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Abstract

In this article, we tackle the problem of persistently covering a complex non-convex environment with a team of robots.

We consider scenarios where the coverage quality of the environment deteriorates with time, requiring every point to be

constantly revisited. As a first step, our solution finds a partition of the environment where the amount of work for each

robot, weighted by the importance of each point, is equal. This is achieved using a power diagram and finding an equita-

ble partition through a provably correct distributed control law on the power weights. Compared with other existing parti-

tioning methods, our solution considers a continuous environment formulation with non-convex obstacles. In the second

step, each robot computes a graph that gathers sweep-like paths and covers its entire partition. At each planning time, the

coverage error at the graph vertices is assigned as weights of the corresponding edges. Then, our solution is capable of

efficiently finding the optimal open coverage path through the graph with respect to the coverage error per distance tra-

versed. Simulation and experimental results are presented to support our proposal.
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1. Introduction

Recent advances in mobile robotics and an increasing

development of affordable autonomous mobile robots have

motivated extensive research into multi-robot systems. The

complexity of these systems resides in the design of com-

munication, coordination, and control strategies to perform

complex tasks that a single robot is not able to do by itself.

A particularly interesting task is that of persistent coverage,

in which a team of robots aims to maintain a desired cover-

age level over time in a given environment. The particular-

ity of persistent coverage, as opposed to other known

coverage problems (Cortes et al., 2004; Panagou et al.,

2017), is that the coverage level deteriorates with time.

This implies that the robots need to revisit every point in

the environment in order to keep the coverage at the

desired levels. This problem is of special interest in many

applications such as vacuuming (Mackenzie and Balch,

1993), cleaning a place where dust is continuously settling

(Kakalis and Ventikos, 2008), lawn mowing (Arkin et al.,

2000; Sahin and Guvenc, 2007), or environmental monitor-

ing (Paley et al., 2008; Smith et al., 2011).More recently,

the apparition of useful unmanned aerial vehicles (UAVs)

has encouraged the application of persistent coverage to

surveillance and monitoring (Nigam, 2014; Renzaglia

et al., 2012).

The solutions to this problem can be separated into two

different groups, according to the division of the environ-

ment that is adopted to carry out the coverage mission. In

the first group of solutions, all the robots cover the entire

environment together in a cooperative manner (Atincx et al.,

2014; Nigam et al., 2012),i.e., they are not restricted to par-

ticular areas. The second group is composed of partition-

based solutions. They address the problem with a divide-

and-conquer strategy in the sense that they partition the
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environment and assign each partition to a single robot that

becomes responsible for developing the coverage on it

(Barrientos et al., 2011). The advantages of the second type

are that, once the environment is partitioned, each robot

can work independently, with no risk of collision and with

no need for communication in the normal operation of the

system. For these reasons, we propose a solution of this

type and pay special attention to the partitioning and the

single-robot coverage inside each region.

1.1. Environment partitioning

The most well-known partition technique for coverage in

multi-robot systems is the Voronoi tessellation (Cortes

et al., 2004). Although different partition strategies for cov-

erage had been proposed previously (Jager and Nebel,

2002), the Voronoi partition has been the most widely used,

especially for static coverage (Moon and Frew, 2017;

Pierson et al., 2017). This type of partition has been suc-

cessfully used in persistent coverage tasks for convex envir-

onments (Palacios-Gasós et al., 2016a) or environments

with few obstacles (Palacios-Gasós et al., 2017) However,

they present two important drawbacks. In general, these

partitions do not take into account the shape of the environ-

ment nor do they account for obstacles and non-convexity.

The second and most important drawback is that, since

they are purely geometric, the coverage share-out is not

equitable. This overloads some robots, while others have

less work assigned than they can carry out.

Equitable partitions in convex environments are usually

calculated in a centralized fashion. In the approach of

Araujo et al. (2013), a line in the optimal sweeping direc-

tion is moved along the environment to slice it each time

the area on one of the sides is the same as any required par-

tition. A polygon decomposition was applied by Maza and

Ollero (2007), with the restriction of including the robot

position inside its partition, and in Peters et al. (2017) an

algorithm handles sporadic communication between each

robot and a central base to update the partition. Pavone

et al. (2011) computed equitable partitions in convex envir-

onments using power diagrams in a distributed way.

On the other hand, the assumption of convex environ-

ments is not reasonable when it comes to ground vehicles.

In non-convex environments, solutions based on Lloyd’s

algorithm appeared in Pimenta et al. (2008) and

Breitenmoser et al. (2010b). This algorithm was also com-

bined with the geodesic distance in Bhattacharya et al.

(2014), together with a graph-based path planning for

exploration. Frontier-based exploration of a non-convex

environment was treated in Haumann et al. (2011). Power

diagrams were considered by Thanou et al. (2013) for het-

erogeneous teams. Complete coverage was guaranteed in

Kapoutsis et al. (2017), with a specifically tailored, optim-

ality-preserving, technique. In the work of Sea et al.

(2017), the features of online obstacle and decay learning

were added to a decentralized partitioning of the target area

on the basis of the robot performance. The main difference

of our approach with respect to these solutions is that the

resulting partition is equitable in terms of the robots’

workload.

Over discrete representations and graphs, Voronoi-based

load-balancing partitions were presented in Boardman et al.

(2016) and in Durham et al. (2012), where it is combined

with a gossip algorithm. Surfaces in three dimensions were

treated by Breitenmoser et al. (2010a, 2014). Distributed

vertex substitution was used by Yun and Rus (2014), with

two-hop communication to guarantee convergence to the

locally optimal configuration. Compared with the afore-

mentioned works, our partitioning approach works for a

continuous environment formulation.

1.2. Planning of coverage paths

There are many possibilities to define the motion of the

robot inside their partitions (Galceran and Carreras, 2013;

Nigam, 2014). Some solutions posed the problem as a feed-

back control problem, deciding at each time which is the

best direction to move (Franco et al., 2013). These solu-

tions are easy to compute individually but typically lead the

robots to local minima. Our solution is also computation-

ally light but considers a larger planning horizon.

A wide variety of planning approaches look for closed

paths that each robot can follow periodically to cover its

entire partition (Xu et al., 2014). Closed paths in square

grids were computed by Arkin et al. (2000). Adaptive con-

trol was used by Soltero et al. (2014) and Lan and

Schwager (2013) considered Rapidly-exploring Random

Cycles in Gaussian random fields. Discretized decay rates

by a factor of two were considered by Smith and Rus

(2010) and Alamdari et al. (2014) to compute different

tours for several robots based on the importance of each

location. All these methods are closely related to the travel-

ing salesman problem (TSP). Their main advantage is that

they typically allow for some measurable degree of optim-

ality with respect to the optimal NP-hard solution.

Compared with these methods, our planning algorithm

considers fast online re-planning of open trajectories with-

out being limited by the importance and decay factors of

the vertices, at the cost of sacrificing bounds on the optim-

ality gap with respect to the general problem.

Finally, we can find other similar solutions that deal

with the online computation of open paths at particular

times considering a finite horizon. A prioritized A* algo-

rithm together with barrier functions was used in Ma et al.

(2018). An integer program applied over a receding plan-

ning horizon was solved in Ahmadzadeh et al. (2007) to

find the paths that maximize spatiotemporal coverage.

Graham and Cortés (2012) obtained an approximate solu-

tion for a dynamic program over a finite time horizon,

whose optimization criterion is the minimum uncertainty of

a field estimate. The local path planning algorithm

TangentBug was used by Breitenmoser et al. (2010b) to

plan the trajectories to the Voronoi centroids in a non-

convex environment. A line strip over a triangular mesh of

2 The International Journal of Robotics Research 00(0)



equally important points was used by Breitenmoser et al.

(2014). Palacios-Gasós et al. (2017) used a fast marching

method to compute optimal paths in terms of coverage

quality to badly covered areas. The main difference of our

solution with respect to these approaches is that we con-

sider an optimization of the coverage cost per node visited.

1.3. Contributions

In this article, we propose a solution to persistently cover a

complex, non-convex environment with a team of robots.

Our solution works in two steps: the first allows the robots

to find an equitable partition of the environment in a dis-

tributed way, while the second deals with the problem of

individual online planning inside the partition using a graph

representation.

The partitioning method builds upon that presented by

Pavone et al. (2011). The main contribution is the exten-

sion of the method to a more general continuous environ-

ment formulation, including complex, non-convex ones,

by developing the algorithm in terms of geodesic dis-

tance. This formulation allows the partition to be consis-

tent with the shape of the environment. In addition, we

present two extensions of the algorithm to improve the

partitions. The first is designed to reduce the amount of

disconnected partitions, in the sense that every partition

is represented by a single connected component in the

whole environment, avoiding the need to walk through

other partitions to cover it. The second extension allows

the algorithm to compute equitable partitions weighted

by the different capabilities of each robot. In all cases,

convergence is guaranteed.

The second part of our solution deals with the problem

of individual path planning for persistent coverage inside

each partition. The method first generates a graph, discre-

tizing the partition in a grid based on the coverage capabil-

ities of the robot that will cover it. Then, an online planner

is run asynchronously by each robot, where at each plan-

ning time, the coverage error at the graph vertices is

assigned as weights of the corresponding edges. The plan-

ner finds then the path that maximizes the coverage quality

per node visited using a variation of the Bellman–Ford

algorithm (Cormen, 2009). This allows the planning to be

efficiently computed online with the particular advantages

of using open paths that, combined, resemble a sweeping

strategy.

The remainder of the article is structured as follows. In

Section 2, we introduce the problem formulation. In

Section 3, we present the equitable partitioning method.

We enhance the method to reduce disconnections in the

partitions and consider different coverage capabilities in

Section 4. In Section 5 the strategy to plan paths and indi-

vidually cover each partition is presented. Finally, we pres-

ent simulation results in Section 6, experimental results in

Section 7, and conclusions in Section 8.

2. Problem formulation

Let Q � R
2 be a known bounded environment, possibly

non-convex, and Qf � Q the set of points in Q that are not

obstacles. The objective of persistent coverage in this envi-

ronment is to maintain the actual coverage level, repre-

sented by a time-varying field, Z(q, k)ø 0, as close as

possible to a desired coverage objective, denoted as

Z�(q). 0, 8q 2 Qf . The importance of maintaining the

coverage of each point is represented by a constant weight-

ing function F(q) 2 (0, 1�.
The coverage level deteriorates over time with a constant

decay rate, d(q), with 0 \ d(q)\ 1, according to the fol-

lowing recurrence equation:

Z(q, k)= d(q)Z(q, k � 1)+ a(q, k) ð1Þ

where a(q, k) is the total coverage action that a team of

robots applies at point q of the environment at time instant

k in order to satisfy the coverage objective.

The team is composed of N robots, located at positions

pi(k), i 2 f1, . . . ,Ng: The robots are capable of increasing

the coverage in an area Ωi(pi(k)) � Qf , that we call the

coverage area. This area is bounded by a circle of radius

rcovi , although it is not necessarily circular, convex, or equal

for all the robots. We denote by ai(q, k) the coverage value

applied by the robot at position q. This value only depends

on the physical properties of the robot, and outside of

Ωi(pi(k)) is equal to zero.

In addition, we consider that the robots have the capabil-

ity to adjust their production at each point of Ωi(pi(k)) by a

coverage gain, 0 ł ri(q, k)ł 1: In this way, the total cover-

age action is determined by

a(q, k)=
X

i2f1, ...,Ng
ri(q, k)ai(q, k) ð2Þ

From now on, to simplify the notation we omit the spatial

dependencies, q, pi(k), in all the functions where it can be

inferred by the context, e.g., Z(q, k)[Z(k),
a(k)[a(q, k), Ωi(pi(k))[Ωi(k), etc.

In this article, we consider that the coverage gain is

adjusted as in Palacios-Gasós et al. (2017):

ri(k)=
1, if r�i (k)ø 1

r�i (k), if 0 \ r�i (k)\ 1

0, if r�i (k)ł 0

8<
: ð3Þ

with

r�i (k)=

R
Ωi(k)

F � (Z� � d Z(k � 1))ai(k)dqR
Ωi(k)
�Fai(k)

2dq
ð4Þ

Intuitively, r�i (k) represents the fraction of the coverage

action, ai(k), required to reach the desired level, Z�.
Therefore, what this action is doing is basically to adjust the

coverage production to prevent coverage values above Z�.

Palacios-Gasós et al. 3



Now, we are interested in finding trajectories, Gi(k), for

all the robots that make Z(k) as close as possible to Z� for

the whole environment and every k. Addressing this prob-

lem as a whole, e.g., as an optimization problem of the cov-

erage error over some time horizon, is only possible for

small teams of robots and very coarse discretized environ-

ments, as can be seen in Palacios-Gasós et al. (2016b). The

reason for this is that we need to account for the actions of

multiple robots in the same environment, as well as the

influence in the future coverage values of previous actions

of the computed trajectories. Therefore, in this article, we

adopt a divide-and-conquer strategy to address the problem

in two stages.

In a first stage, described in Sections 3 and 4, we focus

on dividing the environment into N disjoint regions, one

for each robot, such that the work needed to cover them, in

terms of coverage action, is equal. In this way, we simplify

the problem of finding N paths into N individual problems

of finding a single path in a smaller environment. This par-

tition can be computed once offline and be assumed con-

stant afterwards.

In a second stage, detailed in Section 5, we propose an

online planning algorithm that each robot executes locally

within its partition to obtain the trajectories Gi(k) that mini-

mize the current coverage error. The most important sim-

plification we make to keep the problem tractable is to

disregard in the planning algorithm the influence of previ-

ous actions of the computed trajectory into the coverage

value.

3. Equitable partitioning

The first step of our strategy to solve the persistent cover-

age problem is to divide the environment into as many

equitable regions as robots. The goal is that each partition

requires an amount of work proportional to the capabilities

of its assigned robot with respect to the rest of the team

and to the importance of its points. To this end, we intro-

duce the notions of power diagram and geodesic distance,

define the importance-weighted workload of the agents in

terms of the coverage problem and detail our distributed

partitioning algorithms.

3.1. Power diagrams and geodesic distance

Let us first define a set of points, G= fg1, . . . , gNg, with

gi, gj 2 Qf for all i and j and gi 6¼ gj if i 6¼ j, which will

act as the generators of the partitions. Our algorithm to find

the equitable partitions is based on power diagrams

(Aurenhammer, 1987), that are a generalization of the

Voronoi diagrams. Instead of assigning the points to each

partition according to the Euclidean distance to the genera-

tor, the power diagrams use the squared distance minus a

certain weight. If we let w= fw1, . . . ,wNg be the set

of power weights associated to the partitions, we can for-

mally define the partitions obtained from the power dia-

gram as

Pi(w)= fq 2 Qf jd(q, gi)
2 � wi ł d(q, gj)

2 � wjg ð5Þ

In order to apply this partitioning to a non-convex envi-

ronment, we make use of the geodesic distance, dg(q, g),
the length of the shortest path between two points of the

environment. Assuming that the environment is composed

of polygonal obstacles, the shortest path between every two

points is the concatenation of a set of straight lines con-

necting the two points and some vertices of the obstacles,

fq, h1
q, g, h

2
q, g, . . . , h

lq, g
q, g, gg, where lq, g is the number of

obstacle vertices that define such path. Therefore, the geo-

desic distance can be decomposed in the summation of the

Euclidean distances between each pair of consecutive

points:

dg(q, g)= k q� h1
q, g k + k h1

q, g � h2
q, g k + � � �

+ k hlq, g
q, g � g k

ð6Þ

Using this metric, the boundary between two partitions

is

Dij = fq 2 Qf jdg(q, gi)
2 � wi = dg(q, gj)

2 � wjg ð7Þ

According to this definition, the neighbors of a genera-

tor are

Ni = fj 2 f1, . . . ,NgnijDij 6¼ ;g ð8Þ

We assume that each robot can communicate with robots

of neighboring regions.

3.2. Importance-weighted workload

The partitions that are assigned to the robots have to be

equitable in terms of the work that has to be carried out

inside them. At the same time, they have to take into

account the importance of the coverage of each point.

Therefore, it is essential to define the workload in terms of

the problem’s variables. The definition of the work at each

point of the environment that we consider is

l(q)= F (1� d)Z� ð9Þ

Strictly speaking, (1� d)Z� is the actual workload of

each point. It represents the coverage that decays at each

time if the point has reached the desired level, i.e., in the

steady state. Nevertheless, we weight it with the importance

to allow the robots to spend more time covering the most

important points, at the expense of reducing the attention

to less important points. This may lead to partitions in

which (1� d)Z� is not equitable but the importance of the

work of each partition is. From now on, we refer to this

importance-weighted workload simply as workload.

The workload inside each partition can be calculated as

lPi(w) =

Z
Pi(w)

l(q)dq ð10Þ

4 The International Journal of Robotics Research 00(0)



Both the importance and the decay take values between 0

and 1. In contrast, the desired coverage level is expressed

in general in coverage units and, therefore, we normalize

the entire workload by
R
Qf

F(1� d)Z�dq to obtain it in

percentages.

3.3. Distributed algorithm for equitable

partitioning

The power diagram can be seen as a relation between the

weights and the regions that belong to their corresponding

generators. Therefore, we minimize a cost function whose

minima correspond to sets of weights that lead to an equita-

ble partition:

H(w)=
XN

i = 1

1

lPi(w)
ð11Þ

One can see that this function reaches its minimum when

the workload of all the partitions is the same. It is also

important to remark that such a minimum can always be

found, see Pavone et al. (2011). From now on, we omit the

dependencies of H and Pi with w for the sake of clarity.

To minimize this function distributively, each robot is in

charge of a generator, that we locate at the robot’s position

for simplicity, and its associated weight, initially set to zero.

The evolution of the weight is driven to achieve equity

using information from the neighbors in the following con-

trol law.

Theorem 3.1. The power diagram generated by G and w

converges to an equitable power diagram under the distrib-

uted control law

_wi = � kw

∂H

∂wi

ð12Þ

with kw, a positive gain, and

∂H

∂wi

=
X
j2Ni

1

l2
Pj

� 1

l2
Pi

 !Z
Dij

l(q)

k nij
0(q) k dq ð13Þ

where nij
0(q) is the outward normal to the boundary

between the partitions i and j at point q 2 Dij.

Proof. In the first place we develop the gradient of the

cost function with respect to a single weight wi:

∂H

∂wi

= � 1

l2
Pi

∂lPi

∂wi

�
X
j2Ni

1

l2
Pj

∂lPj

∂wi

ð14Þ

It only depends on the neighboring partitions since a varia-

tion on wi only affects them. The derivative of the workload

in the partition of robot i is

∂lPi

∂wi

=
∂

∂wi

Z
Pi

l(q)dq ð15Þ

It can be transformed using the following result associated

with the divergence theorem:

∂

∂wi

Z
Pi

l(q)dq=

Z
∂Pi

∂q

∂wi

� n∂Pi
(q)

� �
l(q)dq ð16Þ

where n∂Pi
(q) represents the unit outward normal to the

boundary of the partition, ∂Pi, at point q. It results in

∂lPi

∂wi

=
X
j2Ni

Z
Dij

∂q

∂wi

� nij(q)

� �
l(q)dq

+
X
j2Ni

Z
D
Qf

i

∂q

∂wi

� nij(q)

� �
l(q)dq

ð17Þ

where D
Qf

i is the boundary between the partition and the

environment and nij(q) is the unit normal outward this

boundary or the boundary between partitions i and j, Dij.

The second term is always zero either because D
Qf

i = ; or

because a variation on the weight does not affect the

boundary between the partition and the environment, i.e.,

∂q=∂wi = 0. Applying the same procedure to ∂lPj
=∂wi and

introducing in (14), we have

∂H

∂wi

= � 1

l2
Pi

X
j2Ni

Z
Dij

∂q

∂wi

� nij(q)

� �
l(q)dq

�
X
j2Ni

1

l2
Pj

Z
Dij

∂q

∂wi

� nji(q)

� �
l(q)dq

ð18Þ

Noting that nji(q)= � nij(q), we only have to calculate the

scalar product ∂q=∂wi � nij(q). The first term can be

obtained by deriving the condition of the boundary points

(7) with respect to the power weight,

∂

∂wi

(dg(q, gi)
2 � wi)=

∂

∂wi

(dg(q, gj)
2 � wj), ð19Þ

that leads to

2dg(q, gi)
∂dg(q, gi)

∂q
� ∂q
∂wi

� 1 = 2dg(q, gj)
∂dg(q, gj)

∂q
� ∂q
∂wi

ð20Þ

The partial derivative of the geodesic distance with respect

to the boundary point q only affects the first term on the

right-hand side of (6):

∂dg(q, gi)

∂q
=

q� h1
q, gi

k q� h1
q, gi
k ð21Þ

Analogously for the other generator we have

∂dg(q, gj)

∂q
=

q� h1
q, gj

k q� h1
q, gj
k ð22Þ

Palacios-Gasós et al. 5



Note that these derivatives have two components, x and y,

and that they appear in a scalar product in (20). Therefore,

introducing (21) and (22) in (20), we have

2dg(q, gi)
(q� h1

q, gi
)
x

k q� h1
q, gi
k
∂qx

∂wi

+
(q� h1

q, gi
)
y

k q� h1
q, gi
k
∂qy

∂wi

 !
� 1

= 2dg(q, gj)
(q� h1

q, gj
)
x

k q� h1
q, gj
k
∂qx

∂wi

+
(q� h1

q, gj
)
y

k q� h1
q, gj
k
∂qy

∂wi

0
@

1
A
ð23Þ

and, regrouping the terms,

"
2dg(q, gi)

(q� h1
q, gi

)
x

k q� h1
q, gi
k � 2dg(q, gj)

(q� h1
q, gj

)
x

k q� h1
q, gj
k ,

2dg(q, gi)
(q� h1

q, gi
)
y

k q� h1
q, gi
k�2dg(q, gj)

(q� h1
q, gj

)
y

k q� h1
q, gj
k

#
� ∂q
∂wi

=1

ð24Þ

To obtain the normal to the boundary between two parti-

tions, nij(q), we make use of the property of the gradient of

a function, that is always perpendicular to the level curves

of the function. To this end, we transform the equation that

defines the boundary points (7) into a function,

f (q)= dg(q, gi)
2 � wi � dg(q, gj)

2 + wj ð25Þ

Then, we calculate the gradient at the points that satisfy

f (q)= 0, that is, q 2 Dij, for the x component,

∂f (q)

∂qx

= 2dg(q, gi)
∂dg(q, gi)

∂qx

� 2dg(q, gj)
∂dg(q, gj)

∂qx

= 2dg(q, gi)
∂ k q� h1

q, gi
k

∂qx

� 2dg(q, gj)
∂ k q� h1

q, gj
k

∂qx

= 2dg(q, gi)
(q� h1

q, gi
)
x

k q� h1
q, gi
k � 2dg(q, gj)

(q� h1
q, gj

)
x

k q� h1
q, gj
k

ð26Þ

and, similarly, for the y component. Therefore, the normal

to the boundary is

nij
0(q)=

∂f (q)

∂qx

,
∂f (q)

∂qy

 !
ð27Þ

and the unit normal is

nij(q)=
nij
0(q)

k nij
0(q) k ð28Þ

Introducing the last three equations in (24), we obtain

∂q

∂wi

� nij(q)=
1

k nij
0(q) k ð29Þ

and replacing in (17) we obtain the complete formulation of

the gradient stated in (13). Finally, the proof of the conver-

gence is equivalent to Theorem 3.7 of Pavone et al. (2011),

completing the proof of this theorem. h

Remark 3.2. The main differences of our proof with

respect to that presented in Pavone et al. (2011) reside in

the derivation of the geodesic distance and in the calcula-

tion of the normal to the boundary points. These two key

modifications generalize the algorithm to any kind of non-

convex environments, yet still giving the same solution for

convex ones.

It is also important to highlight that the gradient is still

distributed since each robot can update its own weight and,

therefore, its own partition, by only communicating with its

neighbors. In addition, note that the gradient has no physi-

cal representation in the real environment since it only

affects the weights associated with the generators.

4. Partition enhancements

The partitions obtained with the algorithm described in the

previous section are proven to be equitable. However, for

for complex environments, they might ones, they might be

disconnected, in the sense that in order to reach some points

of the partition, a robot needs to go through the partitions

of other robots. This may affect significantly the persistent

coverage of the environment. Moreover, they do not take

into account the different capabilities that each robot might

have. In this section, we present two enhancements of our

partitioning algorithm: one where we control the positions

of the generators to reduce possible disconnections and

other to account for energy and coverage power of the

robots.

4.1. Connectivity-aware partitioning

Let us begin by defining the connected components, P‘i (w),
‘ 2 f1, . . . , Lig, Li 2 Z+ , that form a partition:

Pi =
[Li

‘= 1

P‘i ð30Þ

Between these connected components we select the one

with the highest workload:

Pc
i = argmax

P‘i
lP‘i : ð31Þ

Note that for connected partitions Pc
i coincides with Pi.

Then, we calculate the center of mass of Pc
i as

g�i =
1

lPc
i

Z
Pc

i

ql(q)dq: ð32Þ

This point is the best point of the environment in which

the generator gi could be located to favor the connectivity

of its partition. However, it cannot be moved straightaway
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in the direction gig
�
i since there are two restrictions that

must be taken into account. The first one is that the motion

of the generator must not hinder the evolution of the

weights towards the equitable partition. Therefore, such

motion can only be executed if it contributes to the minimi-

zation of (11) or, at least, it is not detrimental. The second

restriction is that in a non-convex environment it has to fol-

low the geodesic path from its current position to the center

of mass to avoid sudden changes in the shape, size and

workload of the partitions. If we call gi the shortest path

from gi to g�i , we want the generator to move in the direc-

tion gi(gi), that is, the direction of the path at gi. In this

context, the algorithm that we propose is presented in the

following theorem.

Theorem 4.1. The power diagram generated by G and w

converges to an equitable power diagram under the distrib-

uted control law

_wi = � kw

∂H

∂wi

ð33aÞ

_gi = kg fsat gig
�
i �
�∂H

∂gi

� �
gi(gi) ð33bÞ

with kw, kg, positive gains,

fsat(x)=
0, 8x ł 0

exp ( �1

(ksat x)2
), 8x . 0

�
ð34Þ

a saturation function with ksat . 0, and

∂H

∂gi, k

=
X
j2Ni

1

l2
Pj

� 1

l2
Pi

 !Z
Dij

(h
lq, gi
q, gi
� gi)k

k hlq, gi
q, gi
� gi k

l(q)

k nij
0(q) k dq

ð35Þ

where nij
0(q) is the outward normal to the boundary

between the partitions i and j at point q.

Proof. The convergence to an equitable power diagram is

guaranteed under the first part of the control law (33) in

Theorem 3.1. In this proof, we only show that the second part

of the control law (34) does not counteract this convergence.

The direction of motion of the generators that maximizes

the improvement of the cost function is the gradient of the

cost function with respect to gi, i.e., ∂H=∂gi. This gradient

is obtained in the same way as with respect to wi in the proof

of Theorem 3.1 with only two particularities. The derivatives

of the geodesic distances with respect to gi, x are

∂dg(q, gi)

∂gi, x

=
∂ k q� h1

q, gi
k

∂gi, x

+ . . . +
∂ k hlq, gi

q, g � gi k
∂gi, x

=
q� h1

q, gi

k q� h1
q, gi
k
� ∂q

∂gi, x

�
(h

lq, gi
q, g � gi)x

k hlq, gi
q, g � gi k

ð36Þ

∂dg(q, gj)

∂gi, x

=
∂ k q� h1

q, gj
k

∂gi, x

=
q� h1

q, gj

k q� h1
q, gj
k
� ∂q

∂gi, x

ð37Þ

and equivalent for gi, y. Note that in the first step of the

first derivative all the intermediate terms represented

with the dots are equal to zero since they do not depend

on gi, x or q. The second particularity is that in the end

we obtain

∂q

∂gi, x

� nij =
1

k nij
0(q) k

(h
lq, gi
q, g � gi)x

k hlq, gi
q, g � gi k

ð38Þ

which leads to (35).

The saturation function in (33b) compares the direction

of the gradient with the direction from the generator to the

centroid of the biggest connected component. If both direc-

tions are approximately aligned, i.e., the movement of the

generator to the centroid favors the convergence to the equi-

table partition, the generator is able to follow the geodesic

path to the centroid according to gi(gi). Otherwise, if the

movement to the centroid hinders the convergence, fsat = 0

and the generator does not move. h

Remark 4.2. Even though Theorem 4.1 does not provide

formal guarantees on connectedness, since the movement

of the generator is towards the centroid of the component

with the biggest workload, we can assert that this partition

methodology favors connectivity of the regions.

Although the generators move towards their respective

centroids, the convergence of the control law is to an

equitable partition. Therefore, the generator may either

reach the centroids or stop somewhere in the geodesic

path to such point when an equitable partition is

achieved.

It should also be noted that the motion of the generators

in this control law is independent on the actual motion of

the robots, as discussed in Section 5. This also means that,

if the computed partition is not satisfactory, e.g., is still dis-

connected, the algorithm can be run again with different

initial conditions until a connected partition is obtained.

Similarly, the robots can ‘‘trade’’ small regions of equivalent

workload so that equity is preserved, but in such a way that

the partitions are improved, e.g., connected or associated

with physical rooms. We provide a more detailed empirical

analysis in Section 6 where we analyze how often the

resulting partitions are not connected, leaving more sophis-

ticated partition mechanisms, such as trading, for future

work.

4.2. Capability-aware partitioning

The algorithm to find the equitable partition that we have

introduced simply divides the environment into regions

with the same workload. It is noteworthy that the cost func-

tion can be easily extended with gains that reflect different

coverage capabilities for each robot. If we consider

Palacios-Gasós et al. 7



H(w)=
XN

i = 1

ci

lPi(w)
ð39Þ

as an alternative cost function, where ci is a constant value.

Since this term is constant with respect to wi, we can still

use the control law of the previous section. The only differ-

ence is that each robot now will have a different gain driv-

ing the evolution of its own partition weight and generator.

The partitions obtained in this case will satisfy that

ci

lPi(w)
=

cj

lPj(w)
ð40Þ

As an example, the constants, ci can be chosen by

ci =

Z
Ωi(p)

ai(q, p)dq ð41Þ

where p is a virtual position to integrate the maximum cov-

erage that each agent can provide. With this value, the parti-

tion of a robot that is able to produce more coverage action

will be bigger than the partition of another robot that is able

to produce less action.

5. Finite-horizon, graph-based coverage

planning

The second part of our persistent solution is in charge of

planning online coverage paths for the robots. To do this,

we first define the coverage error at each location and time

instant,

e(q, k)= F(q)(Z�(q)� Z(q, k)) ð42Þ

where we allow positive values for under-covered points

and negative values for over-covered ones. We assume that

the initial coverage value for each point is equal to zero.

Similarly, we define the quadratic coverage error over the

whole environment as

f (k)=

Z
Q

e2(q, k)dq ð43Þ

in this case to emphasize that it is equally bad to be above

and below the desired coverage level.

Ideally, the best coverage paths would be the Gi that

minimize f (k) for the whole duration of the coverage task,

e.g., minimize
P

k f (k). However, owing to the coverage

deterioration over time, finding a solution to this optimiza-

tion problem is computationally intractable even for small

teams, as shown in Palacios-Gasós et al. (2016b).

Therefore, in the following we are going to propose an

online planning solution that minimizes the quadratic cov-

erage error of a subset of points in f (k) at each planning

time.

In particular, we are going to generate a graph of loca-

tions that considers the coverage capabilities of each robot

inside the previously computed equitable partitions. In this

way, we can reduce the planning problem to that of finding

the shortest path in a graph, which can be computed in

polynomial time very efficiently. In addition, the construc-

tion of the graph favors the planning of sweep-like paths,

that are very suitable for coverage problems. In the rest of

the section, we explain in detail the whole procedure.

5.1. Graph construction based on sweep-like

paths

Let us first define P0i as the subset of locations from Pi

where the robot can be located without colliding with an

obstacle.

Inside the partitions we separate the construction of the

path graph in two parts: grid and boundary. The aim of the

first part is to define paths that allow the robot to perform

a complete sweep of the partition and the second part is

intended to cover the entire boundary of the partition.

For the first part, we intersect a grid of points with the

partition:

Vg
i = fv 2 P0ijv= (x0

i + k di, y
0
i 6‘di), k, ‘ 2 N0g ð44Þ

where v0
i = (x0

i , y0
i ) 2 P0i is the left-most point of P0i and di

is the optimal separation between consecutive sweeping

lines. Note that the selection of v0
i is arbitrary since the grid

is fixed by di and the boundary is covered by the second

part of the graph. The vertices in Vg
i are connected by an

edge if they are at a distance equal to di. Formally,

Eg
i = f(v1, v2)j k v1 � v2 k = di, 8v1, v2 2 Vg

i g ð45Þ

Figure 2a shows an example of the vertices and edges that

correspond to the grid part of the path graph.

The optimal separation between two horizontal or two

vertical sweeping lines, di, depends on the shape of the cov-

erage area and the production function. It can be obtained

by minimizing

Z rcov
i

�rcov
i

Z di + rcov
i

�rcov
i

(a� (ai((x, y), (0, 0))+ ai((x, y), (0, di))))
2

dydx

ð46Þ

with

a = 2

R
Oi(pi)

ai(pi)dqR rcov
i

�rcov
i

R di + rcov
i

�rcov
i

dydx
ð47Þ

The idea behind (46) is illustrated in Figure 1. The two

circumferences represent the areas that the robot can cover

when it is located at p1
i = (0, 0) and p2

i = (0, di), respec-

tively. The two locations correspond to consecutive sweeps

in the x direction, i.e., two vertices in Vg
i connected by an

edge in Eg
i . Note that Oi(pi) does not have to be circular,

but only bounded by the circumference, and that ai(pi) can

be any function. The optimal distance between these
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parallel sweeps, di, is the one that optimizes the sum of the

coverage provided from these two positions. In particular,

the goal of (46) is that the same coverage is provided to

each point that can be covered by the robot from any of the

positions. This coverage is represented by a, that is the

sum of the coverage from the two positions divided by the

total area. Therefore, a can also be seen as an average cov-

erage level. Equation (46) computes the quadratic differ-

ence between the coverage provided to each point, i.e., the

sum of ai from p1
i and p2

i , and this average to obtain a di

that keeps the coverage of all points as close as possible to

a.

For the second part of the graph, we represent the

boundary as ∂P0i and locate a finite number of vertices over

it as follows:

Vb
i = fv 2 ∂P0ijvx = x0

i 6k
di

2
_ vy = y0

i 6‘
di

2
, k, ‘ 2 Zg

ð48Þ

They are located at the intersections of a square grid of size

di=2 with the boundary, to provide a sufficiently fine dis-

cretization. These vertices are linked by the edges

Eb
i = f(v1, v2)jv1andv2 are consecutive over ∂P0ig ð49Þ

These edges allow the robots to follow the entire boundary

of the partition as shown in Figure 2b.

Finally, we merge the two parts by including an addi-

tional set of links,

Egb
i = f(v1, v2)jjvx

1 � vx
2j\ di ^ jvy

1 � v
y
2j= 0 _ jvx

1 � vx
2j

= 0 ^ jvy
1 � v

y
2j\ di, 8v1 2 Vg

i , v2 2 Vb
i g

ð50Þ

As can be seen in Figure 1, these edges link the vertices of

both parts that are closer than di either in the x- or in the y-

axis and the resulting directed path graph can be expressed

as

Gi = (V i, Ei)[(Vg
i [ Vb

i , E
g
i [ Eb

i [ E
gb
i ) ð51Þ

In addition to the computational savings of considering

a discrete subset of positions to compute the coverage

paths, this simplification can also be exploited to decom-

pose the general planning problem for N robots into N

individual problems for one robot each.

Proposition 5.1. The paths that optimize f (k), subject to

the constraint of each robot only following trajectories

within Gi, are the paths that optimize individually the cost

function inside each partition, i.e.,

min
Gi

f (k)= min
G1

f1(k)+ � � � + min
GN

fN (k) ð52Þ

with

fi(k)=

Z
Pi

e2(q, k)dq ð53Þ

Proof. It is straightforward to see that

f (k)= f1(k)+ � � � + fN (k) ð54Þ

Since the path of each robot is constrained to be within the

graph Gi, the coverage contribution of such path is also

restricted to Pi, because no coverage is applied outside of

it. Then, the path of each robot i only affects the value of

fi(k) in (53), which demonstrates (52). h

The immediate consequence of this proposition is that

each robot can plan locally its own path, inside its own par-

tition according to fi(k), working distributively towards a

global minimization of f (k). This also implies that at this

stage robots do not need to share any coverage value with

any other robot, since they act independently in their

regions. It should also be noted that Proposition 5.1 is valid

for any partition of the environment, as long as the graphs

Gi ensure that each robot can only apply coverage within its

assigned partition. Likewise, the proposition can be applied

to other cost functions that, similarly to f (k), consider addi-

tive cost in the points of the environment. We utilize this in

the following section to obtain online trajectories with a

computationally light algorithm.

5.2. Optimal path planning

In order to compute the trajectories within the graph, we

first transform it into a weighted digraph. We assign to

each edge a weight equivalent to the amount of coverage

required to reach the desired value, Z�, in the head of the

edge,

vi(v1, v2, k)= max (e(v2, k), 0) ð55Þ

Fig. 1. Schematic of the overlap of the coverage areas for two

consecutive sweeps in the x direction and the optimal separation

between them.
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for all (v1, v2) 2 Ei: In the second place, for a given trajec-

tory, Gi(k), through the graph Gi at time k, starting from the

position of robot i at that time, we define the error per num-

ber of visited vertices as

gi(Gi(k))=

PLv

‘= 1 vi(v‘�1, v‘, k)

Lv

ð56Þ

where Lv is the number of traversed vertices in Gi and

(v‘�1, v‘) 2 Ei for all ‘. Therefore, the optimization prob-

lem considered by our planning algorithm is

maximize
Gi(k)

gi(Gi(k)) ð57Þ

This optimization problem aims at finding the optimal

between all the paths of all possible lengths that go through

the graph without repeating vertices.

The transformation of the coverage path planning into

finding the optimal path through a graph allows the prob-

lem to be solved rapidly and efficiently with proven meth-

ods to find the shortest paths in graphs. In particular, we

adapt the Bellman–Ford algorithm (Cormen, 2009) in two

ways. Instead of the shortest distance, we look for the high-

est accumulated error per vertex and, therefore, we initialize

our metric to � ‘ for all the nodes of the graph. In addi-

tion, since the aim is to maximize this metric, the path to a

vertex is updated and the vertex appended to the priority

queue if the previously stored value of the metric is lower

than the new one. It should be noted that these modifica-

tions do not alter the optimality of the method and maintain

the worst-case complexity of O(jV ij jEij). Each path is then

fully executed by the robot until it is finished. Then, the

planning process is repeated with the new values of the cov-

erage errors in each vertex.

6. Simulation results

In this section, we present simulation results for the parti-

tioning algorithms and the complete approach to the persis-

tent coverage problem. For the partitioning, we consider

four different, non-convex environments of 10 m× 8 m

and increasing complexity. We call them Open Rooms,

Rooms, Spiral, and Maze, respectively. They can be seen in

Figure 4. These simulations have been carried out with

N = 5 robots of radius ri = 0:1 m, a circular coverage area

Oi of radius rcovi = 0:2 m, a production ai = 1, 8q 2 Oi,
and rmax

i = 20. The objective, decay, and importance of the

coverage are

Z�= 80 + 20
qy

jQjy
ð58Þ

d = 0:9995 ð59Þ

f = 0:5 + 0:5
qy

jQjy
ð60Þ

where qy are the y-coordinates of point q and jQjy is the y-

size of the environment Q. The resulting work function

l(q) can be seen in Figure 3 for the Rooms environment,

normalized by
R
Q l(q)dq and multiplied by 100. The upper

part of the environment requires less work because of its

lower importance and objective and the central and lower

parts require more work due to the peak of the decay in the

center and the higher importance and objective at the

bottom.

The positive constant of the saturation function (34) is

set to ksat = 3 and the gains of the control law are different

for the different environments and are updated online

depending on the value of ∂H=∂wi. In particular, kg takes

the values from Table 1 and kw is assigned according to

kw =

k1
w, if j∂H=∂wij. b1,

k2
w, if b1 ł j∂H=∂wij\ b2,

k3
w, if b2 ł j∂H=∂wij\ a3,

k4
w, if j∂H=∂wijł b3,

8>><
>>: ð61Þ

Fig. 2. Example of graph construction: (a) grid; (b) boundary; (c) complete graph.

Table 1. Values for kg depending on the environment type.

Open Rooms Rooms Spiral Maze

5 5 2 0:1
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with the values of the constants presented in Table 2. These

parameters were manually tuned in order to speed up the

convergence of the partitions. In practice, there is no need

to change these parameters for different environments. On

the downside, the convergence time of the equitable parti-

tions may vary and affect some environments more than

others if they are not appropriately tuned. In any case, this

time is negligible when compared with the duration of the

task, that can be infinite.

In our simulations the map is represented by a matrix of

pixels (an image), thus, even when the partition method is

continuous, there is some degree of discretization. To com-

pute the gradients, we keep track of the partition associated

to each pixel, obtaining the boundaries by checking

whether all the neighbor pixels belong to the same one.

Then, for the pixels in the boundary we compute the geo-

desic distance and (q� h1
q, gj

) in (26). From there, we can

compute (29) and the gradient in (13) by summing this

value for all the points of the partition boundary. Although

this procedure looks complex, it is not computationally

expensive, requiring in our case 31 ms per iteration and

robot.

6.1. Partitioning example

In the first place we present an example of the partitioning

algorithms in the different environments. In the top row of

Figure 4 we show the resulting equitable partitions under

(12), i.e., when only the weights are modified and the posi-

tions of the generators remain fixed. Although in some

cases such as Figure 4a the resulting partitions are con-

nected, it can be seen that in others they are not, see, e.g.,

the yellow partition in Figure 4d. These disconnections are

avoided under (33) as can be seen in the bottom row of

Figure 4. In this case, moving the generators towards the

centroid of the connected components with the highest

workload at the same time as the weights are changing,

allows the robots to find equitable and connected partitions.

Now we focus in the particular example of the Spiral

environment to assess the evolution and convergence under

both (12) and (33). In Figure 5 we represent the evolution

of the workload, the weights, and the gradient of the cost

function with respect to the weight for each robot in a dif-

ferent color under (12). First, in the top figure we can

observe that all the workloads converge to the same

percentage value (20%), that is, to the equity. Convergence

is assumed when the maximum difference between the

workload of the partitions is lower than 5%. Second, it is

noteworthy that the weights associated to the partitions at

the bottom of the map (black and magenta) are negative,

while those at the top (red and yellow) are positive. This

makes sense when we consider that the workload is distrib-

uted as in Figure 3. Since the upper part is less important,

robots in that area are assigned larger partitions, and there-

fore positive weights. Finally, the value of the gradient is

represented in the bottom plot.

Under (33), in the beginning the weights and workloads

also evolve slowly as shown in Figure 6. The convergence

speed of this law is similar to that in (12). The main differ-

ence appears in the bottom plot of the figure, where we

show how often the motion of the generators is saturated,

fsat in (34). Values equal to zero mean that moving the gen-

erator goes against obtaining equity. The main consequence

is that the evolution of the partitions is not as smooth as

with (12) but all the resulting partitions are connected. In

the following section we carry out a parametric analysis to

be able to generalize the results.

6.2. Parametric analysis of the partitioning

algorithms

We analyze now the evolution of the performance of the

partitioning algorithm when the parameters of the problem

change. In particular, we performed a Monte Carlo analysis

of 10 runs for different initial positions of the generators

and different work functions in all the environments. In

order to represent the results concisely, we refer to the dif-

ferent environments by their initials as follows: Open

Rooms as OR, Rooms as R, Spiral as S, and Maze as M.

Fig. 3. Normalized work function l(q) over the Open Rooms

environment. White areas represent obstacles.

Table 2. Values for kw depending on the environment.

Open Rooms Rooms Spiral Maze

k1
w 5 5 15 15

k2
w 100 100 75 150

k3
w 500 500 375 1, 500

k4
w 5, 000 5, 000 1, 500 15, 000

b1 5× 10�3 5× 10�3 5× 10�3 10�2

b2 3× 10�4 2× 10�4 5× 10�4 10�3

b3 10�5 10�5 5 � 10�5 10�4
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The 10 initial positions of the generators were selected ran-

domly and the variation of the work function was done

through the decay function. In (59) the decay is set to be a

2D Gaussian centered at jQjx=2 and jQjy=2, i.e., in the

middle of the environment. Instead of this center, we chose

a random point for each trial. We execute this analysis for

(12) and (33) and refer to them as W and WG respectively,

representing that only the power weights or the power

weights and the generator positions are modified.

First we show in Figure 7 two boxplots of the number of

iterations required for the algorithm to converge to the equi-

table partition. Figure 7a shows the results for different ini-

tial positions of the generators and Figure 7b, for different

decay functions. The most important feature of these results

is that, for the same environment, WG converges in general

faster than W. Among the different environments, the speed

of convergence depends on the complexity of the environ-

ment and on the tuning of the gains.

In the second place we pay attention to the connectivity

of the partitions. Table 3 gathers the number of partitions

that became disconnected out of the 50 regions correspond-

ing to each cell. As expected, this number is drastically

reduced with the WG control law. In fact, for Open Rooms

and Rooms, it converges to connected partitions in all cases.

Fig. 4. Example of partitioning in the four different environments under control law (12) (top row) and under control law (33)

(bottom row). The resulting partitions are shown in different colors: (a) Open Rooms; (b) Rooms; (c) Spiral; (d) Maze; (e) Open

Rooms; (f) Rooms; (g) Spiral; (h) Maze. The initial locations of the generators are represented with white circumferences and the final

location with white crosses. Blue lines in the bottom row represent the path of the generators until the equitable partitions are

achieved. In cases where a generator ended outside its own partition, it has been plotted with the color of its partition instead of white

to show the correspondences.

Fig. 5. Evolution of the workload, weight and gradient of the

cost function with respect to the weight for the Spiral

environment under control law (12). Different colors represent

the variables for the different robots.
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However, for Spiral and Maze the partitions became discon-

nected in some cases.

To evaluate the nature and the quality of the still non-

connected partitions in Figure 8 we represent in percentage

the relative workload of the biggest connected component

with respect to the workload of the entire partition. One

can see that under WG, this value is on average above

80%. This means that almost all the work of the partition is

on the biggest component, whose centroid was followed by

the generator. Therefore, a simple reassignment of the

smaller disconnected regions could be done to reach total

connectivity with only a small deviation from the equitable

partitioning.

6.3. Coverage planning results

In this part of the simulations, we analyze the coverage

planning solution and the performance of the entire

approach with an example. Figure 9 shows the partition of

the Rooms environment and the path graphs of the robots.

Fig. 6. Evolution of the workload, weight, gradient of the cost

function with respect to the weight, and saturation function for

the Spiral environment under control law (33). Different colors

represent the variables for the different robots.

Fig. 7. Boxplot of the number of iterations required to converge

to the equitable partition: (a) different initial positions; (b)

different decay functions.

Fig. 8. Boxplot of the relative workload of the biggest connected

component with respect to the workload of the entire partition.

Fig. 9. Example of partitions and path graphs for the Rooms

environment.
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According to the work map shown in Figure 3, the robot

assigned to the blue partition has to cover a bigger area

than the other four. These other four share the peak of the

work map and each of them is additionally in charge of

covering a big room on the right-hand side or one and a

half small rooms on the left-hand side.

In order to evaluate the quality of the paths and the pro-

vided coverage we normalize the coverage error at a single

point at time k,

e(k)[e(q, k)=
e(k)

Z�2
ð62Þ

and calculate the mean normalized error over the environ-

ment as

e(k)=

R
Qf

e(k)dq

jQf j
ð63Þ

In Figure 10 we show the coverage error e(q, k) of the

environment for eight different time instants. In Figure 10a

the robots are starting to cover the environment and, there-

fore, the coverage error is initially proportional to the

importance of the points and their objective. The paths of

the top row, Figure 10a–10d, represented in magenta, cover

the partitions from bottom to top in a sweep-like manner.

This demonstrates that the paths go through the points with

the highest coverage error. In Figure 10e, almost all the

robots have already covered their partitions for the first

time. The blue robot needs a little more time since it has

the biggest partition. The paths of the robots in Figure 10e

and 10f, fill the gaps that they have previously left uncov-

ered. At this point, the coverage error is already small in

the majority of the points. Eventually, in the steady state,

Figure 10g and 10h, the robots keep moving to maintain

the coverage as close as possible to the objective, paying

special attention to the zones where more work is required.

The performance of our coverage strategy is assessed in

Figure 11a. We depict the mean coverage error and its stan-

dard deviation for the simulation. One can see that, at the

beginning, when the environment is totally uncovered, the

error is around 0.7 due to the importance function. After

that, it decreases rapidly and converge to a small steady-

state value. In fact, on average, the points have under 7%

of error. The standard deviation increases at the beginning

because the undercovered points keep deteriorating and

some others become slightly overcovered when the robots

Table 3. Number of disconnected partitions.

Different positions Different decays

W WG W WG

Open Rooms 1 0 4 0
Rooms 30 0 29 4
Spiral 12 4 26 9
Maze 30 14 23 11

Fig. 10. Example of coverage evolution: (a) k = 60; (b) k = 275; (c) k = 400; (d) k = 500; (e) k = 1, 150; (f) k = 1, 700; (g)

k = 2, 000; (h) k = 2, 500. The background color map represents the value of e(k). The robots are depicted in different colors with

their coverage areas as dash-dotted circumferences. Magenta lines show the current paths of the robots.
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go over them. However, it also decreases to a small steady-

state value around 0.09.

A similar tendency persists inside the partitions of the

robots as shown in Figure 11b, where e(k) is calculated

only within Pi. Nevertheless, it is interesting to see the dif-

ferences between the biggest partition, the blue one, and

the smaller partitions, the magenta and green ones. The

error at the beginning in the magenta and green ones is

higher because the importance of the points inside them is

higher, as opposed to the blue one. On the other hand, the

reduction of the error in those partitions is faster because

they are smaller and the robots need less time to cover them

completely. In contrast, the blue robot needs more time to

cover its region and, therefore, its error decreases slower.

Although the coverage error is the metric that defines

the optimality of the coverage, it is difficult to visualize. A

more intuitive representation is shown in Figure 12. The

mean coverage level of the environment increases rapidly

towards the mean coverage objective. However, its steady-

state value is smaller due to the different importance of the

points. This happens because the robots pay more attention

to the most important points at the expense of leaving the

least important worse covered. For this reason, the mean

value lays between the mean coverage objective and the

mean coverage objective weighted by the importance.

Finally, we show in Figure 13 the number of times that

the robots covered each point of the environment. The

resemblance with the work map makes it clear that the

robots visit more frequently the most important points and

those with a lower decay, because the coverage deteriorates

faster on them. The undercovered zones near the bound-

aries between partitions occur due to discretization in the

simulation and due to the separation from the boundary to

the boundary nodes of the graph.

6.4. Comparison with centroidal Voronoi

partitions

To conclude the simulations, we compare the coverage

results with those obtained using the Voronoi partition algo-

rithm described in Cortes et al. (2004) to generate the parti-

tions of the environment. Both methods have been tested in

the Rooms environment, with the work function l repre-

sented in Figure 3. In the Voronoi partition we have used

the workload as the density function to compute the cen-

troid of the partition.

In Figure 14(a), we show the partitions obtained with

the two algorithms for one example of initial conditions of

Fig. 11. Evolution of the mean coverage error (solid lines) and its standard deviation (dashed lines): (a) complete environment; (b)

separated by partitions.

Fig. 12. Evolution of the mean coverage level of the

environment (blue line) with its standard deviation (red dashed

line). The blue dash-dotted line represents the mean coverage

objective and the green dash-dotted one represents the mean

coverage objective weighted by the importance of each point.

Fig. 13. Number of times that the robots have covered each

point of the environment.
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the generators. In this particular example the yellow parti-

tion accounts for 25:64% of the total workload, whereas

the black partition only accounts for 15:83%, implying that

first robot will need to do considerably more work than the

second. In addition, two out of the five partitions are not

connected (black and green). We have repeated this analy-

sis for the 10 runs described in Table 3 for this environ-

ment to measure the number of disconnected partitions and

the difference between the maximum and minimum work-

load. The Voronoi tessellation method has yielded 16 dis-

connected regions, as opposed to the zero regions obtained

with our method. The mean difference of the 10 trials was

10:3% with a standard deviation of 1:36:
In the following, we focus on the coverage quality when

both sets of partitions are used together with the path-

planning algorithm described in Section 5, just for the par-

titions given in Figure 14(a). In Figure 14(b), we show the

coverage graphs and in Figure 14(c) we show the number

of times that each node of the graphs was visited during

the experiment. In the Voronoi partitions, some robots

invade other robots’ partitions in order to move between

the disconnected components, e.g., the green partition .

More importantly, with the equitable partition, points at the

bottom of the map are visited more often, accounting for

their decay and importance in a better way.

Finally, in Figure 14(d) we show the normalized error

(solid lines) (63) for each partition and the standard devia-

tion (dashed lines) computed over all the points in the inte-

gral. The transient behavior in this case is similar for both

partitions, with a slightly better performance, i.e., less set-

tling time, when using the equitable partitions for those

regions with high importance (every region but the green

one). In the steady state, it can be seen that the equitable

partition presents a smaller standard deviation, implying a

more homogeneous coverage.

7. Experimental Results

The final validation of our proposal was performed carry-

ing out real-world experiments in a complex environment

shown in Figure 16a. It is composed by a small room in

the left side and a main room in the center that connects to

a corridor through two different doors. The goal was to per-

sistently cover the environment shown in the same figure

in yellow, with N = 3 TurtleBot II robots. We refer the
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Fig. 14. Comparison of the solution with a standard Voronoi partition: (a) partitions; (b) coverage graphs; (c) number of visits; (d)

coverage error. The top row shows our approach and the bottom row shows the results with the Voronoi partition.

Fig. 15. Multi-robot system architecture.
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reader to the Extension 1 for the accompanying video of

this experiment for a complete visualization of the coverage

solution.

7.1. Setup

The multi-robot system was set up relying on the Robot

Operating System (ROS) framework Quigley et al. (2009).

The robotics system was organized as shown in Figure 15.

From the bottom up, two ROS nodes, Kobuki and Hokuyo,

manage the TurtleBot II platform equipped with an on-

board Intel NUC core i7 computer and a Hokuyo URG-

04LX LiDAR sensor. These nodes provide odometry and

laser readings to the AMCL node and to the navigation

stack. The AMCL node is in charge of localizing the robots

on a pre-built map (obtained previously to the experiments)

provided by the Map Server node. The navigation stack is,

as usual, divided in two layers. At the bottom level, the

ORMMinguez (2005), chosen because its efficacy in dense

environments, implements the basic obstacle avoidance

capability. On top of the ORM, a dedicated global planner

indicated as EPC-GP was used. It wraps the Equitable

Partition algorithm described in this article, which is pre-

sently implemented in Matlab (EPC-Matlab). The latter

takes advantage of the Matlab robotics toolbox, which

allows ROS communication between standalone ROS

nodes and Matlab scripts. Specifically the EPC-Matlab

publishes the paths computed by the algorithm in a dedi-

cated topic which is read by the EPC-GP, that assumes

them as global paths. In addition, the EPC-Matlab reads

AMCL-computed poses to update the coverage map. From

the architectural point of view, the heavier computation

was centralized in a single machine: only the Kobuki and

Hokuyo nodes ran on the mobile platform computers while

the other nodes (3×AMCL, 3×Navigation and 1×Map

Server) and the algorithm itself (EPC-Matlab) reside in the

base station connected with the robots through a WiFi

router.

The coverage actions and values remained simulated in

the experiment due to the complexity associated with mea-

suring these values in a real setup. We defined a circular

coverage area Oi of radius rcov
i = 0:186 m, while the radius

of the robots is equal to ri = 0:177 m. The speed of the

robots were fixed at 0:35 m/s. Their production and the

objective functions were the same as in the simulations and

the importance of the coverage was

F = 0:7 + 0:3
qy

jQjy
ð64Þ

7.2 Results

In this section, we present two runs for different decays.

The decay was set to a uniform value of 0.9995 in experi-

ment A and 0.995 in experiment B. The resulting work for

experiment A can be seen in Figure 16b and is proportional

for experiment B. The lower part required more work

whereas the corridor required less, due to its lower impor-

tance. With these settings, the resulting partitions and path

graphs computed by the robots were those depicted in

Figure 16c. In both experiments, they were the same since

the only difference is a proportional decay. The three parti-

tions were equitable and self-connected with the three

robots sharing the main room and two of them sharing the

corridor through different doors. The path graph of the

each robot covers its entire partition and allows the robot to

follow sweep-like paths.

In Figure 17 we show some snapshots of experiment B

at three different iterations, k = 0, k = 100, and k = 500. In

particular, Figure 17a shows the initial position of the

robots while Figure 17b shows the three robots in the main

Fig. 16. Maps of the experimental environment and results from

the partitioning and graph construction algorithms. (a)

Environment map. The area to be covered is represented in

yellow. (b) Work map. (c) Partitioned map with path graphs.
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room covering their respective partitions after start-up.

Even when the robot associated with the red partition starts

outside of its partition, the planner drives it towards it

improving the coverage of the other partition while going

there. This coverage is taken into account by the planner in

the magenta partition. They start sweeping the environment

from bottom to top, according to the importance of the

points, as shown in Figure 17c. After 500 iterations, the

robots have covered almost the entire environment for the

first time. This can be seen in Figure 17f. At that point, the

blue robot is inside the small room covering the surround-

ings of the table (Figure 17d) and the other two are sweep-

ing the corridor (Figure 17e). It is worth highlighting how

the coverage of the central and lower part of the main room

had already decayed at k = 500, because they were the first

covered areas.

Eventually, we analyze the results from experiments A

and B. It can be seen that in both cases they are very simi-

lar to the simulation results, which validates our approach

for a real system in a complex environment.

In experiment A, the coverage error in the entire envi-

ronment (Figure 18a) and in each partition (Figure 18b)

decreased rapidly and was maintained at a low value. The

mean coverage level was maintained very close to the

desired level, with almost the same value as the mean of

the objective weighted by the work required at each point

(Figure 18c). This demonstrated that, although the robots

could not maintain the desired level all the time because of

the nature of the problem, they were able to maintain the

most important points closer to their desired value. Figure

18d depicts the real paths that the robots followed to cover

the entire environment the first time.

In experiment B, we decreased the value of the decay to

simulate a faster deterioration of the coverage, i.e., to entail

the robots a bigger workload and, therefore, forcing them

to visit the important points with more frequency. This is

equivalent to reducing the team size and deploying fewer

robots than required by the environment. For these reasons,

the results show in this case a smaller reduction of the cov-

erage error (Figure 19a and (b)), a lower value of the cover-

age level and a slightly bigger standard deviation (Figure

19c). The paths followed by the robots demonstrate that

they covered several times the lower parts of their parti-

tions, i.e., the most important ones, before covering their

upper parts completely. These experiments support the

adaptability of our approach to environments with non-

uniform workloads and, in particular in experiment B, that

the robots are able to prioritize the most important areas

even if their capabilities are lower than the work required

by the environment.

8. Conclusions

In this article, we have proposed a partitioning approach

based on power diagrams along with a graph-based cover-

age planning strategy to solve the persistent coverage prob-

lem. We have introduced in the first place an algorithm to

find the power weights that correspond to an equitable par-

tition of the environment. This strategy can be applied to

any kind of non-convex environment thanks to the use of

the geodesic distance in the partitioning. We have also pre-

sented two extensions for this strategy. The first extension

drives the generator of each partition to the centroid of the

connected component with the highest workload. The

Fig. 17. Snapshots of one of the experiments: (a) main room at k = 0; (b) main room at k = 100; (c) coverage map and paths at

k = 100; (d) corridor at k = 500; (e) small room and part of the main room at k = 500; (f) coverage map and paths at k = 500. The

colored circles show the identity of each robot.
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objective of this strategy is to reduce the disconnections of

the partitions to the greatest extent possible. The second

extension takes into account the different coverage capabil-

ities of each robot. In the second place, we have presented

an online planning algorithm that allows each robot to

locally find the best path in terms of the current coverage

error. This algorithm is based on the construction of a path

graph that covers the entire partition of the robot with

sweep-like paths. We have assigned the coverage errors of

the head nodes to the edge weights and, therefore, the prob-

lem has been reduced to finding the optimal path through a

graph that can be achieved efficiently with state-of-the-art

Fig. 19. Results from experiment B. (a) Mean coverage error of

the environment (solid line) and its standard deviation (dashed

line). (b) Mean coverage error of each partition (solid lines) and

its standard deviation (dashed lines). (c) Mean coverage level of

the environment (solid blue line), its standard deviation (dashed

red line), mean coverage objective (dash-dotted blue line), and

mean objective weighted by the workload (dash-dotted green

line). (d) Paths of the robots until k = 1, 500.

Fig. 18. Results from experiment A. (a) Mean coverage error of

the environment (solid line) and its standard deviation (dashed

line). (b) Mean coverage error of each partition (solid lines) and

its standard deviation (dashed lines). (c) Mean coverage level of

the environment (solid blue line), its standard deviation (dashed

red line), mean coverage objective (dash-dotted blue line), and

mean objective weighted by the workload (dash-dotted green

line). (d) Paths of the robots until k = 1, 500.
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methods. Finally, we have included simulation and experi-

mental results to support our contributions and have shown

how our solution can be applied to a real-world scenario.
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tinoli A (2017) Optimal path planning and coverage control for

multi-robot persistent coverage in environments with obstacles.

In: IEEE International Conference on Robotics and Automa-

tion (ICRA), pp. 1321–1327.

Paley DA, Zhang F and Leonard NE (2008) Cooperative control

for ocean sampling: The glider coordinated control system.

IEEE Transactions on Control Systems Technology 16(4):

735–744.
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Appendix A. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media type Description

1 Video Accompanying video of the
experiment for a complete
visualization of the coverage solution
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