000129795 001__ 129795
000129795 005__ 20240111114816.0
000129795 0247_ $$2doi$$a10.1109/TIM.2019.2896550
000129795 0248_ $$2sideral$$a122912
000129795 037__ $$aART-2019-122912
000129795 041__ $$aeng
000129795 100__ $$aPérez-Resa, A.
000129795 245__ $$aChaotic Encryption Applied to Optical Ethernet in Industrial Control Systems
000129795 260__ $$c2019
000129795 5060_ $$aAccess copy available to the general public$$fUnrestricted
000129795 5203_ $$aIn the past decades, Ethernet has become an alternative technology for the field buses traditionally used in industrial control systems and distributed measurement systems. Among different transmission media in Ethernet standards, optical fiber provides the best bandwidth, excellent immunity to electromagnetic interference, and less signal loses than other wired media. Due to the absence of a standard that provides security at the physical layer of optical Ethernet links, the main motivation of this paper is to propose and implement the necessary modifications to introduce encryption in Ethernet 1000Base-X standard. This has consisted of symmetric streaming encryption of the 8b10b symbols flow at physical coding sublayer level, thanks to a keystream generator based on chaotic algorithm. The overall system has been implemented and tested in an field programmable gate array and Ethernet traffic has been encrypted and transmitted over an optical link. The experimental results show that it is possible to cipher traffic at this level and hide the complete Ethernet traffic pattern from passive eavesdroppers. In addition, no space overhead is introduced in data frames during encryption, achieving the maximum throughput.
000129795 536__ $$9info:eu-repo/grantAgreement/ES/MEC/FPU14-03523$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/TEC2014-52840-R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/TEC2017-85867-R
000129795 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000129795 590__ $$a3.658$$b2019
000129795 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b9 / 64 = 0.141$$c2019$$dQ1$$eT1
000129795 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b65 / 265 = 0.245$$c2019$$dQ1$$eT1
000129795 592__ $$a1.027$$b2019
000129795 593__ $$aInstrumentation$$c2019$$dQ1
000129795 593__ $$aElectrical and Electronic Engineering$$c2019$$dQ1
000129795 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000129795 700__ $$0(orcid)0000-0001-8648-6248$$aGarcia-Bosque, M.$$uUniversidad de Zaragoza
000129795 700__ $$0(orcid)0000-0002-8236-825X$$aSánchez-Azqueta, C.$$uUniversidad de Zaragoza
000129795 700__ $$0(orcid)0000-0003-0182-7723$$aCelma, S.$$uUniversidad de Zaragoza
000129795 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000129795 7102_ $$15008$$2250$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Electrónica
000129795 773__ $$g68, 12 (2019), 4876-4886$$pIEEE trans. instrum. meas.$$tIEEE Transactions on Instrumentation and Measurement$$x0018-9456
000129795 8564_ $$s3134349$$uhttps://zaguan.unizar.es/record/129795/files/texto_completo.pdf$$yPostprint
000129795 8564_ $$s3147194$$uhttps://zaguan.unizar.es/record/129795/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000129795 909CO $$ooai:zaguan.unizar.es:129795$$particulos$$pdriver
000129795 951__ $$a2024-01-11-09:27:47
000129795 980__ $$aARTICLE