000129848 001__ 129848
000129848 005__ 20240112163659.0
000129848 0247_ $$2doi$$a10.1016/j.jfranklin.2018.06.020
000129848 0248_ $$2sideral$$a107565
000129848 037__ $$aART-2018-107565
000129848 041__ $$aeng
000129848 100__ $$0(orcid)0000-0002-4669-8374$$aGonzález, A.$$uUniversidad de Zaragoza
000129848 245__ $$aRobust stability analysis of formation control in local frames under time-varying delays and actuator faults
000129848 260__ $$c2018
000129848 5060_ $$aAccess copy available to the general public$$fUnrestricted
000129848 5203_ $$aThis paper investigates the robust stability of a multiagent system moving to a desired rigid formation in presence of unknown time-varying communication delays and actuator faults. Each agent uses relative position measurements to implement the proposed control method, which does not require common coordinate references. However, the presence of time delays in the measurements, which is inherent to the communication links between agents, has a negative impact in the control system performance leading, in some cases, to instability. Furthermore, the robust stability analysis becomes more complex if failures on actuators are taken into account. In addition, delays may be subject to time variations, depending on network load, availability of communication resources, dynamic routing protocols, or other environmental conditions. To cope with these problems, a sufficient condition based on Linear Matrix Inequalities (LMI) is provided to ensure the robust asymptotic convergence of the agents to the desired formation. This condition is valid for any arbitrarily fast time-varying delays and actuator faults, given a worst-case point-to-point delay. Finally, simulation results show the performance of the proposed approach.
000129848 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/DPI2015-69376-R
000129848 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000129848 590__ $$a3.653$$b2018
000129848 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b63 / 265 = 0.238$$c2018$$dQ1$$eT1
000129848 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b7 / 104 = 0.067$$c2018$$dQ1$$eT1
000129848 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b14 / 88 = 0.159$$c2018$$dQ1$$eT1
000129848 591__ $$aAUTOMATION & CONTROL SYSTEMS$$b18 / 62 = 0.29$$c2018$$dQ2$$eT1
000129848 592__ $$a1.288$$b2018
000129848 593__ $$aApplied Mathematics$$c2018$$dQ1
000129848 593__ $$aSignal Processing$$c2018$$dQ1
000129848 593__ $$aControl and Systems Engineering$$c2018$$dQ1
000129848 593__ $$aComputer Networks and Communications$$c2018$$dQ1
000129848 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000129848 700__ $$0(orcid)0000-0002-4556-7209$$aAranda, M.
000129848 700__ $$0(orcid)0000-0001-9347-5969$$aLópez-Nicolás, G.$$uUniversidad de Zaragoza
000129848 700__ $$0(orcid)0000-0002-3032-954X$$aSagüés, C.$$uUniversidad de Zaragoza
000129848 7102_ $$15007$$2520$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Ingen.Sistemas y Automát.
000129848 773__ $$g356, 2 (2018), 1131 - 1153$$pJ. Franklin Inst.$$tJOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS$$x0016-0032
000129848 8564_ $$s520860$$uhttps://zaguan.unizar.es/record/129848/files/texto_completo.pdf$$yPostprint
000129848 8564_ $$s1704526$$uhttps://zaguan.unizar.es/record/129848/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000129848 909CO $$ooai:zaguan.unizar.es:129848$$particulos$$pdriver
000129848 951__ $$a2024-01-12-14:08:15
000129848 980__ $$aARTICLE