000129776 001__ 129776
000129776 005__ 20240109145021.0
000129776 0247_ $$2doi$$a10.1007/s12220-023-01508-2
000129776 0248_ $$2sideral$$a136090
000129776 037__ $$aART-2024-136090
000129776 041__ $$aeng
000129776 100__ $$0(orcid)0000-0003-1256-3671$$aAlonso Gutiérrez, David$$uUniversidad de Zaragoza
000129776 245__ $$aBrunn-Minkowski inequality for theta-convolution bodies via Ball's bodies
000129776 260__ $$c2024
000129776 5060_ $$aAccess copy available to the general public$$fUnrestricted
000129776 5203_ $$aWe consider the problem of finding the best function ϕn : [0, 1] → R such that for any pair of convex bodies K, L ∈ Rn the following Brunn–Minkowski type inequality holds |K +θ L| 1n ≥ ϕn(θ )(|K| 1 n + |L| 1 n ), where K +θ L is the θ-convolution body of K and L. We prove a sharp inclusion of the family of Ball’s bodies of an α-concave function in its super-level sets in order to provide the best possible function in the range 3 4 n ≤ θ ≤ 1, characterizing the
equality cases.
000129776 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E48-20R$$9info:eu-repo/grantAgreement/ES/DGA/E48-23R$$9info:eu-repo/grantAgreement/ES/MCINN/PID2022-137294NB-I00
000129776 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000129776 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000129776 700__ $$aJavier Martín Goñi
000129776 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000129776 773__ $$g34, 58 (2024), 1-15$$pJ. geom. anal.$$tJOURNAL OF GEOMETRIC ANALYSIS$$x1050-6926
000129776 8564_ $$s375973$$uhttps://zaguan.unizar.es/record/129776/files/texto_completo.pdf$$yVersión publicada
000129776 8564_ $$s1234750$$uhttps://zaguan.unizar.es/record/129776/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000129776 909CO $$ooai:zaguan.unizar.es:129776$$particulos$$pdriver
000129776 951__ $$a2024-01-09-13:10:09
000129776 980__ $$aARTICLE