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Abstract: Metabolic networks are probably among the most challenging and important biological
networks. Their study provides insight into how biological pathways work and how robust a specific
organism is against an environment or therapy. Here, we propose a directed hypergraph with edge-
dependent vertex weight as a novel framework to represent metabolic networks. This hypergraph-
based representation captures higher-order interactions among metabolites and reactions, as well
as the directionalities of reactions and stoichiometric weights, preserving all essential information.
Within this framework, we propose the communicability and the search information as metrics to
quantify the robustness and complexity of directed hypergraphs. We explore the implications of
network directionality on these measures and illustrate a practical example by applying them to
a small-scale E. coli core model. Additionally, we compare the robustness and the complexity of
30 different models of metabolism, connecting structural and biological properties. Our findings
show that antibiotic resistance is associated with high structural robustness, while the complexity can
distinguish between eukaryotic and prokaryotic organisms.

Keywords: hypergraphs; complexity; robustness; metabolism; communicability; search information

1. Introduction

A metabolic network [1–5] is a highly organized system of chemical reactions that
occur in living organisms to sustain life and regulate cellular processes. Metabolic networks
are incredibly complex because of the large number of reactions and the intricate web of
interactions between molecules. Chemical reactions take some metabolites, usually called
reactants or substrates, and turn them into products which can be used by other reactions.
This complexity allows organisms to perform various functions and respond to various
challenges, but it makes understanding them much more challenging. The key functions of
metabolism are the production of energy, the conversion of food into building blocks of
proteins, lipids, nucleic acids, and carbohydrates, and the elimination of metabolic wastes.

Given the network structure of metabolism, many researchers have attempted to
characterize and understand it through network theory. It has been shown that graphs
whose nodes are metabolites and are connected by chemical reactions have a scale-free
distribution [3] and have been described as “among the most challenging biological net-
works and, arguably, the ones with most potential for immediate applicability” [6]. Other
attempts have tried to give more concrete answers by focusing on graphs with reactions
as nodes or bipartite graphs but missing a fundamental aspect of chemical reactions. To
take place, they require a collective interaction of reactants to create multiple products.
Hence, these are high-order interactions that graphs cannot fully capture. As network
theory has advanced, new structures have been devised that can capture high-order in-
teractions. These structures, called hypergraphs, have been very successful in fields such
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as social sciences [7–17], epidemiology [12,15,18–21], biology [22–29], etc. The potential
of hypergraphs to describe cellular networks has been hypothesized in a perspective in
2009 [30]. Mapping into a hypergraph was also noted in [31–34], bringing attention to
this new representation. Recently, Mulas et al. [35,36] applied hypergraphs to chemical
networks, trying to capture the high-order nature of chemical reactions. In this paper, we
take the concept of chemical hypergraphs and apply it to metabolic networks. In addition,
we take it a step further by showing how including weights in the treatment allows no
biological or structural information to be lost. Therefore, we argue that metabolic hyper-
graphs are the right framework to address and understand metabolism, allowing for a
bridge between biology and network theory.

This article aims to lay the foundation for a theory of metabolic networks based on
hypergraphs. We describe the method by which each metabolic network can be represented
as a hypergraph and introduce two applicable measures, namely, communicability and
search information.

The work is organized as follows. In Section 2, we give the mathematical definitions
regarding metabolic hypergraphs. We also comment on previous studies in the field of
metabolic networks and on how they can be viewed as a simplification of the metabolic
hypergraph we propose here. In Section 3, we propose a generalization of communicability
and search information for hypergraphs. We keep this section general enough so that these
measures can be easily applied to any hypergraph, directed or undirected, weighted or
not. We use metabolic hypergraphs as an example, and we report the results in Section 4.
We conclude by commenting on the possibility that this framework offers of motivating
further research in this area.

2. Metabolic Networks as Hypergraphs

In this section, we give a formal definition of metabolic hypergraphs and introduce
the notation that is used to characterize them.

2.1. Hypergraphs Definition

A hypergraph H = {V, E} is a set of vertices or nodes v ∈ V and hyperedges e ∈ E.
Each hyperedge is a subset of V such that different nodes interact with each other if and
only if they belong to the same hyperedge. Thus, unlike traditional graphs, where edges
connect pairs of nodes, hyperedges represent interactions involving multiple nodes. If the
dimension |e| of the hyperedges is 2, then the hypergraph is equivalent to a conventional
graph. The total number of vertices is denoted as N = |V| and the number of hyperedges
as M = |E|.

To interpret metabolic networks as hypergraphs, we first need to define a special type
of hypergraph introduced by Chitra et al. [37]. A hypergraph with edge-dependent vertex
weights (EDVW) H = {V, E, W, Γ} is a set of vertices or nodes v ∈ V, hyperedges e ∈ E,
edge weights w(e), and edge-dependent vertex weight γe(v). If γe(v) = γ(v) ∀ e ∈ E,
then the hypergraph is said to have edge-independent vertex weight. All the weights are
assumed to be positive. These types of weights are a unique property of some higher-order
systems and are crucial for encoding in the hypergraph all the information contained in
metabolic networks.

In this paper, we deal with directed hypergraphs, which are an extension of directed
graphs. In a directed hypergraph, each hyperedge is associated with a direction similar
to the direction of an arrow connecting two vertices in a directed graph. In this context, a
hyperedge ej is divided into a head set H(ej) and a tail set T(ej). Similarly to the arrow, the
direction goes from the tail to the head set, with the difference that the directed hyperedge
is connecting multiple vertices. A vertex can belong solely to either the head or the tail of a
hyperedge, but not both. Unless explicitly stated otherwise, any hypergraph in this paper
is considered to be directed.

Additionally, we define kout
v , the out-degree of a vertex v ∈ V, as the number of

hyperedge-tails that include v. Similarly, kin
v denotes the in-degree of a vertex v ∈ V, the
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number of hyperedge-heads in which v is contained. We also use |H(e)| and |T(e)| to
represent the number of vertices belonging to H(e) and T(e), respectively.

Given a directed hypergraph H = {V, E} of N vertices and M hyperedges, the inci-
dence matrix is the matrix I ∈ RN×M such that:

Iij =


1 if vi ∈ H(ej)

−1 if vi ∈ T(ej)

0 if vi 6∈ ej

, (1)

where H(ej) and T(ej) are, respectively, the heads and the tails of the hyperedges ej. We
can rewrite the incidence matrix as

I = IH − IT , (2)

where we separate the contributions coming from the head (IH) and the tail (IT) of the
hyperedges in order to work with positive signed matrices. It is useful to mathematically
define sinks and sources. A source is a node (or hyperedge) that has zero in-degree (or
empty tail) and non-zero out-degree (or empty head). A sink is a node (or hyperedge) that
has non-zero in-degree (or empty tail) and zero out-degree (or empty head).

2.2. Metabolic Hypergraphs

In this article, we focus on metabolic networks. A metabolic network [2] is a set of
biological processes that determines the properties of a cell. Several reactions are involved in
metabolism, grouped into various metabolic pathways. A metabolic pathway is an ordered
chain of reactions in which metabolites are converted into other metabolites or energy. For
example, the glycolysis pathway is the set of reactions involved in the transformation of
one molecule of glucose into two molecules of pyruvate, producing energy. Metabolic
networks are among the most challenging and highest-potential biological networks [3,6].
The way to represent a metabolic network on a graph is not unique, and several approaches
have been tried. One possible way is to consider metabolites (or reactions) as nodes and
connect them if and only if they share a reaction (or metabolite). The resulting graph is
undirected, and this may change the structural properties of the network in an undesirable
way. In [38], the authors analyze the same dataset that we analyze for E. coli and propose
a directed graph with reactions as nodes that take into account the directionality of the
reactions, highlighting the difference with the undirected counterparts.

However, reactions are intrinsically higher-order interactions since they can occur
only when all reactants are present. In Figure 1, we illustrate the way to map a chemical
reaction network into a hypergraph. The resulting hypergraph is a directed hypergraph
with edge-dependent vertex weight, which we will refer to as a metabolic hypergraph
for brevity. More formally, we define a metabolic hypergraph as a 3-tuple H = {V, E,S},
where V = {v1, v2, . . . vN} is a set of N metabolites (vertices) and E is a set of oriented
reactions (hyperedges). Each e ∈ E is a pair (T(e), H(e)), the tail and the head of the
hyperedge which correspond, respectively, to the inputs and outputs of the reaction. Note
that T(e) or H(e) can also be empty sets. This is the case for external reactions that introduce
inside the cell the ingested metabolites (the tail is an empty set) and external reactions that
secrete metabolites (the head is an empty set). We also call the former source reactions and
the latter sink reactions, and their effect on the measurements is discussed in more detail
in Section 3. S is the stoichiometry matrix associated with the chemical network, and it
represents the EDVW of the hypergraph. Indeed, one can notice that S can be rewritten
using the EDVW matrix Γ as S = Γ ◦ I , where I is the directed incidence matrix and “◦” is
the element-wise matrix product.
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Figure 1. An example of a metabolic network mapped into a hypergraph with edge-dependent
vertex weight. In (a), we present a small network composed of three reactions and five metabolites.
The first reaction r1 is reversible and is represented with the double arrow. In (b), we show the
corresponding stoichiometry matrix. Reactants are negative and products are positive. Note that we
need to split the reversible reaction into two irreversible reactions r+1 and r−1 to write it in matrix form.
This stoichiometry matrix is the weighted incidence matrix of the hypergraph with edge-dependent
vertex weights shown in (c). For the sake of visualization, only the hyperedge r+1 is shown. The
hyperedge r−1 is just the same but with the opposite sign. Note that weights are both positive and
negative, meaning that the hypergraph is directed. Indeed, we separate the head and tail of each
hyperedge with a dashed line.

2.3. Literature Background

There are different techniques for studying metabolic networks. Popular methods
employ kinetic metabolic models [39,40] and stochastic chemical kinetics [41] to study the
dynamics of metabolites concentrations in metabolism. While these models are crucial
to understanding the complex dynamics of metabolic networks, they require the notion
of the kinetic rates constant, the rates at which metabolites are consumed per reaction,
which are usually not available [42]. What instead is generally known are the reactions,
the stoichiometry coefficient, and the structure of the metabolic network. Thus, several
graph representations of metabolic networks have been tried. The most common one
is the reaction adjacency matrix (RAG) defined as ARAG = ŜTŜ [32,38], where Ŝ is the
boolean version of the stoichiometry matrix. The biggest limitation of this model is that
is undirected, while we know that the direction of reactions is chemically very important.
A big improvement was proposed in [38], where the authors proposed a flux-dependent
graph model that accounts suitably for the directness of the reactions. However, graph
representations of these systems are still missing a crucial point, which is the fact that
reactions are higher-order objects which involve the interactions of all input metabolites to
produce output metabolites. Therefore, hyperedges are the natural mathematical object
for encoding reactions. Mulas et al. [36] already took a step in this direction by defining a
Laplace operator for chemical hypergraphs. The last step we make is to incorporate into the
hypergraph model the weights associated with metabolites and reactions, using a similar
framework to the EDVW defined in [37]. In this last modification to the model, it is crucial
to include biological and chemical constraints in the model.

The main advantage of the metabolic hypergraph framework we propose is that it
captures all the physical properties that a metabolic network displays: the directness of
reactions, the higher-order interactions, and the chemical properties like mass conservation,
due to the inclusion of weights. This framework represents a link between network theory
and biology. Another commonly employed method for analyzing large-scale metabolic
network models is constraint-based metabolic modeling, such as flux balance analysis.
Flux balance analysis (FBA) is used to obtain steady-state reaction rates that are consistent
with a metabolic network and linear constraints on the reaction rates, without necessitating
any knowledge about the kinetic parameters [43]. FBA is a method of finding steady-state
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solutions [44,45], yet, one needs to perform additional analyses to determine the relevance
of each reaction or metabolite to the solutions obtained. For this scope, hypergraph theory
provides a lot of tools that could be used alongside FBA.

We remark that the previous graph representation of metabolic networks can be seen
as a pairwise projection of a metabolic hypergraph. For example, the RAG is an undirected
projection of the hypergraph, as in [46], and the flux-dependent graph [38] is similar to
the normalized adjacency matrix defined in [47] but extends to directed and weighted
hypergraphs. Projections are a pairwise simplification and can perform well depending on
the task, but they do not contain all the information. For example, in [32], the authors start
with a hypergraph formalism and project it to a reaction adjacency to evaluate the number
of extreme pathways in metabolic networks.

2.4. Dataset

In our experiments, metabolic hypergraphs are generated from the stoichiometry matrix
of the models stored in the BiGG database [48]. We analyze 30 different models, with an
increasing number of nodes describing different organisms (see Table A1 in Appendix A for
the exact number of nodes and reactions of each BiGG model). We chose the metabolic
networks in order to have a reasonable variety of organisms, and we avoided very large
networks because of the computational costs. The majority of the data are composed of
bacteria that can be divided into classes like antibiotic-resistant, aerobic or anaerobic, Gram-
positive or Gram-negative. The other organisms are eukaryotes, and one is in the Archaea
domain. All data are publicly available on the BiGG models web page [49] in different for-
mats. In this analysis, the .json format is used. The data contain information on metabolites,
reactions, and genes. Metabolites are identified by a Bigg ID, consisting of an abbreviation
defining their type, for example, “h” for hydrogen and “ATP” for adenosine triphosphate,
and a subscript indicating the compartment to which they belong. Regarding the reactions,
in addition to their IDs, the metabolites belonging to them are given, with their respective
stoichiometric coefficients. We work in the convention in which a metabolite with a positive
stoichiometric coefficient is a product; otherwise, it is a reactant. In the BiGG dataset, the
direction of the reactions is also determined using the parameters “lower_bound” and
“upper_bound”. These parameters are associated with each reaction and correspond to
the maximal flux of metabolites that can flow through. Values of lower_bound = 0 and
upper_bound > 0 mean that the reaction is annotated correctly, following the convention.
On the contrary, if lower_bound < 0 and upper_bound = 0, the reactions are written with
inverted orientations. These two parameters combined also determine if a reaction is
reversible or not. If a reaction is reversible, both the direct and inverse reactions are present
and will be characterized by a lower_bound < 0 and upper_bound > 0. We recall that we
treat reversible reactions as two distinct hyperedges, see Figure 1 for a visual example. It
is important to notice that few reactions have lower_bound = 0 and upper_bound = 0.
In practice, this implies that no flux of metabolites can flow through, so those reactions
are discarded. The origin of the reaction bounds depends on the BiGG models considered.
For example, both models for Mycobacterium tuberculosis H37Rv have some reactions with
lower_bound = 0 and upper_bound = 0 identified via flux variability analysis (FVA). In
the case of the Synechococcus elongatus PCC 7942, the bounds are obtained experimentally.
We decide to proceed with this convention, but using relaxed reaction boundaries to include
these reactions is also a valid option.

All the metabolites present in the BiGG models were kept; we did not discard dead-
end metabolites.

Lastly, we highlight that some hyperedges may have an empty tail or head. These
hyperedges correspond to reactions involved in the transportation of metabolites from the
outside of the cell to the inside or vice versa. For example, EX_h2o_e (H2O exchange) is the
reaction that takes the water from the environment and brings it into the metabolism. The
metabolites outside the metabolism are not present in the BiGG models, and for this reason,
the reaction appears as “→ h2o_e”, with an empty tail. Therefore, sometimes they may
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represent sinks and sources in the hypergraph. By source, we mean a node or hyperedge
from which you can start and leave but never go back, while a sink is a trapping node or
hyperedge that, if it is reached, is impossible to leave.

3. Measurements

In this section, we define two measures of the chemical hypergraph based on the
notion of paths or walks on hypergraphs. A walk of length l from node v0 to node vl is
defined as a sequence of alternating nodes and hyperedges (v0, e1, v1, e2, v2, ...el , vl). We
also define the dual walk from hyperedge e0 to hyperedge el of length l as the alternating
sequence of alternating nodes and hyperedges (e0, v1, e1, v2, e2, ...vl , el). We are interested
in both metabolites and reactions, which is why it is useful also to consider the dual walk.

3.1. Hypergraph Communicability

We are usually interested in understanding how paths are distributed because that
is how information and interactions spread. In social systems, for example, the more
paths connecting two nodes, the easier is for information to spread from one to another.
Also, if one path of connection fails, the information can still be spread through other
paths, even if they are longer than the path that failed. For this reason, the notion of paths
and communication between nodes can also be related to the robustness of the network.
However, having a robust network is not always positive. The same reasoning about the
spreading of information applies to the spreading of viruses. If a network is robust, it is
way more difficult to design containment strategies for the virus, since shutting down a
connection might not be enough because of the presence of alternative paths. A way to
measure how nodes communicate within a network is called communicability, and we
extend this definition to hypergraphs.

The communicability [50,51] between two pairs of nodes p and q is defined as the
weighted sum of all walks starting from node p and ending at node q, as in

Gpq =
∞

∑
k=0

cknk
pq, (3)

where nk
pq is the number of walks from p to q and ck is the penalization for long paths.

The most common choice is ck = 1
k! so that you recover an exponential expansion. For

a graph, nk
pq can be easily found by taking the k-power of the adjacency matrix, (Ak)pq.

Hypergraphs do not have a unique definition of adjacency matrix; we thus have to use the
definition of walk given above. The vertex-to-vertex communicability for a hypergraph
with incidence matrix I is defined as

GV
pq =

∞

∑
k=0

(
(ITI t

H)
k
)

pq

k!
, (4)

or, in matrix form,
GV = eITI t

H , (5)

where (·)t indicates the transpose of the matrix. In metabolic hypergraphs, we are also
interested in how reactions communicate with each other. For this reason, we define the
hyperedge-to-hyperedge communicability based on the notion of dual path

GE
pq =

∞

∑
k=0

(
(I t

HIT)
k
)

pq

k!
, (6)

or, in matrix form,
GE = eI

t
HIT . (7)
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The Estrada index [50,52] of a hypergraph H is generalized as

EEV(H) = Trace
(

GV
)

,

EEE(H) = Trace
(

GE
)

.
(8)

One can notice that the matrices ITI t
H and I t

HIT have the same spectrum except for the
number of zero eigenvalues because of the difference in size. This means that for M > N, for
example (which is usually the case in metabolic hypergraphs), the Estrada index defined on
nodes and the one defined on the hyperedges are related by EEE(H) = EEV(H) + (M− N).
We use the Estrada index defined on the nodes to measure the hypergraph robustness, also
known as natural connectivity, as

λ̄V = log
(

EE(H)V

N

)
. (9)

The same definition holds for λ̄E with the proper normalization.
Since computing the exponential of very large matrices might be a difficult numerical

task, we use an approximation for the calculation of the robustness based on eigenvalue
decomposition. For simplicity, let us call AV = ITI t

H (the same reasoning holds for
AE = I t

HI t
T) and order the spectrum of AV in such a way that λ1 > λ2 > λ3 > ...λN . Then,

the natural connectivity or robustness of the hypergraph becomes

λ̄V = log

(
N

∑
i=1

eλi

)
− log(N)

= log

[
eλ1

(
1 +

N

∑
i=2

eλi−λ1

)]
− log(N)

= λ1 + log

(
1 +

N

∑
i=2

eλi−λ1

)
− log(N)

= λ1 − log(N) +O
(

e−(λ1−λ2)
)

.

Thus, if the spectral gap is large enough, the natural connectivity is dominated by the
largest eigenvalue. Since the correction is exponential, this approximation is usually quite
good. As a consequence of the common spectrum of I t

HIT and ITI t
H , the difference in

robustness is approximately λ̄V − λ̄E ≈ log(M
N ), which is usually quite small. It is worth

noting that the largest eigenvalue scales with the system size, i.e., with the number of
nodes and hyperedges. The normalization factor − log(N) mitigates this scaling effect, but
a partial correlation is still expected. This correlation was present in the original graph
definition of natural connectivity [53]. This could be a problem when comparing systems
with very different scales. For this reason, in this paper, we are comparing hypergraphs
with a similar system size.

This generalization of communicability applies also to undirected hypergraphs by
substituting IH and IT with the undirected incidence matrix I.

3.2. Hypergraph Search Information

Rosvall et al. [54,55] introduced the concept of search information, as a measure of
complexity in urban graphs. The idea is to measure the number of binary questions one
has to make in order to locate the shortest path connecting a node s to a node t. As
a consequence, this measure is based on walks like the communicability, but with the
crucial difference that it considers only the shortest paths. This allows us to link the search
information with the notion of complexity. While alternative pathways tend to make the
network more robust, they also make the probability of finding the shortest path decrease



Entropy 2023, 25, 1537 8 of 16

and the complexity increase. This trade-off is the reason that motivated us to consider
communicability and search information together.

In [54], the search information is defined as a matrix S with entries

S(i, j)V = − log2

 ∑
{p(i,j)}

P(p(i, j))

, (10)

where
{

p(vi, vj)
}

is the set of all shortest paths from node vi to node vj.
The original definition was made for undirected and unweighted ordinary graphs, so a

very different structure from directed hypergraphs with edge-dependent vertex weight, but
the meaning remains the same. What changes is the probability of following the shortest
path. The probability of making a step is proportional to the stoichiometric coefficients of
the starting and arriving nodes, similar to what has been performed in the normalized flow
graph in [38]. The probability of taking a step in a directed hypergraph with EDVW is

P(v −→ e) =
γe(v)

∑h γh(v)
,

P(e −→ v) =
γe(v)

∑n γe(n)
.

(11)

The probability of following a path is derived via multiplication of the single-step
probability,

P(v0, vl) = P(v0 −→ e1)P(e1 −→ v1) . . . P(el −→ vl). (12)

It is important to note that the search information might be ill defined if the hypergraph
has sources or sinks. For example, by definition, there are no paths from a sink node vsink
to any other nodes v, making the definition of S(vsink, v) unclear in this case. What we
do to solve the problem is to set S(vsink, v) = 0 and then not count sink and source nodes
when computing the average. With this convention, the access, hide, and average search
information are defined as

AV(s) =
1

N − Nsources
∑

t
SV(s, t)

HV(t) =
1

N − Nsinks
∑

s
SV(s, t)

S̄V =
1

(N − Nsinks)(N − Nsources)
∑
s,t

SV(s, t).

(13)

As a consequence, the access information of a sink and the hide information of a source
will be set to zero. Following [54], we introduce an additional normalization factor log2 N to
take into account size effects. With this additional term, we did not observe any correlation
between the average search information and the number of metabolites or reactions. We
denote the normalized average search information as σV = S̄V

log2 N . The interpretation of
these measures is very intuitive. The access information measures how easy it is to reach
the other nodes in the network, while the hide information estimates how hidden a node
is. Consequently, very central and connected nodes in the hypergraph have low hide
information because there are a lot of paths leading to them, but they have relatively high
access information because there are also many paths departing from such nodes.

4. Results and Discussion

In this section, we apply the previously defined metrics to a range of metabolic
hypergraphs. As illustrated in Figure 1, these hypergraphs were constructed by starting
with metabolic networks obtained from the BiGG dataset [48]. The metabolic networks



Entropy 2023, 25, 1537 9 of 16

were selected to have a reasonable variety of organisms. The primary goal of this section is
to demonstrate the practical application of our framework and the defined measurements.

4.1. Exploring the E. coli Core Model: A Practical Example

To provide a tangible illustration of our methodology, we focus on the BiGG model
known as e_coli_core [56]. This model represents a small-scale version of Escherichia coli
str. K-12 substr. MG1655, making it an ideal candidate for demonstrating the performance
of our metrics and understanding their limitations. Additionally, an Escher map for this
model is available online [57].

In Figure 2, we show the access vs. hide information for reactions and metabolites.
Regarding the reactions (Figure 2a), the measure correctly identifies the Biomass reaction as
a central hub. Reactions are plotted with different colors based on the biological pathway
they belong to. We can clearly see the behavior of sinks and sources in the reactions
belonging to the extracellular exchange pathway. The pathways do not tend to separate
into clusters, indicating that they all have a similar complexity. This could be an effect of
the simplicity of this model or could be a property shared by all organisms. We did not
investigate further since the scope of this section was just to provide a practical example,
but it could be worth it to explore it in future work.
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Figure 2. Access vs. hide information for reactions (a) and metabolites (b). Reactions are colored
differently according to the pathway they belong to. Note that the y axis is cut for visualization
purposes. Metabolites are divided into compartments; c stands for cytosol compartment and e for
extracellular space.

We also comment on the reactions that are ranked the highest according to average
communicability. The average communicability is defined as Ḡe = 1

M ∑h∈E GE
he and is

shown in Figure 3. Notably, the Biomass reaction (first highest average communicability)
and ATP synthase (second highest average communicability) are correctly identified as
central reactions within the metabolism. The Biomass reaction is responsible for cell
growth, while ATP synthase plays a crucial role in ATP synthesis, the primary energy
source for the organism. The production of ATP is mainly due to the consumption of
oxygen that occurs through the reaction CYTBD (cytochrome oxidase bd—sixth highest
average communicability). When oxygen is unavailable, Escherichia coli can still survive
due to the activation of the anaerobic pathway, which derives energy from the reaction
THD2 (NAD(P) transhydrogenase—third highest average communicability).
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Figure 3. Reactions’ average communicability for the e_coli_core model. A simplified Escher map
is used as a background to help with the visualization. For a more accurate version of the map,
visit [57].

Regarding the metabolites (Figure 2b), we observe a clear distinction between those
belonging to the cytosol compartment and those located in the extracellular compartment.
As expected, extracellular metabolites tend to have, on average, higher hide information. It
is important to clarify that metabolites with zero hide information are those that remain
initialized to zero because they are unreachable. However, an instructive observation
could be made on o2_c. As commented in Section 3, a node with low but non-zero hide
information is expected to be a central hub, but in reality, it has a very low degree. The
explanation for this helps us to understand the implications of network directionality. The
node o2_c is only connected to the core metabolism via the irreversible CYTBD reaction
as a substrate. Consequently, there cannot be any directed path from the core metabolism
to o2_c, only the opposite. We conclude that the node o2_c does not belong to the largest
strongly connected component. In practice, it behaves very similarly to a source node.
Nonetheless, the hide information is not zero because a pathway originates from the
transport of external oxygen to the cytosol. In contrast, in cyanobacteria, algae, and plants
(not investigated here), O2 is produced via oxygenic photosynthesis. In those organisms,
O2 should be part of the strongly connected component.

4.2. Robustness and Complexity across Organisms

Our study assesses the robustness and complexity of 30 distinct metabolic hypergraphs
derived from various eukaryotic and prokaryotic organisms. We selected the models to
ensure a good range of diversity while avoiding having too many models for a single
organism. For example, Escherichia coli has over 50 BiGG models. Analyzing all of them
could be intriguing as well, but our primary interest lies in comparing organisms rather
than models. Additionally, it is worth noting that certain BiGG models exhibit very
large metabolisms, featuring thousands of metabolites and reactions. While these large
models do hold potential relevance within the scope of our paper, the significant size
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of the corresponding metabolic networks renders the computational cost of the search
information high. It is possible to study a large metabolic network individually, but the
cost of comparing many together is prohibitive. To maintain computational tractability, we
restrict our analysis to metabolic networks with no more than 2000 nodes or reactions.

Assessing the robustness of metabolic networks is an important task, and many defini-
tions exist [31,34]. Here, we use natural connectivity to evaluate the network structure’s
robustness. In Figure 4, we present the computed robustness values for several organisms
arranged in ascending order. The BiGG models associated with the organisms Staphylococ-
cus aureus subsp aureus [58,59], Mycobacterium tuberculosis [60,61], Acinetobacter baumannii
AYE [62], and Salmonella enterica [63] are represented in different colors because they are
bacteria that have evolved resistance to antibiotics. Except for the first Staphylococcus aureus
subsp aureus model, antibiotic-resistant bacteria tend to exhibit relatively high robustness
compared to other organisms. We measured the Spearman’s rank correlation between
robustness and antibiotic resistance, obtaining a value of 0.424, revealing a moderate corre-
lation. Here, the definition of robustness is based on the network’s resilience to random
or targeted node removal. The concept of natural connectivity quantifies this resilience by
counting the number of closed loops in the network. If there are many alternative paths, it
is less probable that node removal will disconnect the network. In the context of biology, an-
tibiotics operate by targeting and inhibiting some specific reactions, without which the cell
dies [1]. Therefore, having a structurally robust metabolism is advantageous as it allows the
organism to circumvent antibiotic inhibition by utilizing alternative reactions or pathways.
However, this is not the whole picture since many other factors play a role. For example,
bacteria are naturally subjected to random mutations that may strengthen their response
to antibiotics, and this may not necessarily be reflected in a high structural hypergraph
robustness. Conversely, a very robust metabolic hypergraph, with many alternative paths,
may have a few but very important reactions that are easy to target with antibiotics. Hence,
high structural hypergraph robustness does not guarantee antibiotic resistance.
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Figure 4. The robustness measured as the natural connectivity λ̄V of 30 different BiGG models.
The organisms resistant to antibiotics are shown in different colors. The models are ordered with
increasing robustness.

The complexity of metabolic networks is anticipated to be quite similar across organ-
isms since they share many common reactions and metabolic pathways. Nevertheless,
some differences are expected in the metabolism of aerobic and anaerobic organisms, as
well as between eukaryotes and prokaryotes. Aerobic and anaerobic organisms should
have a different metabolism because of the different ways they produce energy, while
eukaryotes and prokaryotes have significantly different cell structures. With this in mind,
we measure the average search information of the 30 different metabolic hypergraphs
and report the results in Figure 5. We notice a clear separation between eukaryotes and
some aerobic organisms, showing a high complexity, and prokaryotes, which have a lower
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complexity. A few outliers exist, including Staphylococcus aureus subsp aureus N315, which
exhibits high complexity, potentially due to unusually large weights associated with certain
reactions compared to other organisms. Setting all the weights to 1 would indeed lead to a
much lower complexity, ranked slightly below the average, indicating a possible bias. In
addition, one can also notice that the other model for Staphylococcus has a low complexity.
Another outlier is the first model we analyzed for Homo sapiens—erythrocytes [64] that
may be expected to be complex. However, it is important to note that this model refers
just to the erythrocyte metabolism (blood cells) rather than the entire human metabolism.
Erythrocytes lack mitochondria and produce ATP through anaerobic glycolysis, so their
metabolism could be closer to that of anaerobic organisms. Conversely, the low complexity
of the aerobic organisms Acinetobacter baumannii AYE, Pseudomonas putida, and Helicobacter
pylori is curious, and we do not have a clear motivation. Note that a generic human (Homo
sapiens) cell has a similar complexity to a yeast cell (Saccharomyces cerevisiae). That is ex-
pected. Eukaryote cells have similar metabolic pathways. The additional complexity in
human metabolism is due to multi-cellularity, which is not accounted for in this study.
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Figure 5. The complexity measured as the average search information σV = SV

log2 N of 30 different
BiGG models. The models are ordered with increasing complexity, and the y axis is zoomed in for
visualization purposes.

5. Conclusions

Metabolic networks are very large and complex systems. For this reason, it is important
to build a framework able to unite biology and network theory. Many successful studies
have represented metabolic networks as graphs with metabolites as nodes, reactions as
nodes, or both. Taking a step further, with the employment of hypergraphs, we are able to
capture what all of these previous graph representations were missing, the higher-order
interactions of reactions. In this paper, we show how metabolic networks are naturally
mapped into hypergraphs. In particular, the stoichiometry matrix can be viewed as a
weighted incidence matrix of a directed hypergraph with edge-dependent vertex weight.
No information is lost representing metabolic networks as hypergraphs: the higher-order
interactions between metabolites, the directionalities of reactions, and the stoichiometric
weights are all included.

Within this novel framework, we propose two measurements to characterize a hyper-
graph’s robustness and complexity. We apply them to directed hypergraphs with EDVW,
but the generalization to undirected and unweighted hypergraphs is straightforward. This
approach allows for analysis at the local scale, with communicability and access and hide
information, and at the global scale, with natural connectivity as a measure of robustness
and average search information as a measure of complexity. We comment on the compli-
cations introduced by directionality and how they can be reflected in the measures. To
illustrate the practical application of our framework and metrics, we present an example
using the e_coli_core model. This small-scale metabolism demonstrates how our metrics
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operate locally, and it offers valuable insights into the behavior of metabolic hypergraphs.
At the global scale, we compare 30 different BiGG models in robustness and complexity,
leading to some interesting results. We show that the metabolisms of organisms that have
evolved resistance to antibiotics are associated with hypergraphs that display high robust-
ness. Furthermore, we observe that eukaryotic and prokaryotic organisms have different
complexity values.

In our analysis of complexity, we excluded the source and sink reactions because they
create problems when computing the search information (they are unreachable hyperedges).
Another possibility could be to add a boundary node, representing the environment around
the cell, that links the sinks with the sources. In this way, the search information is no
longer ill defined and the external reactions could be included in the analysis. However,
the introduction of such externally may have undesired effects on the measures, like
introducing new and biologically unmotivated shortest paths. It is worth mentioning that
an additional boundary node could be crucial when incorporating hypergraph dynamics
in the model. A possibility for future works could be modifying the definition of the
average search information and the probability of taking a step in the hypergraph. Here, we
consider a walk biased by the stoichiometric weights, but more options could be explored.
One possibility is to define the probabilities based on the communicability measure or on
the rates computed via flux balance analysis [38,43]. Indeed, from flux balance analysis,
we obtain rates that could be interpreted as edge-dependent vertex weights, substituting
the stoichiometric coefficients. The union of FBA with hypergraph theory, to the best of
our knowledge, has not been studied yet and could be an original contribution to the field.
Also, we did not consider the information regarding genes that are contained in the BiGG
models. Genomics plays a crucial role, especially in resistance to antibiotics, and for this
reason, it could be interesting to integrate it into this framework. Another possibility is to
apply our measures to other contexts, like social or technological hypergraphs.

We believe that this framework represents a promising approach to bridging network
theory and biology. We hope that it may serve as a starting point, potentially reaching
experts in the field who could further refine and utilize these findings to obtain more
biological insights.
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Appendix A. BiGG Models

In Table A1, we provide the number of nodes, reactions, and hyperedges for each
analyzed hypergraph. We also report the associated BiGG model ID to facilitate its iden-
tification, reproduction, and further studies. For more information, see the BiGG models
webpage [49].
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Table A1. BiGG models and their numbers of metabolites and reactions. The directed hypergraph
constructed from the model has a number of nodes equal to the number of metabolites and a number
of hyperedges bigger than the number of reactions because of the presence of reversible reactions.

Organism BiGG Model Metabolites Reactions Hyperedges

Saccharomyces cerevisiae S288C iND750 1059 1266 1702

Pseudomonas putida KT2440 iJN746 907 1054 1415

Plasmodium cynomolgi strain B iAM_Pc455 907 1074 1563

e_coli_core e_coli_core 72 95 141

Staphylococcus aureus subsp. aureus USA300_TCH1516 iYS854 1335 1453 1872

Mycobacterium tuberculosis H37Rv-1 iNJ661 825 1022 1293

Mycobacterium tuberculosis H37Rv-2 iEK1008 998 1224 1500

Clostridium ljungdahlii DSM 13528 iHN637 698 773 988

Yersinia pestis CO92 iPC815 1552 1960 2507

Shigella dysenteriae Sd197 iSDY_1059 1888 2529 3172

Escherichia coli str. K-12 substr. MG1655 iJR904 761 1075 1329

Lactococcus lactis subsp. cremoris MG1363 iNF517 650 730 979

Helicobacter pylori 26695 iIT341 485 554 737

Homo sapiens iAB_RBC_283 342 469 645

Homo sapiens2 iAT_PLT_636 738 1008 1455

Plasmodium falciparum 3D7 iAM_Pf480 909 1083 1576

Escherichia coli BL21(DE3) iEC1356_Bl21DE3 1918 2730 3376

Synechococcus elongatus PCC 7942 iJB785 768 843 1064

Plasmodium berghei iAM_Pb448 903 1067 1554

Trypanosoma cruzi Dm28c iIS312 606 519 806

Staphylococcus aureus subsp aureus N315 iSB619 655 729 945

Thermotoga maritima MSB8 iLJ478 570 652 852

Methanosarcina barkeri str. Fusaro iAF692 628 690 900

Clostridioides difficile 630 iCN900 885 1222 1455

Plasmodium vivax Sal-1 iAM_Pv461 909 1078 1570

Bacillus subtilis iYO844 990 1250 1589

Synechocystis sp. PCC 6803 iJN678 795 862 1086

Geobacter metallireducens GS-15 iAF987 1109 1281 1642

Acinetobacter baumannii AYE iCN718 888 1013 1436

Salmonella enterica STM_v1_0 1802 2528 3133
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