000129828 001__ 129828
000129828 005__ 20241125101147.0
000129828 0247_ $$2doi$$a10.3390/electronics12214484
000129828 0248_ $$2sideral$$a136162
000129828 037__ $$aART-2023-136162
000129828 041__ $$aeng
000129828 100__ $$aLabodía, Miguel$$uUniversidad de Zaragoza
000129828 245__ $$aCoupling between cavity resonances and characteristic modes on household appliances
000129828 260__ $$c2023
000129828 5060_ $$aAccess copy available to the general public$$fUnrestricted
000129828 5203_ $$aHome appliances generally comprise a mechanical envelope, or enclosure, of electrically conductive material (steel, aluminum, etc.) that houses electrical and electronic circuits. That envelope typically includes all kind of apertures, openings, holes, slots, windows, etc., to connect—physically and electromagnetically—the external space with its internal space. The performance of that envelope is a key element to comply with surface current EMI/EMC (Electro-Magnetic Interference/Electro-Magnetic Compatibility) regulations for electromagnetic interference, both emissions and immunity. Here, we present a novel theoretical proposal that consists of establishing the mathematical relationship of the coupling between the resonant modes of an internal cavity (RMs) contained in a conductive body and the characteristic modes (CMs) on the external surface of its envelope through the openings that connect those external and internal spaces, and doing so by means of equivalent virtual surface currents located in those openings. The comparative results of simulations and actual measurements of immunity in an anechoic chamber (measurements originally oriented to other purposes) are presented as above-mentioned evidence of resonating modes coupling on the frequency range 40–1000 MHz. However, this theoretical proposal is novel and remains to be developed in greater depth and detail in future works.
000129828 536__ $$9info:eu-repo/grantAgreement/EUR/AEI/CPP2021-008938$$9info:eu-repo/grantAgreement/EUR/AEI/TED2021-129274B-I00$$9info:eu-repo/grantAgreement/ES/ISCIII/PI21-00440$$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2019-103939RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PDC2021-120898-I00
000129828 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000129828 590__ $$a2.6$$b2023
000129828 592__ $$a0.644$$b2023
000129828 591__ $$aCOMPUTER SCIENCE, INFORMATION SYSTEMS$$b115 / 250 = 0.46$$c2023$$dQ2$$eT2
000129828 591__ $$aPHYSICS, APPLIED$$b81 / 179 = 0.453$$c2023$$dQ2$$eT2
000129828 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b157 / 353 = 0.445$$c2023$$dQ2$$eT2
000129828 593__ $$aElectrical and Electronic Engineering$$c2023$$dQ2
000129828 593__ $$aComputer Networks and Communications$$c2023$$dQ2
000129828 593__ $$aSignal Processing$$c2023$$dQ2
000129828 593__ $$aHardware and Architecture$$c2023$$dQ2
000129828 593__ $$aControl and Systems Engineering$$c2023$$dQ2
000129828 594__ $$a5.3$$b2023
000129828 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000129828 700__ $$aEspañol, Jorge
000129828 700__ $$aTesa, Jorge
000129828 700__ $$0(orcid)0000-0002-4099-9918$$aMediano, Arturo$$uUniversidad de Zaragoza
000129828 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000129828 773__ $$g12, 21 (2023), 4484 [22 pp.]$$pElectronics (Basel)$$tElectronics$$x2079-9292
000129828 8564_ $$s12613042$$uhttps://zaguan.unizar.es/record/129828/files/texto_completo.pdf$$yVersión publicada
000129828 8564_ $$s2658360$$uhttps://zaguan.unizar.es/record/129828/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000129828 909CO $$ooai:zaguan.unizar.es:129828$$particulos$$pdriver
000129828 951__ $$a2024-11-22-12:04:59
000129828 980__ $$aARTICLE