
Far-�eld di�raction of linear chirped gratings

Luis Miguel Sanchez-Breaa,∗, Francisco Jose Torcal-Millab, Jeronimo
Buencuerpoa

aOptics Department, Applied Optics Complutense Group, Universidad Complutense de
Madrid, Facultad de Ciencias Físicas, Plaza de las Ciencias 1, 28040, Madrid, (Spain).

bApplied Physics Department, Universidad de Zaragoza, 50009, Zaragoza (Spain).

Abstract

We analyze the far-�eld di�raction pattern produced by linear spatial chirped
gratings. An intuitive analytical interpretation of the generated di�raction or-
ders is proposed for gratings with linear variation of the period and linear varia-
tion of the spatial frequency. Also, experiments using Gaussian beams and plane
wave illumination are performed. The analytical expressions are compared to
numerical and experimental results, showing a high agreement. Chirped grat-
ings can be applied in interesting applications: we analyze how they can be used
as a de�ector, since tunable direction of di�racted orders can be achieved by
displacing laterally the grating with respect to the incident light beam. Also
the angular width of di�raction orders can be controlled and chirped gratings
can be used to generate uniform illumination over a controlled angular range.
These two applications have also been experimentally shown.
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1. Introduction

Di�raction gratings are one of the most common optical elements, which
consist of a periodical pattern that modulates the incident light beam. As it
is well known, a di�raction grating produces di�raction orders at the far �eld
that propagate along directions θn given by the grating equation, psinθn = nλ,
where λ is the incident wavelength, n is an integer which represents the di�rac-
tion order, and p is the period of the grating, which typically is constant. In the
recent years, quasi-periodic structures have aroused interest in the optical com-
munity [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. For example, in the temporal range, chirped
�ber gratings are used as a solution for dispersion compensation [11]. In the
spatial range, chirped gratings (CGs) have also been applied to produce curved
di�raction orders [12], to extend the bandwidth in surface plasmon applications
[13], as spectral selective elements in optical spectrometers and monochromators
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Figure 1: q- and p- chirped binary amplitude di�raction gratings with starting period p0 =
50µm, �nal period p1 = 10µm, and length L = 500µm.

[8, 14], in external cavity semiconductor laser diodes, [15, 16], and as a nanome-
ter gap measurement device, [2]. Their advantages as focusing elements have
been applied, [4], and they have also been used as reference marks in position
optical encoders, [17].

From a theoretical point of view, CGs have been analyzed using a geomet-
rical scheme [8], the ABCD matrix formalism [3], and also Fresnel approach
for the near �eld (pseudo-self-imaging formation) [7]. Nevertheless, the far-�eld
optical properties of CGs have not been investigated yet. Since CGs do not
present a periodic structure, an analysis based on Fourier series and di�raction
orders can only be performed in some particular cases. In this work, we ana-
lyze the far-�eld di�raction pattern produced by CGs of two kinds: p-chirped
and q-chirped which correspond to linear variation of the period of the grating
and linear variation of the spatial frequency of the grating respectively. Ana-
lytical expressions to explain the di�raction orders behavior produced by this
kind of non-periodical grating are obtained, which are compared to numerical
simulations and experimental results. Simulations based on Fast Fourier Trans-
form and experimental results for q-chirped di�raction gratings are obtained,
which corroborates the theoretical approach. Due to the structure of the far
�eld di�raction pattern, CGs can be used in interesting applications, such as a
de�ector which can easily change the angle of the di�raction orders just moving
the grating perpendicularly to the beam, or as a line generator since, for highly
chirped gratings, the width of the di�raction orders can be controlled with the
initial and �nal period of the grating.
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2. Theoretical analysis

A CG of length L is de�ned in the real space by its initial and �nal periods,
p0 and p1, and its variation rate of the lattice, pa. Alternatively, in the reciprocal
space the CG its de�ned by its initial and �nal spatial frequencies, q0 = 2π/p0
and q1 = 2π/p1 and its variation rate, qa. We de�ne two illustrative cases with
linear variation in the real and reciprocal space, the p-chirped and q-chirped
gratings

p(x) = pc + pa x, q(x) = qc + qa x, (1)

where pc = (p0+p1)/2, pa = (p1−p0)/L, qc = (q0+q1)/2, and qa = (q1−q0)/L,
respectively. The center of the grating is located, without loss of generality, at
x = 0. Both gratings are generated by binarizing the sign of

t(x) = bin

{
cos

[ˆ x

g(x′)dx′
]}

, (2)

where g(x′) is replaced by the frequency for p- or q- CGs. Therefore, the q-CG
is de�ned as

tq(x) = bin

[
cos

(ˆ x

q(x′)dx′
)]

= bin

[
cos

(
qcx+

1

2
qax

2

)]
(3)

and the p-CG grating is de�ned as

tp(x) = bin

[
cos

(ˆ x 2π

p(x′)
dx′
)]

= bin

[
cos

(
2π

pa
log(pc + pax)

)]
. (4)

In Fig. 1 we can see an example of both gratings.
The next step is to analyze how these CGs behave in the far �eld when

they are illuminated with a monochromatic Gaussian light beam whose beam
width, ω0, is placed at the plane of the CG, z = 0, and it is centered at xg:
u0(x) ∝ exp[−(x − xg)

2/ω2
0 ]. Since the proposed p-CGs and q-CGs are not

periodical, a simple analysis of the far �eld di�raction pattern is not possi-
ble. Nevertheless, after binarization, both p-chirped and q-chirped di�raction
gratings can be described as

tα(x) =
∑
n

ane
i n fα(x), (5)

where α = p, q, fp(x) = 2π
pa
log(pc+pax), fq(x) = qcx+ 1

2qax
2, an are the Fourier

coe�cients of the grating, and n are entire numbers.
On the other hand, the �eld after the q-CG can be described as

u1,q(x) = u0(x)tq(x) ∝ e
− (x−xg)2

ω2
0

∑
n

ane
i n (qcx+ 1

2 qax
2). (6)
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The far �eld intensity distribution is obtained using Fraunhofer approximation
by solving

uq(θ) ∝
ˆ +∞

−∞
u1,q(x)e−i k x sinθdx, (7)

where k = 2π/λ is the wavenumber. This integral for q-CGs is easily solved,
since there are only linear and quadratic terms in the exponential, resulting

uq(θ) ∝
∑
n

an√
2− in qaω2

0

e
−
(
xg
ω0

)2
e
−

(k sinθ−n qc+2ixg/ω
2
0)

2

4/ω2
0
−2i n qa . (8)

When there is not interference between orders, the intensity distribution at the
far �eld results in Iα(θ) =

∑
n un(θ)u∗n(θ), being un the amplitude for each

di�raction order. Considering Eq. (8), we obtain

Iq(θ) ∝
∑
n

|an|2
ωq

e
− [k sinθ−n (qc+qaxg)]2

ω2
n,q , (9)

where ωn,q =
√

2

√
(1/ω0)

2
+ (n qa ω0/2)

2
is the angular width of the di�raction

order n. For the limit qa → 0 we recover the far �eld di�raction pattern produced
by a periodical grating. Now, let us analyze which are the di�erences between
standard periodic gratings and q-CGs. In the �rst place, we can see that q-
CGs produce di�raction orders which propagate following the grating equation,
where the frequency for determining the angular separation of orders is that at
the center of the Gaussian beam:

k sinθ = n (qc + qaxg). (10)

These di�raction orders present a total power proportional to |an|2. On the
other hand, the angular width of di�raction orders, ωn,q, is not constant but
it increases with the di�raction order n and the chirping parameter qa. In
Fig. 2a we can see an example of far �eld di�raction pattern obtained with
Eq. (9). It is clear that the width of the di�raction orders is not equal, as for
the case of constant period di�raction gratings, but depends on the order. This
far �eld di�raction pattern is compared to that obtained numerically with the
Fast Fourier Transform of the �eld after the grating |FFT [u1,q(x)]|. There is
an excellent agreement between analytical and numerical approaches.

For the case of p-CGs, that is, gratings with a linear variation in the period,
the integral required to determine the far �eld di�raction pattern

up(θ) ∝
∑
n

an

ˆ +∞

−∞
e−(x−xg)

2/ω2
0ei n

2π
pa
log(pc+pax)e−i k x sinθdx, (11)

cannot be solved analytically, and an approximation is required. For this, we
have performed a quadratic series expansion of logarithm in second exponential
resulting in

ei n
2π
pa
log(pc+pax) ≈ e

i 2πnpa

[
log(pc)+

pa
pc
x− p2a

2p2c
x2

]
.
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Figure 2: Numerical and analytical di�raction pattern at the far �eld produced by a q- and
a p-CG. The incident beam presents a Gaussian pro�le with ω0 = 125µm, the wavelength is
λ = 0.6328µm, and impinges in normal incidence to the grating at xg = 0µm. Both q- and
p-CGs present a size L = 500µm, and initial and �nal periods p0 = 6µm and p1 = 4µm
respectively. Then qa = 0.0010µm−2 and pa = −0.004.
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With this approximation, the intensity results

Ip (θ) ∝
∑
n

|an|2
ωn,p

exp
−

[k sinθ−n 2π
pc

(1− pa
pc
xg)]

2

ω2
n,p , (12)

where ωn,p =
√

2

√
(1/ω0)

2
+ (πn pa ω0/p2c)

2
. Obviously, when pa = 0, we re-

cover the far �eld pattern of a standard di�raction grating. Similarly to the case
of q-CG, the width of di�raction orders is not constant but it increases with the
order n. In Fig. 2b we can see the di�raction pattern produced by a p-CG with
the same parameters as Fig. 2a. As predicted, p-CGs are governed by standard
grating equation where the period in the equation is that at the center of the
beam

pc
(1− pa

pc
xg)

sinθ ≈ (pc + paxg) sinθ = nλ. (13)

The quotient is due to approximation performed to obtain Eq. (12).
In Fig. 2, both p-chirped and q-CGs produces similar di�raction patterns,

since the qa and pa parameters are small. However, this is not always the case.
For example, in Fig. 3, we can see that the di�raction patterns produced by
q- and p-chirped gratings are quite di�erent, since q-chirped grating produces
wider di�raction orders than p-chirped grating. This can be seen comparing
the widths given in Eq. (9) and Eq. (12), ωn,q and ωn,p, using the de�nition of
parameters, given in Eq. (1).

Finally, we calculate the far �eld di�raction pattern produced by a CG of
�nite size illuminated by a plane wave. This case is more realistic in many
practical applications. For the case of a q-CG, the integral to solve is

uq|p−w(θ) ∝
ˆ +L/2

−L/2

∑
n

ane
i n (qcx+ 1

2 qax
2)e−i k x sinθdx, (14)

resulting in

uq|p−w(θ) ∝ a0Lsinc
(
L
2 k sinθ

)
+
(
1+i
2

)√
π
qa

∑
n 6=0

an√
n
e−i

(n qc−k sinθ)2
2nqa

×
(
erf

[(
1−i
2

)
k sinθ−nq0√

nqa

]
− erf

[(
1−i
2

)
k sinθ−nq1√

nqa

])
,

(15)

where sinc = sin(x)/x and erf(x) = 2/
√
π
´ x
0
exp(−t2)dt is the error function.

Since the erf function approximately behaves like a step function, eq. (15)
provides a simple relation for the starting and �nal frequencies of the di�raction
orders, which is given when the erf function is null, that is,

k sinθ0 = nq0 and k sinθ1 = nq1. (16)

As a consequence, we can select the angular width of a di�raction order by the
initial and �nal periods of the grating: sinθn ∈ (sinθ0, sinθ1) = (nq0/k, nq1/k).
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Figure 3: Numerical and analytical di�raction pattern at the far �eld produced by a q- and
a p-CG with the same conditions than in Fig. 2 except initial and �nal periods which are
p0 = 40µm and p1 = 4µm. Then qa = 0.0028µm−2 and pa = −0.072.

On the other hand, for a p-CG, the integral to solve is

uq|p−w(θ) ∝
ˆ +L/2

−L/2

∑
n

ane
i n 2π

pa
log(pc+pax)e−i k x sinθdx, (17)

resulting in

uq|p−w(θ) ∝ a0Lsinc
(
L
2 k sinθ

)
+ i
k sin θ e

i kpc sin θ
pa

∑
n 6=0 an

(
−ik sin θ

pa

)−2inπ
pa

×
[
Γ
(

1 + 2inπ
pa

, ikp0sinθpa

)
− Γ

(
1 + 2inπ

pa
, ikp1sinθpa

)]
,

(18)

where Γ(a, z) =
´∞
a
ta−1e−tdt is the upper incomplete gamma function.

In Fig. 4 we can see a comparison between analytical and numerical results
for a q-CG (parameters given at caption). The total power of the di�raction
orders is distributed between angles (θ0, θ1) and a constant distribution of the
intensity is obtained for q-chirped gratings. Also, the numerical results for a
p-CG are presented. Nevertheless, a simple equation for the far �eld inten-
sity distribution is not possible for comparison. We can see that the intensity
distribution in the di�raction orders is not constant for this case.
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Figure 4: Numerical and analytical di�raction pattern at the far �eld produced by a q-CG
and p-CG illuminated by a plane wave whose wavelength is λ = 0.6328µm, and impinges in
normal incidence to the grating. The length of the grating is L = 500µm, and initial and �nal
periods p0 = 50µm and p1 = 15µm respectively. Then qa = 0.272µm−2 and pa = −0.07.
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Figure 5: Images of di�erent areas of the q-CG (A) of L = 10 mm fabricated by photo-
lithography with chromium on quartz. (a) Initial period at x=-L/2, (b) at x=0 and (c) at
x=L/2. (d) Image of the q-CG (B) of L = 0.5 mm (detailed description in text).

3. Experimental results

To corroborate the analytical formalism we have performed an experimental
veri�cation of the far �eld intensity distribution using two q-CGs fabricated
with (A): L = 10 mm, q0 = 0.02µm−1, and q1 = 0.299µm−1 (p0 = 314µm,
p1 = 21µm), shown in Fig. 5 (a) to (c), and (B): L = 0.5 mm, q0 = 0.0125µm−1,
and q1 = 0.640µm−1 (p0 = 50µm, p1 = 9.81µm), shown in Fig. 5 (d).

The gratings are illuminated by a He-Ne laser beam by Melles Griot of 5 mW
power and wavelength λ = 632.8nm. The experiment consists of acquiring the
intensity distribution with a UI-1490LE-M-GL IDS camera (1/2 inch sensor)
with a pixel lateral size of 1.67 µm and an objective Fujinnon 9 mm/f1.4. We
have used the chirped grating (A) to demonstrate the far �eld using a Gaus-
sian light beam, and chirped grating (B) to demonstrate the far �eld using
a plane-wave. For the latter experiment we have used also a beam-expander
to illuminate uniformly the grating and capture the re�ected intensity of the
projected far-�eld.

The intensity distribution for a Gaussian beam after illuminating the grating
(A) is shown in Fig. 6. We have �tted the experimental intensity with Eq. (9)
�nding the position of illumination, xg=4.7mm. In fact, a linear displacement
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(a)

(b)

Figure 6: Experimental far-�eld intensity distribution for CG (A) illuminated with a Gaussian
light beam. (a) Intensity obtained from the camera. (b) Intensity distribution of the far �eld,
obtained from the camera sensor (blue-line) and from Eq. (9) (red-line). The vertical dashed
lines are the maximum of intensity for the �rst and third order respectively.
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(a)

(b)

Figure 7: Experimental far-�eld intensity distribution for CG (B) illuminated with a plane
wave. (a) Intensity obtained from the camera. (b) Intensity distribution of the far �eld,
obtained from the camera sensor (blue-line) and from Eq. (15) (red-line).

of the laser source over the di�raction grating will modify the spatial frequency
illuminated by the laser beam and, consequently, the angular far-�eld intensity.
Also, it is important to note from Fig. 6 that the second order is not zero because
the �lling factor of the fabricated grating is not exactly 50/50.

On the other hand, the intensity distribution for an uniform beam after
illuminating grating (B) is shown in Fig. 7. For di�raction order n = 0, a
narrow sinc convoluted signal is obtained. It is more relevant to note that the
experimental and analytical curves present a �at widening of the �rst order,
compared to the zero order, which is associated, as shown analytically, to each
local spatial frequency found in the q-grating.

4. Discussion

We have seen a di�erent behavior of chirped grating depending on the value
of the chirped parameter qa and the illumination type (Gaussian or plane wave).
Now, let us consider two applications that can be developed using spatial CGs.
In the �rst case, let us consider a long chirped grating with a low qa parameter
illuminated with a narrow Gaussian beam. This is the case of q-CG (A) shown
in Fig 5(a-c). The scheme of this application can be seen in Fig. 8(a). The
light beam sees approximately a constant period grating and di�raction orders
are de�ected according to standard grating equation, Eq. (10) for q-chirped
gratings or Eq (13) for p-chirped gratings. Therefore, a lateral displacement ∆x
of the grating produces symmetric variation in the de�ection angle of di�raction
orders, as it is shown in Fig. 8(b).
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(a)                                                   (b)

Δx

Laser                           CG

n=-1             n=0           n=+1

Figure 8: (a) Scheme of how a CG with low qa parameter can be used as a de�ector: depending
on the position that the laser beam impinges the grating, the de�ection angle with be di�erent.
(b) Experimental demonstration of selectable de�ection beam. (video showing de�ection.)

Figure 9: Experimental image of di�raction order widening of high qa chirped grating, q-CG
(B) grating. The small light line below order n = −1 is due to a re�ection in the objective.

A second application of chirped di�raction gratings can be developed for
high qa parameter CG, such as q-CG (B) grating of Fig. 5. When this grating is
illuminated with a plane wave, di�raction orders |n| ≥ 1 present a high widening,
as it is shown in Fig. 9. The width of these orders can be selected with the initial
and �nal periods of the grating: sinθ0 = nλ/p0 to sinθ1 = nλ/p1. The intensity
distribution of the di�raction order depends on the spatial variation of period,
but this intensity distribution is uniform, as it is shown in Fig. 9.

5. Conclusion

In this work we analyze the far-�eld behavior of chirped di�raction gratings
with a linear dependence in the period and in the spatial frequency. Simple an-
alytical expressions for the intensity distribution are obtained which show that,
when the chirped grating is illuminated with a Gaussian beam, the width of the
di�raction orders depends on the slope of the period, pa, or the spatial frequency,
qa, respectively. The analytical equations obtained are in good agreement with
the numerical simulations and experimental results. These CGs can be used to
obtain a simple device for de�ecting di�raction orders with a desired tunable
angle, which can be of interest in applications such as photonics, metrology,
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spectroscopy, etc. Also, CGs can be used for generating di�raction orders with
the desired angular width.
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