fig. 9. Binary evaluation of flood inundation simulations across TRITON and AutoRoute forced with MRMS QPE. (a) Pixel-to-pixel comparison and (b) water 
depth difference. 
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hierarchical modeling framework that integrates atmospheric, hydro
logic, and hydraulics models for accurate flood inundation prediction 
and forecasting. We implement the framework to unravel an extreme 
flooding event that occurred in Central Tennessee in August 2021. We 
use two radar-based QPEs (i.e., STAGE4 and MRMS) and two QPFs from 

WPC to drive a series of models in the framework, that includes the VIC 
hydrologic model, RAPID routing model, and AutoRoute and TRITON 
inundation models. We evaluate skill at each level of the modeling chain 
and demonstrate the propagation of rainfall errors. We list below some 
key conclusions derived from the study: 

Fig. 10. Error propagation in terms of bias, B through model cascades of hierarchical modeling framework.  

Fig. 11. Dominant contributing factor in explaining the total variance of simulated water depths as obtained from ANOVA analysis. The inset shows Trace 
Creek Watershed. 
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1) Significant rainfall QPF bias was observed for the August 21st event 
which propagated to the inundation forecasts, resulting in unantic
ipated severe flooding to both emergency flood managers and the 
people living in the surrounding area.  

2) The flood inundation depth and extent prediction for the event vary 
across inundation models. However, over most flood-affected areas 
such as Waverly, rainfall forcings emerge as the most dominant 
source contributing to the variance of inundation estimates. 

3) The hierarchical modeling framework can reproduce flood inunda
tion as well as reveal the propagation of rainfall differences in the 
inundation modeling chain.  

4) There are relative benefits of using varying complexity inundation 
models in operational settings of flood forecasting, particularly 
under computational resource constraints. 

In addition to providing insights from the event-scale retrospective 
assessment, the study also provides the region with a new modeling 
capability for developing future flood mitigation and resilience efforts. 
The modeling framework presented in this study is scalable and can be 
applied anywhere, particularly with recent computational 
advancements. 
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