000129853 001__ 129853 000129853 005__ 20240112163659.0 000129853 0247_ $$2doi$$a10.1088/2040-8986/ab8614 000129853 0248_ $$2sideral$$a118143 000129853 037__ $$aART-2020-118143 000129853 041__ $$aeng 000129853 100__ $$aSanchez-Brea, L.M. 000129853 245__ $$aOptimization of angular diffractive lenses with extended depth of focus 000129853 260__ $$c2020 000129853 5060_ $$aAccess copy available to the general public$$fUnrestricted 000129853 5203_ $$aConventional refractive lenses concentrate the incident light at focal distance. A narrow beam waist can be achieved by increasing the lens numerical aperture, but strongly reduces the depth of focus. In this work, we explore diffractive lenses designs, with fast angular variation of the focal distance, that produce both a narrow beam waist and a long depth of focus. We predict the focusing properties of the diffractive lenses with a simple analytical model based on an incoherent superposition of standard lenses with different focal distances. The histogram of the local focal distances is used to determine the weights in the superposition. Our model optimizes the shape of the diffractive lenses, in order to extend the depth of focus, which corresponds to the lotus lens. We verify our results with numerical simulations based on Rayleigh-Sommerfeld approach. Experimentally, we validate our analytical and numerical solutions with a spatial light modulator. We have found configurations for the lotus lens where the depth of focus is significantly incremented with only a slight increment of the focal width. For example, we increased the depth of focus from 7.6 mm to 37.2 mm while the beam waist varied from 35.0 microns to 51.6 microns for a lens with diameter D = 4 mm, and focal distance f'' = 125 mm. These results may find applications in the design of contact and intraocular lenses with extended depth of focus, laser focus generators, and imaging applications where extended depth of focus is needed. 000129853 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/DPI2016-75272-R 000129853 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000129853 590__ $$a2.516$$b2020 000129853 591__ $$aOPTICS$$b42 / 99 = 0.424$$c2020$$dQ2$$eT2 000129853 592__ $$a0.918$$b2020 000129853 593__ $$aElectronic, Optical and Magnetic Materials$$c2020$$dQ1 000129853 593__ $$aAtomic and Molecular Physics, and Optics$$c2020$$dQ1 000129853 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000129853 700__ $$0(orcid)0000-0003-3178-5253$$aTorcal-Milla, F.J.$$uUniversidad de Zaragoza 000129853 700__ $$aDel Hoyo, J. 000129853 700__ $$aCuadrado, A. 000129853 700__ $$aGomez-Pedrero, J.A. 000129853 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada 000129853 773__ $$g22, 6 (2020), 065601 [10 pp]$$pJ. opt.$$tJournal of Optics (United Kingdom)$$x2040-8978 000129853 8564_ $$s6976278$$uhttps://zaguan.unizar.es/record/129853/files/texto_completo.pdf$$yPostprint 000129853 8564_ $$s1573284$$uhttps://zaguan.unizar.es/record/129853/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000129853 909CO $$ooai:zaguan.unizar.es:129853$$particulos$$pdriver 000129853 951__ $$a2024-01-12-14:08:25 000129853 980__ $$aARTICLE